IEC 61400-21-2 - Wind energy generation systems - Measurement and assessment of electrical characteristics - Wind power plants - has the following scope: IEC 61400-21-2 defines and specifies the quantities that shall be determined to characterize the electrical characteristics of grid-connected power plants (PP).
IEC 61400-21-2 defines the measurement and test procedures for quantifying the electrical characteristics as basis for the verification of compliance of PP, including:
- Power quality aspects
- Steady state operation
- Dynamic response (undervoltage and overvoltage fault ride-through)
- Disconnection from grid (Grid protection)
- Control performance
IEC 61400-21-2 defines a uniform functionality test and measurement procedure for the power plant controller (PPC), as a basis for the unit test of the power plant controller.
IEC 61400-21-2 defines the procedures for assessing compliance with electrical connection requirements, including the aggregation methods for power quality aspects such as voltage variations, flicker, harmonics and interharmonics.
IEC 61400-21-2 defines the procedures for measurement and fault recording for the verification of power plant electrical simulation models in relation to undervoltage and overvoltage ride through events.
These measurement procedures are valid for power plants, including the power plant controller and other connected equipment, necessary for the operation of the Power Plant. The measurement procedures are valid for any size of power plant connected to the point of connection (POC) at one connection point.
The procedures for assessing and verifying the compliance with grid connection requirements are valid for power plants in power systems with fixed frequency and a sufficient short-circuit power.
Out of the scope of this standard are:
- Multi park control, i.e. cluster management of several power plants (PP) or several connection points
- Compliance test and performance requirements, including pass or fail criteria
- Specific component test and validation of the PP equipment (switchgear, cables, transformers, etc.), which are covered by other IEC standards
- Wind power plant model validation, as defined in the IEC 61400-27-2
- Load flow calculation methods and load flow study guidelines
- Test and measurement of the communication interface and system of the PP as defined in the IEC 61400-25 series
NOTE
For the purposes of this document, the following terms for system voltage apply, based on IEC 60038
Low voltage (LV) refers to 100 V < Un ≤ 1 kV;
Medium voltage (MV) refers 106 to 1 kV < Un ≤ 35 kV;
High voltage (HV) refers to 35 kV < Un ≤ 230 kV;
Extra high voltage (EHV) refers to Un > 230 kV

  • Standard
    151 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-21-2 - Wind energy generation systems - Measurement and assessment of electrical characteristics - Wind power plants - has the following scope: IEC 61400-21-2 defines and specifies the quantities that shall be determined to characterize the electrical characteristics of grid-connected power plants (PP). IEC 61400-21-2 defines the measurement and test procedures for quantifying the electrical characteristics as basis for the verification of compliance of PP, including: - Power quality aspects - Steady state operation - Dynamic response (undervoltage and overvoltage fault ride-through) - Disconnection from grid (Grid protection) - Control performance IEC 61400-21-2 defines a uniform functionality test and measurement procedure for the power plant controller (PPC), as a basis for the unit test of the power plant controller. IEC 61400-21-2 defines the procedures for assessing compliance with electrical connection requirements, including the aggregation methods for power quality aspects such as voltage variations, flicker, harmonics and interharmonics. IEC 61400-21-2 defines the procedures for measurement and fault recording for the verification of power plant electrical simulation models in relation to undervoltage and overvoltage ride through events. These measurement procedures are valid for power plants, including the power plant controller and other connected equipment, necessary for the operation of the Power Plant. The measurement procedures are valid for any size of power plant connected to the point of connection (POC) at one connection point. The procedures for assessing and verifying the compliance with grid connection requirements are valid for power plants in power systems with fixed frequency and a sufficient short-circuit power. Out of the scope of this standard are: - Multi park control, i.e. cluster management of several power plants (PP) or several connection points - Compliance test and performance requirements, including pass or fail criteria - Specific component test and validation of the PP equipment (switchgear, cables, transformers, etc.), which are covered by other IEC standards - Wind power plant model validation, as defined in the IEC 61400-27-2 - Load flow calculation methods and load flow study guidelines - Test and measurement of the communication interface and system of the PP as defined in the IEC 61400-25 series NOTE For the purposes of this document, the following terms for system voltage apply, based on IEC 60038 Low voltage (LV) refers to 100 V  230 kV

  • Standard
    151 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-21-2:2023 defines and specifies the quantities that are determined to characterize the electrical characteristics of grid-connected power plants (PPs).
This document defines the measurement and test procedures for quantifying the electrical characteristics as basis for the verification of compliance of PPs. This document defines a uniform functionality test and measurement procedure for the power plant controller (PPC), as a basis for the unit test of the power plant controller.
This document defines the procedures for assessing compliance with electrical connection requirements, including the aggregation methods for power quality aspects such as voltage variations, flicker, harmonics and interharmonics. This document defines the procedures for measurement and fault recording, for example for the verification of power plant electrical simulation models in relation to undervoltage and overvoltage ride-through events.

  • Standard
    302 pages
    English and French language
    sale 15% off

IEC TS 61400-29:2023, which is a Technical Specification, instils good practice for aviation lighting and marking of wind turbines in both onshore and offshore domains. Consideration is given to visible lighting and infrared (IR) lighting, which is necessary to maintain conspicuity to users of night vision goggles (NVGs). ICAO Annex 14 Standards and Recommended Practices have been used as the basis to develop supplementary harmonised specifications to assist with implementation.
This document provides a set of technical requirements for marking and lighting of wind turbines with a tip height from/at 150 meters and below 315 meters Above Ground Level (AGL), or Above Mean Sea Level (AMSL) for offshore sites. This will improve situational awareness for airspace users, maintain safety of aircraft flying in the vicinity of wind turbines, and provide additional tools to assist with the reduction in environmental impacts consistent with aviation safety objectives.

  • Technical specification
    30 pages
    English language
    sale 15% off

IEC 61400-50-1:2022 specifies methods and requirements for the application of instruments to measure wind speed (and related parameters, e.g. wind direction, turbulence intensity). Such measurements are required as an input to some of the evaluation and testing procedures for wind energy and wind turbine technology (e.g. resource evaluation and turbine performance testing) described by other standards in the IEC 61400 series. This document is applicable specifically to the use of wind measurement instruments mounted on meteorological masts, turbine nacelles or turbine spinners which measure the wind at the location at which the instruments are mounted. This document excludes remote sensing devices which measure the wind at some location distant from the location at which the instrument is mounted (e.g. vertical profile or forward facing lidars).

  • Standard
    82 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-50-1:2022 specifies methods and requirements for the application of instruments to measure wind speed (and related parameters, e.g. wind direction, turbulence intensity). Such measurements are required as an input to some of the evaluation and testing procedures for wind energy and wind turbine technology (e.g. resource evaluation and turbine performance testing) described by other standards in the IEC 61400 series. This document is applicable specifically to the use of wind measurement instruments mounted on meteorological masts, turbine nacelles or turbine spinners which measure the wind at the location at which the instruments are mounted. This document excludes remote sensing devices which measure the wind at some location distant from the location at which the instrument is mounted (e.g. vertical profile or forward facing lidars).

  • Standard
    82 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61400-12 specifies a procedure for verifying the power performance
characteristics of a single electricity-producing, horizontal axis wind turbine that is not
considered to be a small wind turbine per IEC 61400-2. It is expected that this document be
used when the specific operational or contractual specifications do not comply with the
requirements set out in IEC 61400-12-1. The procedure can be used for power performance
evaluation of specific turbines at specific locations, but equally the methodology can be used
to make generic comparisons between different turbine models or different turbine settings.
The purpose of this document is to provide a uniform methodology of measurement, analysis,
and reporting of power performance characteristics for individual electricity producing wind
turbines utilising nacelle-anemometry methods. This document is intended to be applied only
to horizontal axis wind turbines of sufficient size that the nacelle-mounted anemometer does
not significantly affect the flow through the turbine’s rotor and around the nacelle and hence
does not affect the wind turbine’s performance. The intent of this document is that the methods
presented in this document be utilised when the requirements set out in IEC 61400-12-1 are
not feasible. This will ensure that the results are as consistent, accurate, and reproducible as
possible within the current state of the art for instrumentation and measurement techniques.
This document describes how to characterise a wind turbine’s power performance in terms of a
measured power curve and the estimated AEP. Guidance on uncertainty considerations relating
to the power performance of the sample of turbines tested relative to the power performance of
all turbines in a wind farm is provided. Guidance on the evaluation of the combined uncertainty
for the case where multiple turbines are tested is also provided.

  • Standard
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-50-1:2022 specifies methods and requirements for the application of instruments to measure wind speed (and related parameters, e.g. wind direction, turbulence intensity). Such measurements are required as an input to some of the evaluation and testing procedures for wind energy and wind turbine technology (e.g. resource evaluation and turbine performance testing) described by other standards in the IEC 61400 series. This document is applicable specifically to the use of wind measurement instruments mounted on meteorological masts, turbine nacelles or turbine spinners which measure the wind at the location at which the instruments are mounted. This document excludes remote sensing devices which measure the wind at some location distant from the location at which the instrument is mounted (e.g. vertical profile or forward facing lidars).

  • Standard
    162 pages
    English and French language
    sale 15% off

This part of IEC 61400 specifies a procedure for measuring the power performance
characteristics of a single wind turbine and applies to the testing of wind turbines of all types
and sizes connected to the electrical power network. In addition, this document defines a
procedure to be used to determine the power performance characteristics of small wind turbines
(as defined in IEC 61400-2) when connected to either the electric power network or a battery
bank. The procedure can be used for performance evaluation of specific wind turbines at
specific locations, but equally the methodology can be used to make generic comparisons
between different wind turbine models or different wind turbine settings when site-specific
conditions and data filtering influences are taken into account.
Considerations which can be of relevance to the assessment of uncertainty of power
performance tests on multiple turbines are presented in Annex R on an informative basis.
This document defines a measurement methodology that requires the measured power curve
and derived energy production figures to be supplemented by an assessment of uncertainty
sources and their combined effects. Uncertainty sources of wind measurements are assessed
from procedures described in the relevant wind measurement equipment standards while
uncertainty of the power curve and annual energy production are assessed by procedures in
this document.

  • Standard
    157 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The IEC 61400 series of standards addresses wind energy generation technical requirements up to the point of interconnection with the utility grid system. Part 12 of the IEC 61400 series of standards comprises a sub-set of standards which are to be used in the evaluation and measurement of the power performance characteristics of wind turbines. The power performance characterisation of wind turbines of all types and sizes is covered.
Wind turbine power performance characteristics are determined from a measured power curve and an associated estimated annual energy production (AEP) and its uncertainty. The measured power curve, defined as the relationship between the wind speed and the wind turbine power output, is determined by collecting simultaneous measurements of meteorological variables (including wind speed), as well as wind turbine signals (including power output) at the test site for a period that is long enough to establish a statistically significant database over a range of wind speeds and under varying wind and atmospheric conditions. The AEP is calculated by applying the measured power curve to reference wind speed frequency distributions, assuming 100 % availability.
Part 12-0 provides a general introduction to the available options for power performance measurement and the contributing evaluations which are further detailed in the other parts of the IEC 61400-12 series. Although the -12 series also defines the specifications of the meteorological variables (and in particular wind speed) required for the power performance evaluation, the methods and procedures for measuring or otherwise acquiring the wind speed data are defined in the IEC 61400-50 wind measurement series of standards.
The evaluation of the wind turbine power performance characteristic according to this series of standards requires the measured power curve and derived energy production figures to be supplemented by an assessment of uncertainty sources and their combined effects. The basis of the uncertainty assessment is ISO/IEC Guide 98-3. The wind measurement uncertainty sources shall be identified and quantified from procedures described in the relevant wind measurement standards contained in the IEC 61400-50 series. The wind measurement uncertainties shall be propagated through to and combined with the other sources of uncertainty in the power curve and annual energy production using methods and assumptions described in the IEC 61400-12 series of standards.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The IEC 61400 series of standards addresses wind energy generation technical requirements
up to the point of interconnection with the utility grid system. The IEC 61400-50 series of
standards comprises a sub-set of standards which specify the requirements for equipment and
methods to be used in the measurement of the wind.
Wind measurements are required as inputs to various tests and analyses specified in other usecase standards in the IEC 61400 series (e.g. power performance, resource assessment, noise
measurement). Whereas those other standards define use-cases for wind measurements, the
IEC 61400-50 series sets those wind measurement requirements which are independent of the
use-case. Its purpose is to ensure that wind measurements and the evaluation of uncertainties
in those measurements are carried out consistently across the wind industry and that wind
measurements are carried out such that the uncertainties can be quantified and that those
uncertainties are within an acceptable range.
This document provides a general introduction to the options that are available for wind
measurement, which are further detailed in the other parts of the IEC 61400-50 series.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61400 specifies the procedures for assessing the significance of obstacles and
terrain variations on a proposed power performance measurement site and applies to the
performance testing of wind turbines of all types and sizes connected to the electrical power
network as described in other parts of the IEC 61400 series. The procedure applies to the
performance evaluation of specific wind turbines at specific locations.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61400 specifies a measurement and analysis procedure for deriving the wind
speed correction due to terrain effects and applies to the performance testing of wind turbines
of all types and sizes connected to the electrical power network as described in IEC 61400-12-1.
The procedure applies to the performance evaluation of specific wind turbines at specific
locations.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61400-12 specifies a procedure for measuring the nacelle transfer function of
a single electricity-producing, horizontal axis wind turbine, which is not considered to be a small
wind turbine in accordance with IEC 61400-2. It is expected that this document be used when
a valid nacelle transfer function is needed to execute a power performance measurement
according to IEC 61400-12-2.
A wind speed measured on the nacelle or hub of a wind turbine is affected by the turbine rotor
(i.e. speeded up or slowed down wind speed). In IEC 61400-12-1, an anemometer is located on
a meteorological tower that is located between two and four rotor diameters upwind of the test
turbine. This location allows direct measurement of the "free" wind with minimum interference
from the test turbine's rotor. In the procedure of this document, the anemometer is located on
or near the test turbine's nacelle. In this location, the anemometer is measuring a wind speed
that is strongly affected by the test turbine's rotor and the nacelle. The procedure in this
document includes methods for determining and applying appropriate corrections for this
interference. However, note that these corrections inherently increase the measurement
uncertainty compared to a properly configured test conducted in accordance with
IEC 61400-12-1.
This document specifies how to characterise a wind turbine's nacelle transfer function. The
nacelle transfer function is determined by collecting simultaneous measurements of
nacelle-measured wind speed and free stream wind speed (as measured on a meteorological
mast) for a period that is long enough to establish a statistically significant database over a
range of wind speeds and under varying wind and atmospheric conditions. The procedure also
provides guidance on determination of measurement uncertainty including assessment of
uncertainty sources and recommendations for combining them.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Part 50 of IEC 61400 specifies methods and requirements for the application of instruments to measure wind speed (and related parameters, e.g. wind direction and turbulence intensity). Such measurements are required as an input to some of the evaluation and testing procedures for wind energy and wind turbine technology (e.g. resource evaluation and turbine testing) described by other standards in the IEC 61400 series. Part 50-2 is applicable specifically to the use of ground mounted remote sensing wind measurement instruments, i.e devices which measure the wind at some location generally above and distant from the location at which the instrument is mounted (e.g. sodars, vertical profiling lidars). This document specifically excludes other types of RSD such as forward facing or scanning lidars.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-12-1:2022 specifies a procedure for measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sizes connected to the electrical power network. In addition, this document defines a procedure to be used to determine the power performance characteristics of small wind turbines (as defined in IEC 61400-2) when connected to either the electric power network or a battery bank. This document defines a measurement methodology that requires the measured power curve and derived energy production figures to be supplemented by an assessment of uncertainty sources and their combined effects. This third edition of IEC 61400-12-1 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    157 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The IEC 61400 series of standards addresses wind energy generation technical requirements up to the point of interconnection with the utility grid system. Part 12 of the IEC 61400 series of standards comprises a sub-set of standards which are to be used in the evaluation and measurement of the power performance characteristics of wind turbines. The power performance characterisation of wind turbines of all types and sizes is covered. Wind turbine power performance characteristics are determined from a measured power curve and an associated estimated annual energy production (AEP) and its uncertainty. The measured power curve, defined as the relationship between the wind speed and the wind turbine power output, is determined by collecting simultaneous measurements of meteorological variables (including wind speed), as well as wind turbine signals (including power output) at the test site for a period that is long enough to establish a statistically significant database over a range of wind speeds and under varying wind and atmospheric conditions. The AEP is calculated by applying the measured power curve to reference wind speed frequency distributions, assuming 100 % availability. Part 12-0 provides a general introduction to the available options for power performance measurement and the contributing evaluations which are further detailed in the other parts of the IEC 61400-12 series. Although the -12 series also defines the specifications of the meteorological variables (and in particular wind speed) required for the power performance evaluation, the methods and procedures for measuring or otherwise acquiring the wind speed data are defined in the IEC 61400-50 wind measurement series of standards. The evaluation of the wind turbine power performance characteristic according to this series of standards requires the measured power curve and derived energy production figures to be supplemented by an assessment of uncertainty sources and their combined effects. The basis of the uncertainty assessment is ISO/IEC Guide 98-3. The wind measurement uncertainty sources shall be identified and quantified from procedures described in the relevant wind measurement standards contained in the IEC 61400-50 series. The wind measurement uncertainties shall be propagated through to and combined with the other sources of uncertainty in the power curve and annual energy production using methods and assumptions described in the IEC 61400-12 series of standards.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-12-2:2022 specifies a procedure for verifying the power performance characteristics of a single electricity-producing, horizontal axis wind turbine that is not considered to be a small wind turbine per IEC 61400-2. It is expected that this document be used when the specific operational or contractual specifications do not comply with the requirements set out in IEC 61400-12-1. The purpose of this document is to provide a uniform methodology of measurement, analysis, and reporting of power performance characteristics for individual electricity producing wind turbines utilising nacelle-anemometry methods. This document is intended to be applied only to horizontal axis wind turbines of sufficient size that the nacelle-mounted anemometer does not significantly affect the flow through the turbine’s rotor and around the nacelle and hence does not affect the wind turbine’s performance. This second edition of IEC 61400-12-2 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-50:2022 provides a general introduction to the options that are available for wind measurement, which are further detailed in the other parts of the IEC 61400-50 series. Tandis que ces autres normes définissent les cas d’utilisation relatifs aux mesurages du vent, la série IEC 61400-50 établit des exigences de mesure du vent qui sont indépendantes des cas d’utilisation. Son objectif est d’assurer que les mesurages du vent et l’évaluation des incertitudes (relative à ces mesurages) sont effectués de manière cohérente dans tout le secteur éolien; et d’assurer que ces mesurages du vent sont effectués de telle sorte que les incertitudes pouvant être quantifiées soient dans une plage acceptable. This first edition of IEC 61400-50 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400-12-2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-12-5:2022 specifies the procedures for assessing the significance of obstacles and terrain variations on a proposed power performance measurement site and applies to the performance testing of wind turbines of all types and sizes connected to the electrical power network as described in other parts of the IEC 61400 series. The procedure applies to the performance evaluation of specific wind turbines at specific locations. This first edition of IEC 61400-12-5 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Part 50 of IEC 61400 specifies methods and requirements for the application of instruments to measure wind speed (and related parameters, e.g. wind direction and turbulence intensity). Such measurements are required as an input to some of the evaluation and testing procedures for wind energy and wind turbine technology (e.g. resource evaluation and turbine testing) described by other standards in the IEC 61400 series. Part 50-2 is applicable specifically to the use of ground mounted remote sensing wind measurement instruments, i.e devices which measure the wind at some location generally above and distant from the location at which the instrument is mounted (e.g. sodars, vertical profiling lidars). This document specifically excludes other types of RSD such as forward facing or scanning lidars.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-12-3:2022 specifies a measurement and analysis procedure for deriving the wind speed correction due to terrain effects and applies to the performance testing of wind turbines of all types and sizes connected to the electrical power network as described in IEC 61400‑12‑1. The procedure applies to the performance evaluation of specific wind turbines at specific locations. The purpose of this part of IEC 61400 is to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of a site calibration for use in the determination of the power performance of wind turbines. This document provides guidance in the measurement, analysis, and reporting of the site calibration for subsequent use in power performance testing for wind turbines. This first edition of IEC 61400-12-3 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-12-6:2022 specifies a procedure for measuring the nacelle transfer function of a single electricity-producing, horizontal axis wind turbine, which is not considered to be a small wind turbine in accordance with IEC 61400-2. It is expected that this document be used when a valid nacelle transfer function is needed to execute a power performance measurement according to IEC 61400-12-2. This document specifies how to characterise a wind turbine's nacelle transfer function. The nacelle transfer function is determined by collecting simultaneous measurements of nacelle‑measured wind speed and free stream wind speed (as measured on a meteorological mast) for a period that is long enough to establish a statistically significant database over a range of wind speeds and under varying wind and atmospheric conditions. The procedure also provides guidance on determination of measurement uncertainty including assessment of uncertainty sources and recommendations for combining them. This first edition of IEC 61400-12-6 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61400 specifies additional requirements for assessment of the external conditions at an offshore wind turbine site and specifies essential design requirements to ensure the engineering integrity of fixed offshore wind turbines. Its purpose is to provide an appropriate level of protection against damage from all hazards during the planned lifetime. This document focuses on the engineering integrity of the structural components of an offshore wind turbine but is also concerned with subsystems such as control and protection mechanisms, internal electrical systems and mechanical systems. A wind turbine shall be considered as a fixed offshore wind turbine if the support structure is subject to hydrodynamic loading and it is founded on the seabed. The design requirements specified in this document are not sufficient to ensure the engineering integrity of floating offshore wind turbines. For floating installations, reference is made to IEC 61400-3-2. In the remainder of this document, the term "offshore wind turbine" is assumed to refer to those that are fixed to the seabed. This document should be used together with the appropriate IEC and ISO standards mentioned in Clause 2. In particular, this document is fully consistent with the requirements of IEC 61400-1. The safety level of the offshore wind turbine designed according to this document shall be at or exceed the level inherent in IEC 61400-1. In some clauses, where a comprehensive statement of requirements aids clarity, replication of text from IEC 61400-1 is included.

  • Standard
    151 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-12-2:2022 specifies a procedure for verifying the power performance characteristics of a single electricity-producing, horizontal axis wind turbine that is not considered to be a small wind turbine per IEC 61400-2. It is expected that this document be used when the specific operational or contractual specifications do not comply with the requirements set out in IEC 61400-12-1. The purpose of this document is to provide a uniform methodology of measurement, analysis, and reporting of power performance characteristics for individual electricity producing wind turbines utilising nacelle-anemometry methods. This document is intended to be applied only to horizontal axis wind turbines of sufficient size that the nacelle-mounted anemometer does not significantly affect the flow through the turbine’s rotor and around the nacelle and hence does not affect the wind turbine’s performance. This second edition of IEC 61400-12-2 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    160 pages
    English and French language
    sale 15% off

IEC 61400-12:2022 defines procedures for assessing the power performance characteristics of wind turbines. This document provides a general introduction to the available options for power performance measurement and the contributing evaluations which are further detailed in the other parts of the IEC 61400-12 series. This first edition of IEC 61400-12 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    29 pages
    English and French language
    sale 15% off

IEC 61400-12-1:2022 specifies a procedure for measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sizes connected to the electrical power network. In addition, this document defines a procedure to be used to determine the power performance characteristics of small wind turbines (as defined in IEC 61400-2) when connected to either the electric power network or a battery bank. This document defines a measurement methodology that requires the measured power curve and derived energy production figures to be supplemented by an assessment of uncertainty sources and their combined effects. This third edition of IEC 61400-12-1 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    316 pages
    English and French language
    sale 15% off

IEC 61400-50:2022 provides a general introduction to the options that are available for wind measurement, which are further detailed in the other parts of the IEC 61400-50 series. Tandis que ces autres normes définissent les cas d’utilisation relatifs aux mesurages du vent, la série IEC 61400-50 établit des exigences de mesure du vent qui sont indépendantes des cas d’utilisation. Son objectif est d’assurer que les mesurages du vent et l’évaluation des incertitudes (relative à ces mesurages) sont effectués de manière cohérente dans tout le secteur éolien; et d’assurer que ces mesurages du vent sont effectués de telle sorte que les incertitudes pouvant être quantifiées soient dans une plage acceptable.
This first edition of IEC 61400-50 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400-12-2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    25 pages
    English and French language
    sale 15% off

IEC 61400-12-6:2022 specifies a procedure for measuring the nacelle transfer function of a single electricity-producing, horizontal axis wind turbine, which is not considered to be a small wind turbine in accordance with IEC 61400-2. It is expected that this document be used when a valid nacelle transfer function is needed to execute a power performance measurement according to IEC 61400-12-2. This document specifies how to characterise a wind turbine's nacelle transfer function. The nacelle transfer function is determined by collecting simultaneous measurements of nacelle‑measured wind speed and free stream wind speed (as measured on a meteorological mast) for a period that is long enough to establish a statistically significant database over a range of wind speeds and under varying wind and atmospheric conditions. The procedure also provides guidance on determination of measurement uncertainty including assessment of uncertainty sources and recommendations for combining them.
This first edition of IEC 61400-12-6 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    114 pages
    English and French language
    sale 15% off

IEC 61400-12-5:2022 specifies the procedures for assessing the significance of obstacles and terrain variations on a proposed power performance measurement site and applies to the performance testing of wind turbines of all types and sizes connected to the electrical power network as described in other parts of the IEC 61400 series. The procedure applies to the performance evaluation of specific wind turbines at specific locations.
This first edition of IEC 61400-12-5 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    49 pages
    English and French language
    sale 15% off

IEC 61400-50-2:2022 is applicable specifically to the use of ground-mounted remote sensing wind measurement instruments, i.e. devices which measure the wind at some location generally above and distant from the location at which the instrument is mounted (e.g. sodars, vertical profiling lidars). This document specifically excludes other types of RSD such as forward facing or scanning lidars. This document specifies the following: a. the procedure and requirements for classifying ground-based RSDs in order to assess the uncertainty pertaining from sensitivity of the RSD response to meteorological conditions that can vary between the RSD calibration place and time and the use case (specific measurement campaign – SMC) place and time; b. the procedures and requirements for calibration of RSDs; c. the assessment of wind speed measurement uncertainty; d. additional checks of the RSD performance and measurement uncertainty during the SMC; e. application of the wind speed uncertainty derived from the RSD calibration and classification to the measurements taken during the SMC (e.g. interpolation of uncertainty or calibration results to different heights); f. requirements for reporting. This first edition of IEC 61400-50-2 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400-12-2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    83 pages
    English and French language
    sale 15% off

IEC 61400-12-3:2022 specifies a measurement and analysis procedure for deriving the wind speed correction due to terrain effects and applies to the performance testing of wind turbines of all types and sizes connected to the electrical power network as described in IEC 61400‑12‑1. The procedure applies to the performance evaluation of specific wind turbines at specific locations. The purpose of this part of IEC 61400 is to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of a site calibration for use in the determination of the power performance of wind turbines. This document provides guidance in the measurement, analysis, and reporting of the site calibration for subsequent use in power performance testing for wind turbines.
This first edition of IEC 61400-12-3 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400‑12‑2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

  • Standard
    93 pages
    English and French language
    sale 15% off

This document specifies test methods for the determination of resistance of coating systems or tape for wind-turbine rotor blades to rain erosion by using the water jet test.

  • Technical specification
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies minimum requirements and weathering for coating systems for wind-turbine rotor blades.

  • Technical specification
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for the determination of resistance of coating systems or tape for wind-turbine rotor blades to rain erosion by using the rotating arm test.

  • Technical specification
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-24:2019 applies to lightning protection of wind turbine generators and wind power systems. Refer to guidelines for small wind turbines in annex. This document defines the lightning environment for wind turbines and risk assessment for wind turbines in that environment. It defines requirements for protection of blades, other structural components and electrical and control systems against both direct and indirect effects of lightning. Test methods to validate compliance are included. Guidance on the use of applicable lightning protection, industrial electrical and EMC standards including earthing is provided. This second edition cancels and replaces the first edition, published in 2010. This edition includes the following significant technical changes with respect to the previous edition: a) it is restructured with a main normative part, while informative information is placed in annexes.

  • Standard
    196 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-26-1:2019 defines an information model from which time-based, and production-based availability indicators for services can be derived and reported. The purpose is to provide standardised metrics that can be used to create and organise methods for availability calculation and reporting according to the user’s needs. The document provides information categories, which unambiguously describe how data is used to characterise and categorise the operation. The information model specifies category priority for discrimination between possible concurrent categories. Further, the model defines entry and exit criteria to allocate fractions of time and production values to the proper information category. A full overview of all information categories, exit and entry criteria is given in Annex. The document can be applied to any number of WTGSs, whether represented by an individual turbine, a fleet of wind turbines, a wind power station or a portfolio of wind power stations. A wind power station is typically made up of all WTGSs, functional services and balance of plant elements as seen from the point of common coupling. This first edition cancels and replaces IEC TS 61400-26-1:2011, IEC TS 61400-26-2:2014 and IEC TS 61400-26-3:2016.

  • Standard
    101 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC TR 63401-2:2022, which is a technical report, covers the "control interactions" in converter interfaced generators e.g, wind and PV with the frequency of the resulting oscillation below twice the system frequency. SSCI can be categorized into:
1) SSCI in DFIG is caused by the interaction between DFIG wind turbine converter controls and the series compensated network.
2) SSCI involving FSC (both type-4 wind turbine or PV generators) is caused by the interaction between wind turbine or solar PV's FSC controls and weak AC grid.
This technical report is organized into nine clauses. Clause 1 gives a brief introduction and highlights the scope of this document. Clause 4 presents the historical background of various types of subsynchronous oscillation (SSO) and revisits the terminologies, definitions, and classification in the context of classical SSR and emerging SSCI issues to better understand and classify the emerging interaction phenomena. Clause 5 provides the description, mechanism, and characteristics of the SSCI phenomenon in the framework of real-world incidents, including the SSCI events in the ERCOT, Guyuan, and Hami wind power systems. Clause 6 proposes two benchmark models to study the SSCI DFIG and FSC-based wind turbines or PV generators. Clause 7 gives an overview of existing and emerging modeling and stability analysis approaches to investigate the SSCI phenomenon. Clause 8 outlines various techniques to mitigate the SSCI. It discusses various SSCI mitigation schemes, such as bypassing the series capacitor, selective tripping of WTGs, generator, and plant-level damping control schemes. Clause 9 highlights the need for future works towards standardization of terms, definitions, classification, analysis methods, benchmark models, and mitigation methods.

  • Technical report
    64 pages
    English language
    sale 15% off

IEC 61400-21-1:2019 includes: · definition and specification of the quantities to be determined for characterizing the electrical characteristics of a grid-connected wind turbine; · measurement procedures for quantifying the electrical characteristics; · procedures for assessing compliance with electrical connection requirements, including estimation of the power quality expected from the wind turbine type when deployed at a specific site. The measurement procedures are valid for single wind turbines with a three-phase grid connection. The measurement procedures are valid for any size of wind turbine, though this part of IEC 61400 only requires wind turbine types intended for connection to an electricity supply network to be tested and characterized as specified in this part of IEC 61400. This first edition cancels and replaces the second edition of 61400-21 published in 2008. This edition includes the following new items with respect to 61400-21: a) frequency control measurement; b) updated reactive power control and capability measurement, including voltage and cos φ control; c) inertia control response measurement; d) overvoltage ride through test procedure; e) updated undervoltage ride through test procedure based on Wind Turbine capability; f) new methods for the harmonic assessment.

  • Standard
    147 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC TS 62257-7-2:2022 applies to all small wind turbines (SWTs) with a swept area smaller than or equal to 200 m2, and designed for supplying electrical power to isolated sites used in systems as described in IEC TS 62257-2.
This document is not an exhaustive resource for the design, installation, operation or maintenance of small wind turbines and wind power systems, but is more focused on recommendations to provide strategies on selection and criteria which may affect the use of a small wind power system (SWPS) in a rural electrification project.
The aim of this document is to provide users with the appropriate levels of reliability and safety of the equipment during its estimated service lifespan.

  • Technical specification
    58 pages
    English language
    sale 15% off

IEC 61400-1:2019 is available as IEC 61400-1:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61400-1:2019 specifies essential design requirements to ensure the structural integrity of wind turbines. Its purpose is to provide an appropriate level of protection against damage from all hazards during the planned lifetime. This document is concerned with all subsystems of wind turbines such as control and protection functions, internal electrical systems, mechanical systems and support structures. This document applies to wind turbines of all sizes. For small wind turbines, IEC 61400-2 can be applied. IEC 61400-3-1 provides additional requirements to offshore wind turbine installations. This document is intended to be used together with the appropriate IEC and ISO standards mentioned in Clause 2. This edition includes the following significant technical changes with respect to the previous edition: a) general update and clarification of references and requirements; b) extension of wind turbine classes to allow for tropical cyclones and high turbulence; c) Weibull distribution of turbulence standard deviation for normal turbulence model (NTM); d) updated design load cases (DLCs), in particular DLC 2.1 and 2.2; e) revision of partial safety factor specifications The contents of the corrigendum of September 2019 have been included in this copy.

  • Standard
    173 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this part of IEC 61400 is to describe procedures and methods that ensure that
wind measurements using nacelle-mounted wind lidars are carried out and reported consistently
and according to best practice. This document does not prescribe the purpose or use case of
the wind measurements. However, as this document forms part of the IEC 61400 series of
standards, it is anticipated that the wind measurements will be used in relation to some form of
wind energy test or resource assessment.
The scope of this document is limited to forward-looking nacelle-mounted wind lidars (i.e. the
measurement volume is located upstream of the turbine rotor).
This document aims to be applicable to any type and make of nacelle-mounted wind lidar. The
method and requirements provided in this document are independent of the model and type of
instrument, and also of the measurement principle and should allow application to new types of
nacelle-mounted lidar.
This document aims to describe wind measurements using nacelle-mounted wind lidar with
sufficient quality for the use case of power performance testing (according to
IEC 61400-12-1:2017). Readers of this document should consider that other use cases may
have other specific requirements.
This document only provides guidance for measurements in flat terrain and offshore as defined
in IEC 61400-12-1:2017, Annex B. Application to complex terrain has been excluded from the
scope due to limited experience at the time of writing this document.
Corrections for induction zone or blockage effects are not included in the scope of this document.
However, such correction or uncertainty estimation due to blockage effects may be applied if
required by the use case, under the responsibility of the user.
The purpose of this document is to provide guidance for wind measurements. HSE requirements
(e.g. laser operation) are out of the scope of this document although they are important.

  • Standard
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this part of IEC 61400 is to describe procedures and methods that ensure that wind measurements using nacelle-mounted wind lidars are carried out and reported consistently and according to best practice. This document does not prescribe the purpose or use case of the wind measurements. However, as this document forms part of the IEC 61400 series of standards, it is anticipated that the wind measurements will be used in relation to some form of wind energy test or resource assessment. The scope of this document is limited to forward-looking nacelle-mounted wind lidars (i.e. the measurement volume is located upstream of the turbine rotor). This document aims to be applicable to any type and make of nacelle-mounted wind lidar. The method and requirements provided in this document are independent of the model and type of instrument, and also of the measurement principle and should allow application to new types of nacelle-mounted lidar. This document aims to describe wind measurements using nacelle-mounted wind lidar with sufficient quality for the use case of power performance testing (according to IEC 61400-12-1:2017). Readers of this document should consider that other use cases may have other specific requirements. This document only provides guidance for measurements in flat terrain and offshore as defined in IEC 61400-12-1:2017, Annex B. Application to complex terrain has been excluded from the scope due to limited experience at the time of writing this document. Corrections for induction zone or blockage effects are not included in the scope of this document. However, such correction or uncertainty estimation due to blockage effects may be applied if required by the use case, under the responsibility of the user. The purpose of this document is to provide guidance for wind measurements. HSE requirements (e.g. laser operation) are out of the scope of this document although they are important.

  • Standard
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard outlines terminology, equipment, and methods for performance monitoring and analysis of photovoltaic (PV) systems. It also serves as a basis for other standards which rely upon the data collected.

  • Standard
    70 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC TS 63102:2021(E) highlights recommended technical methods of grid code compliance assessment for grid connection of wind and PV power plants as the basic components of grid connection evaluation. The electrical behaviour of wind and PV power plants in this technical specification includes frequency and voltage range, reactive power capability, control performance including active power based control and reactive power based control, fault ride through capability and power quality.
Compliance assessment is the process of determining whether the electrical behaviour of wind and PV power plants meets specific technical requirements in grid codes or technical regulations. The assessment methods include compliance testing, compliance simulation and compliance monitoring. The input for compliance assessment includes relevant supporting documents, testing results and validated simulation models, and continuous monitoring data. The scope of this technical specification only covers assessment methods from a technical aspect; processes related to certification are not included.
This technical specification is applicable to wind and PV power plants connected to the electrical power grid.

  • Technical specification
    38 pages
    English language
    sale 15% off

This International Standard outlines terminology, equipment, and methods for performance monitoring and analysis of photovoltaic (PV) systems. It also serves as a basis for other standards which rely upon the data collected.

  • Standard
    70 pages
    English language
    sale 10% off
    e-Library read for
    1 day