Specifies a procedure for the determination of the kinematic viscosity of mineral insulating oils, both transparent and opaque, at very low temperatures, after a cold soaking period of at least 20 h, by measuring the time for a volume of liquid to flow under gravity throught a calibrated glass capillary viscometer.  Applies at all temperatures to both Newtonian and non-Newtonian liquids having viscosities of up to 20 000 mm2/s.

  • Standard
    48 pages
    English and French language
    sale 15% off

IEC TR 63025:2021(E) specifies two test methods for methanol and ethanol determination in insulating liquids.
Methanol (MeOH) and ethanol (EtOH) are two light alcohols generated during the degradation process of cellulosic materials. They are soluble in insulating liquids so they can be regarded as ageing tracers whose concentrations in oil reflect the degradation of insulating cellulosic materials in liquid-impregnated transformers.

  • Technical report
    26 pages
    English language
    sale 15% off

IEC 62975:2021 provides procedures and guidelines that are intended for the use and maintenance of natural ester liquid in sealed transformers and other electrical equipment.
This document is applicable to natural esters, originally supplied conforming to IEC 62770 and other applicable standards (e.g. ASTM D6871) in transformers, switchgear and electrical apparatus where liquid sampling is practical and where the normal operating conditions specified in the equipment specifications apply.
At present, there is a limited amount of information available for electrical equipment other than transformers.
This document is also intended to assist the power equipment operator to evaluate the condition of the natural ester and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice.
The document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary.

  • Standard
    73 pages
    English and French language
    sale 15% off

This document provides specifications and test methods for unused and recycled mineral
insulating oils (see Clause 3 for definitions). It applies to mineral oil delivered according to the
contractual agreement, intended for use in transformers, switchgear and similar electrical
equipment in which oil is required for insulation and heat transfer. Both unused oil and
recycled oil under the scope of this document have not been used in, nor been in contact with
electrical equipment or other equipment not required for manufacture, storage or transport.
Unused oils are obtained by refining, modifying and/or blending of petroleum products and
other hydrocarbons from virgin feedstock.
Recycled oils are produced from oils previously used as mineral insulating oils in electrical
equipment that have been subjected to re-refining or reclaiming (regeneration) by processes
employed offsite. Such oils will have originally been supplied in compliance with a recognized
unused mineral insulating oil specification. This document does not differentiate between the
methods used to recycle mineral insulating oil. Oils treated on-site (see IEC 60422) are not
within the scope of this document.
Oils with and without additives are both within the scope of this document.
This document does not apply to mineral insulating oils used as impregnating medium in
cables or capacitors.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60296:2020 provides specifications and test methods for unused and recycled mineral insulating oils. It applies to mineral oil delivered according to the contractual agreement, intended for use in transformers, switchgear and similar electrical equipment in which oil is required for insulation and heat transfer. Both unused oil and recycled oil under the scope of this document have not been used in, nor been in contact with electrical equipment or other equipment not required for manufacture, storage or transport.
Unused oils are obtained by refining, modifying and/or blending of petroleum products and other hydrocarbons from virgin feedstock.
Recycled oils are produced from oils previously used as mineral insulating oils in electrical equipment that have been subjected to re-refining or reclaiming (regeneration) by processes employed offsite. Such oils will have originally been supplied in compliance with a recognized unused mineral insulating oil specification. This document does not differentiate between the methods used to recycle mineral insulating oil. Oils treated on-site (see IEC 60422) are not within the scope of this document.
Oils with and without additives are both within the scope of this document.
This document does not apply to mineral insulating oils used as impregnating medium in cables or capacitors.
This fifth edition cancels and replaces the fourth edition published in 2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
– This International Standard is applicable to specifications and test methods for unused and recycled mineral insulating oils in the delivered state.
– Within the transformer insulating oils, two groups, Type A and Type B, are defined, based on their performance.
– A new method for stray gassing under thermo-oxidative stress of mineral insulating oils, which has been tested in a joint round robin test (RRT) between CIGRE D1 and IEC technical committee 10, has been included.

  • Standard
    82 pages
    English and French language
    sale 15% off

IEC 61333:2019 specifies marking locations and a coding system of marking on ferrite cores. An alphanumerical marking printed or attached to cores reduces the risk of incorrect assembly, mixing of materials and/or mixing of gapped cores on an assembly line. The markings of the inductance factor AL value or of the gap length are especially important to avoid this kind of problem, and their coding system is specified in this document. This edition includes the following significant technical changes with respect to the previous edition: a) the title of the document was changed; b) the scope of this document was expanded; c) the marking position instructions for ring cores, planar cores, RM-cores, PQ-cores and pot-cores were added in Clause 4 with a few additional descriptions; d) the four-digit-maximum limit of material identification code has been deleted in 5.2; e) in Table 1, the unit of AL has been changed from "nH" to "nH/N2".

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60312:2019 defines requirements for the characterization of unused modified esters or blends of unused esters used as insulating liquids for electrotechnical applications. It does not cover liquids that contain any proportion of used liquids. The liquids covered by this document are intended mainly for transformer applications. Unused modified/synthetized esters are derived from a natural or synthetic base, or are blends of both. This document covers a variety of ester liquids not covered by other standards specific to natural esters (IEC 62770) or synthetic esters (IEC 61099). As it addresses various categories of liquids, this document also covers a wide range of values for certain performance characteristics. An important property is viscosity, which can affect the design and cooling performance of electrical equipment. A categorization is defined based on the kinematic viscosity of the different liquids. The category of low viscosity ester liquids is established.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63012:2019 defines requirements for the characterization of unused modified esters or blends of unused esters used as insulating liquids for electrotechnical applications. It does not cover liquids that contain any proportion of used liquids. The liquids covered by this document are intended mainly for transformer applications.
Unused modified/synthetized esters are derived from a natural or synthetic base, or are blends of both. This document covers a variety of ester liquids not covered by other standards specific to natural esters (IEC 62770) or synthetic esters (IEC 61099). As it addresses various categories of liquids, this document also covers a wide range of values for certain performance characteristics. An important property is viscosity, which can affect the design and cooling performance of electrical equipment. A categorization is defined based on the kinematic viscosity of the different liquids. The category of low viscosity ester liquids is established.

  • Standard
    41 pages
    English and French language
    sale 15% off

IEC 62961:2018 establishes the measurement of the interfacial tension between insulating liquid and water by means of the Du Noüy ring method close to equilibrium conditions. In order to obtain a value that provides a realistic expression of the real interfacial tension, a measurement after a surface age of approximately 180 s is recorded.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62961:2018 establishes the measurement of the interfacial tension between insulating liquid and water by means of the Du Noüy ring method close to equilibrium conditions. In order to obtain a value that provides a realistic expression of the real interfacial tension, a measurement after a surface age of approximately 180 s is recorded.

  • Standard
    41 pages
    English and French language
    sale 15% off

This document describes a test method for evaluating the oxidation stability of insulating
liquids in the delivered state under accelerated conditions regardless of whether or not
antioxidant additives are present. The duration of the test can be different depending on the
insulating liquid type and is defined in the corresponding standards (e.g. in IEC 60296,
IEC 61099, IEC 62770). The method can be used for measuring the induction period, the test
being continued until the volatile acidity significantly exceeds 0,10 mg KOH/g in the case of
mineral oils. This value can be significantly higher in the case of ester liquids.
The insulating liquid sample is maintained at 120 °C in the presence of a solid copper catalyst
whilst bubbling air at a constant flow. The degree of oxidation stability is estimated by
measurement of volatile acidity, soluble acidity, sludge, dielectric dissipation factor, or from
the time to develop a given amount of volatile acidity (induction period with air).
In informative Annex B, a test method for evaluating the oxidation stability of inhibited mineral
insulating oils in the delivered state by measurement of the induction period with oxygen is
described. The method is only intended for quality control purposes. The results do not
necessarily provide information on the performance in service. The oil sample is maintained
at 120 °C in the presence of a solid copper catalyst whilst bubbling through a constant flow of
oxygen. The degree of oxidation stability is estimated by the time taken by the oil to develop a
determined amount of volatile acidity (induction period with oxygen). Additional criteria such
as soluble and volatile acidities, sludge and dielectric dissipation factor can also be
determined after a specified duration.
In informative Annex C, a test method intended to simulate the thermo-oxidative behaviour of
ester insulating liquids (headspace of air at 150 °C for 164 h) is described.
Additional test methods such as those described in IEC TR 62036 based on differential
scanning calorimetry can also be used as screening tests, but are out of the scope of this
document.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61125:2018 describes a test method for evaluating the oxidation stability of insulating liquids in the delivered state under accelerated conditions regardless of whether or not antioxidant additives are present. The duration of the test can be different depending on the insulating liquid type and is defined in the corresponding standards (e.g. in IEC 60296, IEC 61099, IEC 62770). The method can be used for measuring the induction period, the test being continued until the volatile acidity significantly exceeds 0,10 mg KOH/g in the case of mineral oils. This value can be significantly higher in the case of ester liquids. Additional test methods such as those described in IEC TR 62036 based on differential scanning calorimetry can also be used as screening tests, but are out of the scope of this document. This second edition cancels and replaces the first edition published in 1992 and Amendment 1: 2004. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the title has been modified to include insulating liquids different from mineral insulating oils (hydrocarbon); b) the method applies for insulating liquids in the delivered state; c) former Method C is now the main normative method; d) precision data of the main normative method has been updated concerning the dissipation factor; e) former Method A has been deleted; f) former Method B has been transferred to Annex B; g) a new method evaluating the thermo-oxidative behaviour of esters is included in Annex C.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC TR 62697-2:2018(E) specifies a test method for the quantitative determination of total corrosive sulfur (TCS) in unused and used insulating liquids and solid matrices through the conversion of corrosive sulfur species to metal (copper, silver etc.) sulfides. The sulfides formed are quantitatively converted to sulfates; sulfates are determined through turbidity measurement or with ion chromatography.
The method is applicable with the following matrices:
a) Unused and used insulating liquids, for example mineral insulating oils and natural esters, which allow the determination of corrosive sulfur compounds over concentrations ranging between 2,5 mg kg-1 to 80 mg kg-1 TCS.
b) Solid matrices that come in contact with the insulating liquid, for example insulating papers in electrical equipment. The quantification limits for these matrices depend on the amount of matrix used during the determination. The method can be used for the quantitative or semi-quantitative determination of copper sulfide on paper after the test according to IEC 62535. The method can provide unambiguous quantitative assessment of copper sulfide present on paper rather than qualitative results obtained with the SEM-EDX examination stipulated in case of doubts in the interpretation of results obtained from the inspection of paper according to IEC 62535:2008, 6.3.
c) Paper and other solid insulating material/s obtained from failed transformers, reactors and other electrical equipment to assist in failure diagnostics.
d) Metal deactivator or passivators additives present in insulating liquids (qualitative assessment).
However, the method is not applicable for assessing corrosion phenomena for example the dissolution of copper in insulating liquids and deposition on solid matrices, which do not lead to sulfide formation.

  • Technical report
    19 pages
    English language
    sale 15% off

IEC TR 62697-3:2018(E) specifies a test method for the quantitative determination of elemental sulfur in used and unused insulating liquids over a 2 mg kg–1 to 400 mg kg–1 concentration range.

  • Technical report
    24 pages
    English language
    sale 15% off

IEC 61125:2018 describes a test method for evaluating the oxidation stability of insulating liquids in the delivered state under accelerated conditions regardless of whether or not antioxidant additives are present. The duration of the test can be different depending on the insulating liquid type and is defined in the corresponding standards (e.g. in IEC 60296, IEC 61099, IEC 62770). The method can be used for measuring the induction period, the test being continued until the volatile acidity significantly exceeds 0,10 mg KOH/g in the case of mineral oils. This value can be significantly higher in the case of ester liquids.
Additional test methods such as those described in IEC TR 62036 based on differential scanning calorimetry can also be used as screening tests, but are out of the scope of this document.
This second edition cancels and replaces the first edition published in 1992 and Amendment 1: 2004. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) the title has been modified to include insulating liquids different from mineral insulating oils (hydrocarbon);
b) the method applies for insulating liquids in the delivered state;
c) former Method C is now the main normative method;
d) precision data of the main normative method has been updated concerning the dissipation factor;
e) former Method A has been deleted;
f) former Method B has been transferred to Annex B;
g) a new method evaluating the thermo-oxidative behaviour of esters is included in Annex C.

  • Standard
    54 pages
    English and French language
    sale 15% off

IEC TS 60079-46:2017 specifies requirements for the design, construction, assembly, testing, inspection, marking, documenting and assessment of equipment assemblies for use in explosive atmospheres under the responsibility of the manufacturer of the equipment assembly. The requirements of this document apply to individual items according to the IEC 60079 series or ISO 80079 series that comprise the assembly and that have individual certificates. These individual items are then integrated as part of the equipment assembly. Also included are requirements to address aspects for the assembly which may be beyond the certificates of the individual items forming the assembly. The scope of this document includes assessment of the additional requirements for assemblies for hazardous areas and does not include requirements for non-hazardous areas. It is assumed that compliance with other electrical or mechanical requirements that are applicable for non-hazardous areas will be verified by either the same or different party in addition to the requirements of this document. This document does not apply to:
- equipment which is covered, in its entirety, by one or more IEC 60079 and ISO 80079 equipment types of protection;
- pressurized rooms, “p”, in accordance with IEC 60079-13, artificial ventilation for the protection of analyzer(s) houses in accordance with IEC TR 60079-16, and other standards addressing specific Ex assemblies;
- installation at the end-user site under the scope of IEC 60079-14;
- classification of the hazardous area;
- equipment assemblies for mines susceptible to firedamp (Group I applications);
- inherently explosive situations and dust from explosives or pyrophoric substances (for example explosives manufacturing and processing);
- rooms used for medical purposes;
- electrical installations in areas where the hazard is due to flammable mist.
The specification is only intended to provide validation for the initial supply of an assembly.
Keywords: equipment assemblies for use in explosive atmospheres

  • Technical specification
    33 pages
    English and French language
    sale 15% off

IEC 62766-4-1:2017(E) specifies the protocols, which apply to the following reference point interfaces identified in the architecture described in Annex B of IEC 62766-1:2017.
- The UNI interfaces, between the consumer domain and the network or service provider domains.
- The HNI interfaces, between the functional entities in the consumer network domain.
- Interfaces to external systems, which include DLNA networks in the consumer domain.

  • Standard
    350 pages
    English language
    sale 15% off

This International Standard describes how the concentrations of dissolved gases or free
gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service
and suggest future action.
This standard is applicable to electrical equipment filled with mineral insulating oil and
insulated with cellulosic paper or pressboard-based solid insulation. Information about
specific types of equipment such as transformers (power, instrument, industrial, railways,
distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication
in the application notes (see Annex A).
This standard may be applied, but only with caution, to other liquid-solid insulating systems.
In any case, the indications obtained should be viewed only as guidance and any resulting
action should be undertaken only with proper engineering judgment.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60599:2015 is available as IEC 60599:2015 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. IEC 60599:2015 describes how the concentrations of dissolved gases or free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This standard is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. This standard may be applied, but only with caution, to other liquid-solid insulating systems. This third edition cancels and replaces the second edition published in 1999 and Amendment 1:2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) revision of 5.5, 6.1, 7, 8, 9, 10, A.2.6, A.3, A.7; b) addition of new sub-clause 4.3; c) expansion of the Bibliography; d) revision of Figure 1; e) addition of Figure B.4.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60836:2015 covers specifications and test methods for unused silicone liquids intended for use in transformers and other electrotechnical equipment. Besides the standard transformer applications there are other applications of silicone liquids, such like cable accessories, capacitors, electrical magnets etc. This edition includes the following major technical changes with regard to the second edition: a) classification of liquids according to IEC 61039 have been adapted with respect to the latest edition of IEC 61039:2008; b) classification of liquids according to IEC 61100:1992 have been removed as IEC 61100 has been withdrawn; c) minimum requirements for other silicone liquids for electrotechnical purposes have been added.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60599:2015 is available as IEC 60599:2015 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60599:2015 describes how the concentrations of dissolved gases or free gases may be interpreted to diagnose the condition of oil-filled electrical equipment in service and suggest future action. This standard is applicable to electrical equipment filled with mineral insulating oil and insulated with cellulosic paper or pressboard-based solid insulation. Information about specific types of equipment such as transformers (power, instrument, industrial, railways, distribution), reactors, bushings, switchgear and oil-filled cables is given only as an indication in the application notes. This standard may be applied, but only with caution, to other liquid-solid insulating systems. This third edition cancels and replaces the second edition published in 1999 and Amendment 1:2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) revision of 5.5, 6.1, 7, 8, 9, 10, A.2.6, A.3, A.7;
b) addition of new sub-clause 4.3;
c) expansion of the Bibliography;
d) revision of Figure 1;
e) addition of Figure B.4.

  • Standard
    78 pages
    English and French language
    sale 15% off

This European Standard is intended to define the test methods used for the determination of the following geometrical characteristics of electrical steel sheet and strip:
-   flatness;
-   residual curvature;
-   edge camber;
-   deviation from the shearing line due to internal stresses;
-   burr height of cut edges.
This European Standard applies to electrical steel sheet and strip intended for the construction of magnetic circuits and corresponding to Clauses B2, C21 and C22 of IEC 60404-1:2000.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60836:2015 covers specifications and test methods for unused silicone liquids intended for use in transformers and other electrotechnical equipment. Besides the standard transformer applications there are other applications of silicone liquids, such like cable accessories, capacitors, electrical magnets etc. This edition includes the following major technical changes with regard to the second edition:
a) classification of liquids according to IEC 61039 have been adapted with respect to the latest edition of IEC 61039:2008;
b) classification of liquids according to IEC 61100:1992 have been removed as IEC 61100 has been withdrawn;
c) minimum requirements for other silicone liquids for electrotechnical purposes have been added.

  • Standard
    21 pages
    English and French language
    sale 15% off

IEC TS 60079-39:2015(E) specifies the construction, testing, installation and maintenance of Power-i apparatus and systems which utilise electronically controlled spark duration limitation to maintain an adequate level of intrinsic safety. This Technical Specification contains requirements for intrinsically safe apparatus and wiring intended for use in explosive atmospheres and for associated apparatus intended for connection to intrinsically safe circuits entering such atmospheres. This Technical Specification excludes the level of protection "ia" and the use of software-controlled circuits. This Technical Specification applies to electrical equipment utilising voltages not higher than 40 V d.c. and a safety factor 1,5 for Groups IIB, IIA, I and III. It is also applicable to Group IIC "ic" apparatus with a safety factor 1,0. Group IIC "ib" apparatus with a safety factor 1,5 are restricted to voltages up to 32 V d.c. This type of protection is applicable to electrical equipment in which the electrical circuits themselves are incapable of causing an explosion of the surrounding explosive atmospheres. This Technical Specification is applicable to intrinsically safe apparatus and systems which utilise electronically controlled spark duration limitation with the aim of providing more electrical power while maintaining an adequate level of safety. This Technical Specification is also applicable to electrical equipment or parts of electrical equipment located outside hazardous areas or protected by another type of protection listed in the IEC 60079 series, where the intrinsic safety of the electrical circuits in explosive atmospheres depends on the design and construction of such electrical equipment or parts of such electrical equipment. The electrical circuits located in the hazardous area are evaluated for use in such locations by applying this Technical Specification. This Technical Specification supplements and modifies the requirements of IEC 60079-0, IEC 60079-11, IEC 60079-14, IEC 60079-17 and IEC 60079-25. Keywords: Power-i apparatus, intrinsically safe apparatus and wiring intended for use in explosive atmospheres
The contents of the corrigendum of October 2020 have been included in this copy.

  • Technical specification
    51 pages
    English language
    sale 15% off
  • Technical specification
    51 pages
    English language
    sale 15% off

IEC TR 62874:2015 is a Technical Report which provides guidance for the estimation of consumed thermal life of transformers' cellulosic insulators, through the analysis of some compound dissolved in the insulating mineral oil. A comparison between analytical results of 2-furfural (2-FAL) and carbon oxides and their correspondent typical values estimated for different families of equipment gives information on the estimated thermal degradation of papers.

  • Technical report
    47 pages
    English and French language
    sale 15% off

This part of IEC 62021 describes two procedures for the determination of the acidity of
unused and used electrical non-mineral insulating oils. Method A is potentiometric titration
and Method B is colourimetric titration.
NOTE 1 In unused and used non-mineral insulating oils, the constituents that may be considered to have acidic
characteristics include organic acids, phenolic compounds, some oxidation products, resins, organometallic salts
and additives.
The method may be used to indicate relative changes that occur in non-mineral insulating oil
during use under oxidizing conditions regardless of the colour or other properties of the
resulting non-mineral oil.
The acidity can be used in the quality control of unused non-mineral insulating oil.
As a variety of oxidation products present in used non-mineral insulating oil contribute to
acidity and these products vary widely in their corrosion properties, the test cannot be used to
predict corrosiveness of non-mineral insulating oil under service conditions.
NOTE 2 The acidity results obtained by potentiometric test method may or may not be numerically the same as
those obtained by colourimetric methods, but they are generally of the same magnitude.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard specifies requirements for recycled mineral insulating oils
intended for use in transformers, switchgear, and similar electrical equipment in which oil is
required for insulation and heat transfer.
These oils are produced by processes employed offsite.
Oils treated and reconditioned on-site are not within the scope of this standard.
Oils with and without additives are within the scope of this standard.
Such oils will have originally been supplied in compliance with a recognized unused mineral
insulating oil specification.
This standard does not differentiate between the methods used to recycle mineral insulating
oil.
This standard does not apply to mineral insulating oils used as impregnates in cables or
capacitors.
For the purpose of this standard the following subclauses of IEC 60296:2012 apply:
– 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9;
– 4.1, 4.3, 4.4;
– 5.1, 5.5;
– 6.1, 6.2, 6.4, 6.5, 6.6, 6.8, 6.9, 6.10, 6.11.1, 6.11.3, 6.11.4, 6.12, 6.14, 6.15, 6.16;
– 7.1.
NOTE Some types of re-refined oils are equivalent to unused oils in terms of performance, in which case IEC
60296 is applicable. This should be stated by the manufacturer.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62021-3:2014 describes two procedures for the determination of the acidity of unused and used electrical non-mineral insulating oils. Method A is potentiometric titration and Method B is colourimetric titration. The method may be used to indicate relative changes that occur in non-mineral insulating oil during use under oxidizing conditions regardless of the colour or other properties of the resulting non-mineral oil. The acidity can be used in the quality control of unused non-mineral insulating oil. As a variety of oxidation products present in used non-mineral insulating oil contribute to acidity and these products vary widely in their corrosion properties, the test cannot be used to predict corrosiveness of non-mineral insulating oil under service conditions.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62021-3:2014 describes two procedures for the determination of the acidity of unused and used electrical non-mineral insulating oils. Method A is potentiometric titration and Method B is colourimetric titration. The method may be used to indicate relative changes that occur in non-mineral insulating oil during use under oxidizing conditions regardless of the colour or other properties of the resulting non-mineral oil. The acidity can be used in the quality control of unused non-mineral insulating oil. As a variety of oxidation products present in used non-mineral insulating oil contribute to acidity and these products vary widely in their corrosion properties, the test cannot be used to predict corrosiveness of non-mineral insulating oil under service conditions.

  • Standard
    50 pages
    English and French language
    sale 15% off

This International Standard gives guidance on the supervision and maintenance of the quality of the insulating oil in electrical equipment. This standard is applicable to mineral insulating oils, originally supplied conforming to IEC 60296, in transformers, switchgear and other electrical apparatus where oil sampling is reasonably practicable and where the normal operating conditions specified in the equipment specifications apply. This standard is also intended to assist the power equipment operator to evaluate the condition of the oil and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice. The standard includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming oil and the decontamination of oil contaminated with PCBs. NOTE The condition monitoring of electrical equipment, for example by analysis of dissolved gases, furanic compounds or other means, is outside the scope of this standard.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60422:2013 gives guidance on the supervision and maintenance of the quality of the insulating oil in electrical equipment. This International Standard is applicable to mineral insulating oils, originally supplied conforming to IEC 60296, in transformers, switchgear and other electrical apparatus where oil sampling is reasonably practicable and where the normal operating conditions specified in the equipment specifications apply. This International Standard is also intended to assist the power equipment operator to evaluate the condition of the oil and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice. The standard includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming oil and the decontamination of oil contaminated with PCBs. This fourth edition cancels and replaces the third edition, published in 2005, and constitutes a technical revision. The main changes with respect to the previous edition are as follows: - This new edition represents a major revision of the third edition, in order to bring in line this standard with latest development of oil condition monitoring, containing new limits for oil parameters, suggested corrective actions in the tables and new test methods. - The action limits for all oil tests have been revised and changes made where necessary to enable users to use current methodology and comply with requirements and regulations affecting safety and environmental aspects. - In addition, this standard incorporates changes introduced in associated standards since the third edition was published.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60422:2013 gives guidance on the supervision and maintenance of the quality of the insulating oil in electrical equipment. This International Standard is applicable to mineral insulating oils, originally supplied conforming to IEC 60296, in transformers, switchgear and other electrical apparatus where oil sampling is reasonably practicable and where the normal operating conditions specified in the equipment specifications apply. This International Standard is also intended to assist the power equipment operator to evaluate the condition of the oil and maintain it in a serviceable condition. It also provides a common basis for the preparation of more specific and complete local codes of practice. The standard includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming oil and the decontamination of oil contaminated with PCBs. This fourth edition cancels and replaces the third edition, published in 2005, and constitutes a technical revision. The main changes with respect to the previous edition are as follows:
- This new edition represents a major revision of the third edition, in order to bring in line this standard with latest development of oil condition monitoring, containing new limits for oil parameters, suggested corrective actions in the tables and new test methods.
- The action limits for all oil tests have been revised and changes made where necessary to enable users to use current methodology and comply with requirements and regulations affecting safety and environmental aspects.
- In addition, this standard incorporates changes introduced in associated standards since the third edition was published. The contents of the corrigendum of December 2013 have been included in this copy.

  • Standard
    93 pages
    English and French language
    sale 15% off

Will supersede EN 60296:2004

  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61181:2007+A1:2012 Specifies oil-sampling procedures, analysis requirements and procedures, and recommends sensitivity, repeatability and accuracy criteria for the application of dissolved gas analysis (DGA) to factory testing of new power transformers, reactors and instrument transformers filled with mineral insulating oil when DGA testing has been specified. The most effective and useful application of DGA techniques to factory testing is during the performance of long-term tests, typically temperature-rise (heat run) and overloading tests on power transformers and reactors, also impulse tests on instrument transformers. DGA may also be valuable for over-excitation tests run over an extended period of time. Experience with DGA results, before and after short-time dielectric tests, indicates that DGA is normally less sensitive than electrical and acoustic methods for detecting partial discharges. However, DGA will indicate when these partial discharges become harmful to the insulation and may be detected by inspection [2]. This edition includes the following significant technical changes with respect to the previous edition:
a) the specific procedures used during factory tests (sampling location, sampling frequency, gas extraction and chromatographic analysis in the laboratory) are described in more detail;
b) information is provided in Annex A concerning the residual gas contents recommended before thermal tests on power transformers, typical gas values observed during the tests and cases where gas formation during the tests was followed by problems in the transformers;
c) typical values observed during chopped lightning-impulse tests on instrument transformers are indicated in Annex B. This consolidated version consists of the second edition (2007) and its amendment 1 (2012). Therefore, no need to order amendment in addition to this publication.

  • Standard
    29 pages
    English and French language
    sale 15% off

Applies to capacitors according to IEC 60831-1 and gives the requirements for ageing test, self-healing test and destruction test for these capacitors.

  • Standard
    5 pages
    English and French language
    sale 15% off

IEC 60296:2012 is now available as IEC Standards+ 60296:2012 which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60296:2012 is applicable to specifications and test methods for unused mineral insulating oils. It applies to oil intended for use in transformers, switchgear and similar electrical equipment in which oil is required for insulation and heat transfer. This edition includes the following significant technical changes with respect to the previous edition:
- specifications for corrosive sulphur compounds that can lead to copper sulphide deposition in transformers (in non-passivated and passivated oils);
- definitions of additives in oil; and
- re-insertion of a missing note on oxidation.

  • Standard
    43 pages
    English and French language
    sale 15% off

IEC 61196-8-1:2012 is part of the IEC 61196 series and applies to coaxial communications cables described in IEC 61196-8. It specifies the requirements for semi-flexible radio frequency and coaxial cables with polytetrafluoroethylene (PTFE) dielectric. These cables are for use in microwave and wireless equipment or other signal transmission equipment or units at frequencies from 500 MHz up to 18 GHz. This blank detail specification is to be read in conjunction with IEC 61196-1 and IEC 61196-8. The blank detail specification determines the layout and style for detail. Detail specifications, based on the blank detail specification, may be prepared by a national organization, a manufacturer or a user.

  • Standard
    16 pages
    English and French language
    sale 15% off

Will supersede EN 60567:2005

  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60567:2011 deals with the techniques for sampling free gases from gas-collecting relays from power transformers. Three methods of sampling free gases are described. The techniques described take account, on the one hand, of the problems peculiar to analyses associated with acceptance testing in the factory, where gas contents of oil are generally very low and, on the other hand, of the problems imposed by monitoring equipment in the field, where transport of samples may be by un-pressurized air freight and where considerable differences in ambient temperature may exist between the plant and the examining laboratory. Since the publication of the previous edition, CIGRE TF.D1.01.15 has made progress in several areas of dissolved gas analysis (DGA). These advances are included in this fourth edition.

  • Standard
    119 pages
    English and French language
    sale 15% off

IEC 60475:2011 is applicable to the procedure to be used for insulating liquids in delivery containers and in electrical equipment such as power and instrument transformers, reactors, bushings, oil-filled cables, oil-filled tank-type capacitors, switchgear and load tap changers. The main changes with respect to the previous edition are as follows:
- withdrawal of askarels;
- addition of recommendations concerning general health, safety and environmental protection;
- additional details regarding the sampling of oil from electrical equipment, using various types of sampling devices appropriate for the different types of oil tests to be performed in the laboratory.

  • Standard
    54 pages
    English and French language
    sale 15% off

Describes two test methods, A and B, for assessing the electric strength of insulating liquids in a divergent field when subjected to standard lightning impulses. Method A is based on a step procedure intended to provide an estimate of impulse breakdown voltage under specific conditions. Method B is a statistical test designed to check a hypothesis about the impulse breakdown probability of an insulating liquid at a given voltage level.

  • Standard
    4 pages
    English and French language
    sale 15% off

The methods described in this International Standard concern the detection and determination of specified additives in unused and used mineral insulating oils. The detection methods may be applied to assess whether or not a mineral insulating oil contains an additive as specified by the supplier. The determination methods are used for the quantitative determination of additives known to be present or previously detected by the appropriate detection method.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60666:2010 provides methods concerning the detection and determination of specified additives in unused and used mineral insulating oils. The detection methods may be applied to assess whether or not a mineral insulating oil contains an additive as specified by the supplier. The determination methods are used for the quantitative determination of additives known to be present or previously detected by the appropriate detection method. The main changes with respect to the previous edition are listed below: - a change in the title from 'Detection and determination of specified anti-oxidant additives in insulating oils'; - new Annexes B and C which provide methods for the determination of two additives different from the anti-oxidants.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60512-22-1:2010 when required by the detail specification, is used for testing connectors within the scope of technical committee 48. It may also be used for similar devices when specified in a detail specification. The object of this standard is to detail a standard test method to determine the capacitance between conductive elements of connectors.

  • Standard
    9 pages
    English and French language
    sale 15% off

IEC 60666:2010 provides methods concerning the detection and determination of specified additives in unused and used mineral insulating oils. The detection methods may be applied to assess whether or not a mineral insulating oil contains an additive as specified by the supplier. The determination methods are used for the quantitative determination of additives known to be present or previously detected by the appropriate detection method. The main changes with respect to the previous edition are listed below:
- a change in the title from "Detection and determination of specified anti-oxidant additives in insulating oils";
- new Annexes B and C which provide methods for the determination of two additives different from the anti-oxidants.

  • Standard
    64 pages
    English and French language
    sale 15% off

The scope of this Technical report is to provide guidance for the activities of inventory, control, management, decontamination and/or disposal of equipment and containers with insulating liquid containing PCBs, in compliance with the Council Directives (96/59/EC), using Best Available Techniques - BAT - (96/61/EC), Commission Decision (2001/68/EC), Stockholm Convention on Persistent Organic Pollutants (POPs) and/or with appropriate national or local legislation. This Technical report is addressed, in particular, toward the Life Cycle Management (LCM) of insulating liquids and it has been developed in accordance with the following objectives:
a) reduction of risks for workers, public health and the environment, arising from human error, malfunction, or failures of the equipment that could cause fires or spillage of hazardous and Persistent Organic Pollutants (POPS)s;
b) implementation of the “Best Available Techniques” (BAT),”Best Environmental Practices”(BEP)and methodologies available for safety, whilst taking into account the surroundings and the criteria of self-sufficiency and functional recovery;
c) technical feasibility of the activities within the prescribed time schedules, taking into account current legislation and economic feasibility.
NOTE 1 For those CENELEC countries in which the European Directives do not apply, this Technical report has an informative purpose only. Different limits from those given in the present Technical report are required in some countries.
NOTE 2 For those countries outside of European Community the Stockholm Convention on Persistent Organic Pollutants (POPs) should be applied.
NOTE 3 When reading this Technical report, reference should also be made to Annex C of EN 50195 and Annex B of EN 50225, because in some EU countries (i.e. France, Italy, Poland, Spain, etc.) there are other mandatory requirements.

  • Technical report
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The scope of this Technical report is to provide guidance for the activities of inventory, control, management, decontamination and/or disposal of equipment and containers with insulating liquid containing PCBs, in compliance with the Council Directives (96/59/EC), using Best Available Techniques - BAT - (96/61/EC), Commission Decision (2001/68/EC), Stockholm Convention on Persistent Organic Pollutants (POPs) and/or with appropriate national or local legislation. This Technical report is addressed, in particular, toward the Life Cycle Management (LCM) of insulating liquids and it has been developed in accordance with the following objectives: a) reduction of risks for workers, public health and the environment, arising from human error, malfunction, or failures of the equipment that could cause fires or spillage of hazardous and Persistent Organic Pollutants (POPS)s; b) implementation of the “Best Available Techniques” (BAT),”Best Environmental Practices”(BEP)and methodologies available for safety, whilst taking into account the surroundings and the criteria of self-sufficiency and functional recovery; c) technical feasibility of the activities within the prescribed time schedules, taking into account current legislation and economic feasibility. NOTE 1 For those CENELEC countries in which the European Directives do not apply, this Technical report has an informative purpose only. Different limits from those given in the present Technical report are required in some countries. NOTE 2 For those countries outside of European Community the Stockholm Convention on Persistent Organic Pollutants (POPs) should be applied. NOTE 3 When reading this Technical report, reference should also be made to Annex C of EN 50195 and Annex B of EN 50225, because in some EU countries (i.e. France, Italy, Poland, Spain, etc.) there are other mandatory requirements.

  • Technical report
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Guide to the maintenance of silicone liquid in transformers with rated voltage up to 35 kV and is intended to assist the equipment operator in assessing the quality of the liquid during use in the equipment and maintaining it in serviceable condition.

  • Standard
    4 pages
    English and French language
    sale 15% off

This part of IEC 62024 specifies the measuring methods of the rated direct current limits for small inductors. Standardized measuring methods for the determination of ratings enable users to accurately compare the current ratings given in various manufacturers' data books. This standard is applicable to leaded and surface mount inductors with dimensions according to IEC 62025-1 and generally with rated current less than 22 A, although inductors with rated current greater than 22 A are available that fall within the dimension restrictions of this standard (no larger than 12 mm × 12 mm footprint approximately). These inductors are typically used in DC to DC converters built on PCB, for electric and telecommunication equipment, and small size switching power supply units. The measuring methods are defined by the saturation and temperature rise limitations induced solely by direct current. Normative references. The following referenced documents are indispens.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62535:2008 specifies a test method for detection of potentially corrosive sulphur in used and unused mineral insulating oil. Most recent failures due to corrosive sulphur are related to the formation of copper sulphide deposits in and on the surface of winding cellulosic paper. The test method uses a copper conductor, wrapped with one layer of paper, immersed in the oil and heated to evaluate the capability of the oil to yield copper sulphide and transfer it to paper layers. The growth of copper sulphide on bare copper may cause the presence of conductive particulates in the oil, which can act as nuclei for electrical discharge and may lead to a fault. Other test methods exist using a bare copper strip immersed in oil and heated to detect the corrosive behaviour of oil against copper. ASTM D1275 Method B is also used for this test and a modified procedure using low oil volumes is included in Annex A. Tests with and without paper are considered as complementary and may lead to different results.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day