This document provides guidance on the collation of the measurements required for the management of siltation at river structures. These include structures used by water supply utilities, other major water abstractors, HEP producers, and for flow measurement by environmental protection agencies.
The document is also intended for use when a redundant structure is being removed, or when modifications to a structure are being made to facilitate fish migration or for river restoration. This is to ensure that the impacts of these changes are adequately monitored and recorded.
The document covers the provision of routine measurements, and the checks and requirements that need to be made by the operator so that specific basic information is collated and made readily available. This information is used to inform decision-making by environment management agencies that authorise flushing, sediment clearance or sedimentation removal. This is to ensure minimal environmental impacts, and to compliance with existing environmental legislation.

  • Technical specification
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance on the collation of the measurements required for the management of siltation at river structures. These include structures used by water supply utilities, other major water abstractors, HEP producers, and for flow measurement by environmental protection agencies.
The document is also intended for use when a redundant structure is being removed, or when modifications to a structure are being made to facilitate fish migration or for river restoration. This is to ensure that the impacts of these changes are adequately monitored and recorded.
The document covers the provision of routine measurements, and the checks and requirements that need to be made by the operator so that specific basic information is collated and made readily available. This information is used to inform decision-making by environment management agencies that authorise flushing, sediment clearance or sedimentation removal. This is to ensure minimal environmental impacts, and to compliance with existing environmental legislation.

  • Technical specification
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the radiation transmission method for measurement of density of the water-sediment mixture, suspended or deposited, in water bodies such as streams, canals, harbour basins, dams and reservoirs. The method is based on principles of transmission of X or Gamma rays. This document covers brief description of the operating principle of the method and details of some of the instruments used. This document applies to the measurement of water-sediment mixture density in water bodies using radiation transmission method, particularly gamma and X-ray transmission method. The working principles, applications, advantages and associated instruments are elaborated in this document.

  • Standard
    14 pages
    English language
    sale 15% off

This document specifies how to integrate baffles to aid the passage of fish on the downstream face of triangular profile weirs that conform to ISO 4360 (including Crump weirs) and ISO 4377 (flat-V weirs).

  • Standard
    22 pages
    English language
    sale 15% off

This document specifies requirements and recommendations for non-intrusive (clamp-on) ultrasonic flowmeters (USMs), which use the transit time of ultrasonic signals to measure the volumetric flowrate in closed conduits. Transit time flowmeters are predominantly used on single-phase fluids (liquid and gases) but can also be used where small quantities of additional phases are present. This document specifies performance, calibration, and output characteristics, and deals with installation conditions.

  • Standard
    34 pages
    English language
    sale 15% off
  • Standard
    37 pages
    French language
    sale 15% off

Non-catching type gauges are the emerging class of in situ precipitation measurement instruments. For these instruments, rigorous testing and calibration are more challenging than for traditional gauges. Hydrometeors’ characteristics like particle size, shape, fall velocity and density need to be reproduced in a controlled environment to provide the reference precipitation, instead of the equivalent water flow used for catching-type gauges. They are generally calibrated by the manufacturers using internal procedures developed for the specific technology employed. No agreed methodology exists, and the adopted procedures are rarely traceable to internationally recognized standards. This document describes calibration and accuracy issues of non-catching instruments used for liquid/solid atmospheric precipitation measurement. An overview of the existing models of non-catching type instruments is included, together with an overview and a description of their working principles and the adopted calibration procedures. The literature and technical manuals disclosed by manufacturers are summarized and discussed, while current limitations and metrological requirements are identified.

  • Technical report
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Non-catching type gauges are the emerging class of in situ precipitation measurement instruments. For these instruments, rigorous testing and calibration are more challenging than for traditional gauges. Hydrometeors’ characteristics like particle size, shape, fall velocity and density need to be reproduced in a controlled environment to provide the reference precipitation, instead of the equivalent water flow used for catching-type gauges. They are generally calibrated by the manufacturers using internal procedures developed for the specific technology employed. No agreed methodology exists, and the adopted procedures are rarely traceable to internationally recognized standards. This document describes calibration and accuracy issues of non-catching instruments used for liquid/solid atmospheric precipitation measurement. An overview of the existing models of non-catching type instruments is included, together with an overview and a description of their working principles and the adopted calibration procedures. The literature and technical manuals disclosed by manufacturers are summarized and discussed, while current limitations and metrological requirements are identified.

  • Technical report
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance on estimating the flowrate when using pressure differential devices constructed or operated outside the scope of ISO 5167 series. Additional tolerances or corrections cannot necessarily compensate for the effects of deviating from ISO 5167 series. The information is given, in the first place, to indicate the degree of care necessary in the manufacture, installation and maintenance of pressure differential devices by describing some of the effects of non-conformity to the requirements; and in the second place, to permit those users who cannot comply fully with the requirements to assess, however roughly, the magnitude and direction of the resulting error in flowrate. Each variation dealt with is treated as though it were the only one present. Where more than one is known to exist, there might be unpredictable interactions and care has to be taken when combining the assessment of these errors. If there is a significant number of errors, means of eliminating some of them have to be considered. The variations included in this document are by no means complete and relate largely to examples with orifice plates. An example with Venturi tubes has been placed at the end of its section. This document does not apply to cone meters or wedge meters. There are, no doubt, many similar examples of installations not conforming to ISO 5167 series for which no comparable data have been published. Such additional information from users, manufacturers and any others can be taken into account in future revisions of this document.

  • Technical report
    35 pages
    English language
    sale 15% off
  • Technical report
    38 pages
    French language
    sale 15% off

This document defines the measurement of single phase fluid flow rate in closed conduits using radioactive tracer methods.

  • Standard
    32 pages
    English language
    sale 15% off

The objective of this document is to provide guidance on the use of ISO 5167:2022 series. ISO 5167:2022 is an International Standard for flow measurement based on the differential pressure generated by a constriction introduced into a circular conduit (see ISO 5167-1:2022, 5.1). It presents a set of rules and requirements based on theory and experimental work undertaken in the field of flow measurement. For a more detailed description of the scope, reference is made to ISO 5167-1:2022, Clause 1. Definitions and symbols applicable to this document are given in ISO 5167-1:2022, Clauses 3 and 4. Neither ISO 5167-1:2022 nor this document gives detailed theoretical background, for which reference is made to any general textbook on fluid flow.

  • Technical report
    64 pages
    English language
    sale 15% off
  • Technical report
    65 pages
    French language
    sale 15% off

This document describes the geometry and method of use for conical-entrance orifice plates, quarter-circle orifice plates, eccentric orifice plates and Venturi tubes with 10,5° convergent angles. Information is also given for square-edged orifice plates and nozzles under conditions outside the scope of ISO 5167 series. NOTE The data on which this document is based are limited in some cases.

  • Technical report
    31 pages
    English language
    sale 15% off
  • Technical report
    31 pages
    French language
    sale 15% off

This European standard specifies general requirements, minimum performance requirements and test procedures for open channelinstrumentation used to determine either volumetric flow-rate and/or total volume passed of waters in artificial open channels. Itcovers the following technology categories:
−Level sensors with associated electronics designed to be used with a conventional gauging structure (e.g. weir or flumefor which the stage discharge characteristics are established and published in a national or international standard) or afluid velocity sensor.
−Integrated velocity area devices comprising level and velocity sensors that may be separate or combined in a single assembly;
−Velocity sensors that determine the mean water velocity through a channel.
It is recognised that for some OCIs certain tests cannot be carried out.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European standard specifies general requirements, minimum performance requirements and test procedures forinstrumentation used to measure either volumetric flow-rate and/or total volume passed of water in closed conduits. It covers all closed conduit instrument (CCI) technologies intended to operate in closed pressurised pipes and partially filled pipes.
It is recognised that for some CCIs certain tests cannot be carried out.
The data obtained from the testing of CCIs in accordance with the requirements of the Measuring Instruments Directive [4] or ISO4064-1 [5] can be used to meet, in part, the requirements specified in this European Standard. However, for the avoidance of doubt,compliance with the requirements of this European Standard does not equate to compliance with the requirements of theMeasuring Instruments Directive or ISO 4064-1.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements, minimum performance requirements and test procedures for open channel instrumentation used to determine either volumetric flow-rate and/or total volume passed of waters in artificial open channels. It covers the following technology categories:
- Level sensors with associated electronics designed to be used with a conventional gauging structure. (The requirements and test procedures for gauging structures, such as weirs and flumes, are excluded. The stage discharge characteristics for many of these structures are established and published in national and international standards).
- Water velocity sensors.
- Integrated velocity area instruments comprising level and velocity sensors that may be separate or combined in a single assembly.
- Velocity sensors that determine the mean water velocity through a channel.
It is recognized that for some OCIs, certain tests cannot be carried out.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements, minimum performance requirements and test procedures for instrumentation used to measure either volumetric flow-rate and/or total volume passed of water in closed conduits. It covers all closed conduit instrument (CCI) technologies intended to operate in closed pressurized pipes and partially filled pipes. Requirements are expressed in volumetric units which may be converted to mass using the density of the water.
It is recognized that for some CCIs certain tests cannot be carried out.
The data obtained from the testing of CCIs in accordance with the requirements of the Measuring Instruments Directive [1] or EN ISO 4064-1 [2] can be used to meet, in part, the requirements specified in this document. However, for the avoidance of doubt, compliance with the requirements of this document does not equate to compliance with the requirements of the Measuring Instruments Directive or EN ISO 4064-1.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies procedures for the following:
a) primary particle-sizing calibration for particle sizes 1 µm(c) and larger, sensor resolution and counting performance of liquid automatic particle counters that are capable of analysing bottle samples;
b) secondary particle-sizing calibration using suspensions verified with a primary calibrated APC;
c) establishing acceptable operation and performance limits;
d) verifying particle sensor performance using a test dust;
e) determining coincidence and flow rate limits.
This document is applicable for use with hydraulic fluids, aviation and diesel fuels, engine oil and other petroleum-based fluids. This document is not applicable to particle-sizing calibration using NIST SRM 2806b primary calibration suspensions.

  • Standard
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    51 pages
    English language
    sale 15% off

This document provides an understanding of the nature of measurement uncertainty and its significance in estimating the "quality" of a measurement or a determination in hydrometry.
This document is applicable to flow measurements in natural and man-made channels. Rainfall measurements are not covered.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation in a system and operating conditions) of critical flow nozzles (CFNs) used to determine the mass flow rate of a gas flowing through a system basically without the need to calibrate the CFN. It also gives the information necessary for calculating the flow rate and its associated uncertainty.
This document is applicable to nozzles in which the gas flow accelerates to the critical velocity at the minimum flowing section, and only where there is steady flow of single-phase gas. When the critical velocity is attained in the nozzle, the mass flow rate of the gas flowing through the nozzle is the maximum possible for the existing inlet condition, while the CFN can only be used within specified limits, e.g. the CFN throat to inlet diameter ratio and Reynolds number. This document deals with the toroidal- and cylindrical-throat CFNs for which direct calibration experiments have been made in sufficient number to enable the resulting coefficients to be used with certain predictable limits of uncertainty.

  • Standard
    131 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    122 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of Venturi tubes[1] when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167-1.
This document is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, Venturi tubes can only be used uncalibrated in accordance with this standard within specified limits of pipe size, roughness, diameter ratio and Reynolds number, or alternatively they can be used across their calibrated range. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or where the pipe Reynolds numbers are below 2 × 105.
This document deals with the three types of classical Venturi tubes:
a) “as cast”;
b) machined;
c) fabricated (also known as “rough-welded sheet-iron”).
A Venturi tube consists of a convergent inlet connected to a cylindrical throat which is in turn connected to a conical expanding section called the divergent section (or alternatively the diffuser). Venturi nozzles (and other nozzles) are dealt with in ISO 5167-3.
NOTE       In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.
[1]   In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    34 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document defines terms and symbols and establishes the general principles for methods of measurement and computation of the flow rate of fluid flowing in a conduit by means of pressure differential devices (orifice plates, nozzles, Venturi tubes, cone meters, and wedge meters) when they are inserted into a circular cross-section conduit running full. This document also specifies the general requirements for methods of measurement, installation and determination of the uncertainty of the measurement of flow rate.
ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. It is not applicable to the measurement of pulsating flow.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    49 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as “vena contracta” and pipe tappings are not covered by this document. This document is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow[1]. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or where the pipe Reynolds numbers are below 5 000.

  • Standard
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    68 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document provides an understanding of the nature of measurement uncertainty and its significance in estimating the "quality" of a measurement or a determination in hydrometry.
This document is applicable to flow measurements in natural and man-made channels. Rainfall measurements are not covered.

  • Standard
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for the measurement of flow in rivers and artificial channels under steady or slowly varying flow conditions, using certain types of critical-depth flumes (also known as “standing-wave flumes”). A wide variety of flumes has been developed, but only those critical-depth flumes which have received general acceptance after adequate research and field testing, and which therefore do not require in situ calibration, are considered herein. The flow conditions considered are uniquely dependent on the upstream head, i.e. subcritical flow must exist upstream of the flume, after which the flow accelerates through the contraction and passes through its critical depth (see Figure 1). The water level downstream of the structure is low enough to have no influence upon its performance. This document is applicable to three commonly used types of flumes, covering a wide range of applications, namely rectangular-throated, trapezoidal-throated and U-throated. The hydraulic theory behind this document was presented in Reference [7]. This document is not applicable to a form of flume referred to in the literature (sometimes called a “Venturi” flume) in which the flow remains subcritical throughout. NOTE The Venturi form of flume is based on the same principle as a Venturi meter used within a closed conduit system and relies upon gauging the head at two locations and the application of Bernoulli’s energy formula.

  • Standard
    79 pages
    English language
    sale 15% off
  • Standard
    80 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit.
This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000.
This document deals with
a) three types of standard nozzles:
ISA 1932[1] nozzle;
the long radius nozzle[2];
the throat-tapped nozzle
b) the Venturi nozzle.
The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty.
[1] ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946.
[2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of
cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid
flowing in the conduit.
As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might
be deemed essential to calibrate the flow meter in accordance with Clause 7.
This document also provides background information for calculating the flow rate and is applicable in
conjunction with the requirements given in ISO 5167-1.
This document is applicable only to cone meters in which the flow remains subsonic throughout the
measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can
only be used within specified limits of pipe size, roughness, β, and Reynolds number, Re. This document
is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone
meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are
below 8 × 104 or greater than 1,2 × 107.
A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in
the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this
document has one or more upstream pressure tappings in the wall, and a downstream pressure tapping
positioned in the back face of the cone with the connection to a differential pressure transmitter being
a hole through the cone to the support bar, and then up through the support bar.
Alternative designs of cone meters are available; however, at the time of writing, there is insufficient
data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance
with Clause 7.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of
wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid
flowing in the conduit.
NOTE 1 As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it
could be deemed essential to calibrate the flow meter according to Clause 7.
This document gives requirements for calibration which, if applied, are for use over the calibrated
Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar
design but which fall outside the scope of this document.
It also provides background information for calculating the flow rate and is applicable in conjunction
with the requirements given in ISO 5167-1.
This document is applicable only to wedge meters in which the flow remains subsonic throughout the
measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters
can only be used within specified limits of pipe size, roughness, β (or wedge ratio) and Reynolds number.
It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge
meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe
Reynolds numbers are below 1 × 104.
NOTE 2 A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific
geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient
data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit.
This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000.
This document deals with
a) three types of standard nozzles:
1)    ISA 1932[1] nozzle;
2)    the long radius nozzle[2];
3)    the throat-tapped nozzle
b) the Venturi nozzle.
The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty.
[1]   ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946.
[2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might be deemed essential to calibrate the flow meter in accordance with Clause 7.
This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable only to cone meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can only be used within specified limits of pipe size, roughness, β, and Reynolds number, Re. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are below 8 × 104 or greater than 1,2 × 107.
A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this document has one or more upstream pressure tappings in the wall, and a downstream pressure tapping positioned in the back face of the cone with the connection to a differential pressure transmitter being a hole through the cone to the support bar, and then up through the support bar.
Alternative designs of cone meters are available; however, at the time of writing, there is insufficient data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance with Clause 7.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit.
NOTE 1    As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it could be deemed essential to calibrate the flow meter according to Clause 7.
This document gives requirements for calibration which, if applied, are for use over the calibrated Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar design but which fall outside the scope of this document.
It also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1.
This document is applicable only to wedge meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters can only be used within specified limits of pipe size, roughness, β (or wedge ratio) and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe Reynolds numbers are below 1 × 104.
NOTE 2    A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the functional requirements of instrumentation for measuring the level of water surface (stage), primarily for the purpose of determining flow rates.
This document is supplemented by Annex A, which provides guidance on the types of automatic water level measurement devices currently available and the measurement uncertainty associated with them. The manually operated measuring devices are described in Annex B.
This document is applicable to both contact and non-contact methods of measurement. The non-contact methods are not in direct material contact with the water surface but measure the height of the water level with ultrasonic or electromagnetic waves.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of nozzles and Venturi nozzles when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit. This document also provides background information for calculating the flowrate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable to nozzles and Venturi nozzles in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of the devices can only be used within specified limits of pipe size and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of nozzles and Venturi nozzles in pipe sizes less than 50 mm or more than 630 mm, or where the pipe Reynolds numbers are below 10 000. This document deals with a) three types of standard nozzles: 1) ISA 1932[1] nozzle; 2) the long radius nozzle[2]; 3) the throat-tapped nozzle b) the Venturi nozzle. The three types of standard nozzle are fundamentally different and are described separately in this document. The Venturi nozzle has the same upstream face as the ISA 1932 nozzle, but has a divergent section and, therefore, a different location for the downstream pressure tappings, and is described separately. This design has a lower pressure loss than a similar nozzle. For all of these nozzles and for the Venturi nozzle direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty. [1] ISA is the abbreviation for the International Federation of the National Standardizing Associations, which was superseded by ISO in 1946. [2] The long radius nozzle differs from the ISA 1932 nozzle in shape and in the position of the pressure tappings.

  • Standard
    42 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of wedge meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. NOTE 1 As the uncertainty of an uncalibrated wedge meter can be too large for a particular application, it could be deemed essential to calibrate the flow meter according to Clause 7. This document gives requirements for calibration which, if applied, are for use over the calibrated Reynolds number range. Clause 7 could also be useful guidance for calibration of meters of similar design but which fall outside the scope of this document. It also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable only to wedge meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated wedge meters can only be used within specified limits of pipe size, roughness, β (or wedge ratio) and Reynolds number. It is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated wedge meters in pipes whose internal diameter is less than 50 mm or more than 600 mm, or where the pipe Reynolds numbers are below 1 × 104. NOTE 2 A wedge meter has a primary element which consists of a wedge-shaped restriction of a specific geometry. Alternative designs of wedge meters are available; however, at the time of writing there is insufficient data to fully characterize these devices, and therefore these meters are calibrated in accordance with Clause 7.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of cone meters when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. As the uncertainty of an uncalibrated cone meter might be too high for a particular application, it might be deemed essential to calibrate the flow meter in accordance with Clause 7. This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable only to cone meters in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. Uncalibrated cone meters can only be used within specified limits of pipe size, roughness, β, and Reynolds number, Re. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated cone meters in pipes sized less than 50 mm or more than 500 mm, or where the pipe Reynolds numbers are below 8 × 104 or greater than 1,2 × 107. A cone meter is a primary device which consists of a cone-shaped restriction held concentrically in the centre of the pipe with the nose of the cone upstream. The design of cone meter defined in this document has one or more upstream pressure tappings in the wall, and a downstream pressure tapping positioned in the back face of the cone with the connection to a differential pressure transmitter being a hole through the cone to the support bar, and then up through the support bar. Alternative designs of cone meters are available; however, at the time of writing, there is insufficient data to fully characterize these devices, and therefore, these meters shall be calibrated in accordance with Clause 7.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

This document defines terms and symbols used in standards in the field of hydrometry.

  • Standard
    92 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation in a system and operating
conditions) of critical flow nozzles (CFNs) used to determine the mass flow rate of a gas flowing through
a system basically without the need to calibrate the CFN. It also gives the information necessary for
calculating the flow rate and its associated uncertainty.
This document is applicable to nozzles in which the gas flow accelerates to the critical velocity at the
minimum flowing section, and only where there is steady flow of single-phase gas. When the critical
velocity is attained in the nozzle, the mass flow rate of the gas flowing through the nozzle is the
maximum possible for the existing inlet condition, while the CFN can only be used within specified
limits, e.g. the CFN throat to inlet diameter ratio and Reynolds number. This document deals with the
toroidal- and cylindrical-throat CFNs for which direct calibration experiments have been made in
sufficient number to enable the resulting coefficients to be used with certain predictable limits of
uncertainty.

  • Standard
    131 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    122 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document defines terms and symbols and establishes the general principles for methods of
measurement and computation of the flow rate of fluid flowing in a conduit by means of pressure
differential devices (orifice plates, nozzles, Venturi tubes, cone meters, and wedge meters) when they
are inserted into a circular cross-section conduit running full. This document also specifies the general
requirements for methods of measurement, installation and determination of the uncertainty of the
measurement of flow rate.
ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section
and where the fluid can be considered as single-phase. It is not applicable to the measurement of
pulsating flow.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    49 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of
Venturi tubes1) when they are inserted in a conduit running full to determine the flow rate of the fluid
flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in
conjunction with the requirements given in ISO 5167-1.
This document is applicable only to Venturi tubes in which the flow remains subsonic throughout
the measuring section and where the fluid can be considered as single-phase. In addition, Venturi
tubes can only be used uncalibrated in accordance with this standard within specified limits of pipe
size, roughness, diameter ratio and Reynolds number, or alternatively they can be used across their
calibrated range. This document is not applicable to the measurement of pulsating flow. It does not
cover the use of uncalibrated Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or
where the pipe Reynolds numbers are below 2 × 105.
This document deals with the three types of classical Venturi tubes:
a) “as cast”;
b) machined;
c) fabricated (also known as “rough-welded sheet-iron”).
A Venturi tube consists of a convergent inlet connected to a cylindrical throat which is in turn connected
to a conical expanding section called the divergent section (or alternatively the diffuser). Venturi
nozzles (and other nozzles) are dealt with in ISO 5167-3.
NOTE In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    34 pages
    German language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of
orifice plates when they are inserted in a conduit running full to determine the flow rate of the fluid
flowing in the conduit.
This document also provides background information for calculating the flow rate and is applicable in
conjunction with the requirements given in ISO 5167-1.
This document is applicable to primary devices having an orifice plate used with flange pressure
tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure
tappings such as “vena contracta” and pipe tappings are not covered by this document. This document
is applicable only to a flow which remains subsonic throughout the measuring section and where the
fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow[1]. It
does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or where
the pipe Reynolds numbers are below 5 000

  • Standard
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    68 pages
    German language
    sale 10% off
    e-Library read for
    1 day

IEC 60704-3:2019 is available as IEC 60704-3:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60704-3:2019 describes procedures for determining and verifying the declared values of the noise emitted by household and similar appliances. It applies to all categories of household and similar electrical appliances covered by IEC 60704-1 and all parts of IEC 60704-2, which include particular requirements for special categories of appliances. It applies to appliances being produced in quantity, such as in batches, series or lots, which are manufactured to the same technical specification and characterized by the same declared value of noise emission. This part of IEC 60704: – considers the term "declaration" to include all means for providing information on the noise emission values to potential users (consumers) of the appliances; this includes labels, brochures, advertisements, commercial and technical information papers, etc.; – considers the declaration for appliances manufactured by mass production; – specifies a simple statistical method for verifying the declared values by investigating a sample of only three appliances. This International Standard is to be used in conjunction with IEC 60704-1:2010 and the latest edition of IEC 60704-2 (all parts). This third edition cancels and replaces the second edition published in 2006. This edition constitutes a technical revision. It includes the following significant technical changes with respect to the previous edition: a) in Annex A, standard deviations that are now specified for various appliance categories in the parts of IEC 60704-2 have been excluded from Table A.1; b) furthermore, this edition makes reference to new standards and is implementing ISO/IEC Directives, Part 2 in a more accurate manner.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for determining the velocity and cross-sectional area of water flowing in open channels and for calculating the discharge employing point velocity measurement devices.
It is applicable to methods using rotating-element current meters, acoustic doppler velocimeters (ADVs), acoustic doppler current profiler (ADCP) stationary method, surface velocity measurement including floats and other surface velocity systems.
Although some general procedures are discussed, this document does not describe in detail how to use or deploy these systems.
NOTE         For detailed procedures, refer to guidelines from instrument manufacturers and the appropriate public agencies.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the geometry and method of use (installation and operating conditions) of Venturi tubes[1] when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167-1. This document is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, Venturi tubes can only be used uncalibrated in accordance with this standard within specified limits of pipe size, roughness, diameter ratio and Reynolds number, or alternatively they can be used across their calibrated range. This document is not applicable to the measurement of pulsating flow. It does not cover the use of uncalibrated Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or where the pipe Reynolds numbers are below 2 × 105. This document deals with the three types of classical Venturi tubes: a) “as cast”; b) machined; c) fabricated (also known as “rough-welded sheet-iron”). A Venturi tube consists of a convergent inlet connected to a cylindrical throat which is in turn connected to a conical expanding section called the divergent section (or alternatively the diffuser). Venturi nozzles (and other nozzles) are dealt with in ISO 5167-3. NOTE In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube. [1] In the USA the classical Venturi tube is sometimes called the Herschel Venturi tube.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    27 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation in a system and operating conditions) of critical flow nozzles (CFNs) used to determine the mass flow rate of a gas flowing through a system basically without the need to calibrate the CFN. It also gives the information necessary for calculating the flow rate and its associated uncertainty. This document is applicable to nozzles in which the gas flow accelerates to the critical velocity at the minimum flowing section, and only where there is steady flow of single-phase gas. When the critical velocity is attained in the nozzle, the mass flow rate of the gas flowing through the nozzle is the maximum possible for the existing inlet condition, while the CFN can only be used within specified limits, e.g. the CFN throat to inlet diameter ratio and Reynolds number. This document deals with the toroidal- and cylindrical-throat CFNs for which direct calibration experiments have been made in sufficient number to enable the resulting coefficients to be used with certain predictable limits of uncertainty.

  • Standard
    122 pages
    English language
    sale 15% off
  • Standard
    122 pages
    French language
    sale 15% off

This document specifies the geometry and method of use (installation and operating conditions) of orifice plates when they are inserted in a conduit running full to determine the flow rate of the fluid flowing in the conduit. This document also provides background information for calculating the flow rate and is applicable in conjunction with the requirements given in ISO 5167‑1. This document is applicable to primary devices having an orifice plate used with flange pressure tappings, or with corner pressure tappings, or with D and D/2 pressure tappings. Other pressure tappings such as “vena contracta” and pipe tappings are not covered by this document. This document is applicable only to a flow which remains subsonic throughout the measuring section and where the fluid can be considered as single phase. It is not applicable to the measurement of pulsating flow[1]. It does not cover the use of orifice plates in pipe sizes less than 50 mm or more than 1 000 mm, or where the pipe Reynolds numbers are below 5 000.

  • Standard
    53 pages
    English language
    sale 15% off
  • Standard
    54 pages
    French language
    sale 15% off

This document defines terms and symbols and establishes the general principles for methods of measurement and computation of the flow rate of fluid flowing in a conduit by means of pressure differential devices (orifice plates, nozzles, Venturi tubes, cone meters, and wedge meters) when they are inserted into a circular cross-section conduit running full. This document also specifies the general requirements for methods of measurement, installation and determination of the uncertainty of the measurement of flow rate. ISO 5167 (all parts) is applicable only to flow that remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. It is not applicable to the measurement of pulsating flow.

  • Standard
    42 pages
    English language
    sale 15% off
  • Standard
    43 pages
    French language
    sale 15% off

This document specifies the functional requirements of instrumentation for measuring the level of
water surface (stage), primarily for the purpose of determining flow rates.
This document is supplemented by Annex A, which provides guidance on the types of automatic water
level measurement devices currently available and the measurement uncertainty associated with them.
The manually operated measuring devices are described in Annex B.
This document is applicable to both contact and non-contact methods of measurement. The non-contact
methods are not in direct material contact with the water surface but measure the height of the water
level with ultrasonic or electromagnetic waves.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the functional requirements of instrumentation for measuring the level of water surface (stage), primarily for the purpose of determining flow rates. This document is supplemented by Annex A, which provides guidance on the types of automatic water level measurement devices currently available and the measurement uncertainty associated with them. The manually operated measuring devices are described in Annex B. This document is applicable to both contact and non-contact methods of measurement. The non-contact methods are not in direct material contact with the water surface but measure the height of the water level with ultrasonic or electromagnetic waves.

  • Standard
    27 pages
    English language
    sale 15% off
  • Standard
    29 pages
    French language
    sale 15% off

This document defines terms and symbols used in standards in the field of hydrometry

  • Standard
    92 pages
    English language
    sale 10% off
    e-Library read for
    1 day