29.220.20 - Acid secondary cells and batteries
ICS 29.220.20 Details
Acid secondary cells and batteries
Sauresekundarzellen und -batterien
Accumulateurs acides
Kislinski sekundarni členi in baterije
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 29.220.20 - Acid secondary cells and batteries
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document provides information on rechargeable energy storage systems (RESS) in earth-moving machinery (EMM) as defined in ISO 6165. It also identifies current standards and other relevant documents that can guide the development of electrified EMM. Additionally, this document defines terms that are common in the design of electrical equipment. This document covers electrics and electronics that are physically part of the machine. It does not cover electrics and electronics that are off-board the machine, nor off-board sources of energy and communications with chargers.
- Technical report17 pagesEnglish languagesale 15% off
- Technical report18 pagesFrench languagesale 15% off
This document is applicable to housing and accessory parts of lead-acid batteries made of polypropylene.
Lead-acid batteries are used primarily as a power source for the starting of internal combustion engines, lighting and for auxiliary equipment of road vehicles. These batteries are all referred to as starter batteries.
This document is applicable to starter batteries for passenger cars and for commercial or industrial vehicles.
Battery housing and accessory parts according to this document do not provide any protection of the polypropylene against aging due to light. The parts are intended to be used within the engine compartment or within battery boxes where they are protected from light.
The purpose of this document is to define requirements for raw material used to produce housing and accessory parts for starter batteries, to define requirements of the physical properties of battery housing and to define uniform test procedures for validation.
- Standard24 pagesEnglish languagesale 10% offe-Library read for1 day
The standard shall describe the necessary steps and conditions for the measurement of the parameters, which are relevant for rechargeable batteries with internal energy storage used for road vehicles. The parameters shall reflect current industry practice for the applications based on existing international standards. The standard shall consider the most appropriate metric based on application and the objective of the metric to enable comparison of electrical performance between different models/products on the market. It shall in particular take into account the following:
- rated capacity (in Ah);
- rated power (in W);
- internal resistance (in ꭥ);
- energy round trip efficiency (in %).
The measurement tests of the standard shall be relevant for batteries, battery packs, and battery modules intended for the following applications:
- motor vehicles, including M and N categories referred to in Article 2 of Regulation (EU) 2018/858 of the European Parliament and of the Council with traction battery;
- L-category vehicles referred to in Article 2 of Regulation EU 168/2013 of the European Parliament and of the Council with traction battery of more than 25kg.
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
This document is applicable to housing and accessory parts of lead-acid batteries made of polypropylene. Lead-acid batteries are used primarily as a power source for the starting of internal combustion engines, lighting and for auxiliary equipment of road vehicles. These batteries are all referred to as starter batteries. This document is applicable to starter batteries for passenger cars and for commercial or industrial vehicles. Battery housing and accessory parts according to this document do not provide any protection of the polypropylene against aging due to light. The parts are intended to be used within the engine compartment or within battery boxes where they are protected from light. The purpose of this document is to define requirements for raw material used to produce housing and accessory parts for starter batteries, to define requirements of the physical properties of battery housing and to define uniform test procedures for validation.
- Standard24 pagesEnglish languagesale 10% offe-Library read for1 day
The standard shall describe the necessary steps and conditions for the measurement of the parameters, which are relevant for rechargeable batteries with internal energy storage used for road vehicles. The parameters shall reflect current industry practice for the applications based on existing international standards. The standard shall consider the most appropriate metric based on application and the objective of the metric to enable comparison of electrical performance between different models/products on the market. It shall in particular take into account the following:
- rated capacity (in Ah);
- rated power (in W);
- internal resistance (in ꭥ);
- energy round trip efficiency (in %).
The measurement tests of the standard shall be relevant for batteries, battery packs, and battery modules intended for the following applications:
- motor vehicles, including M and N categories referred to in Article 2 of Regulation (EU) 2018/858 of the European Parliament and of the Council with traction battery;
- L-category vehicles referred to in Article 2 of Regulation EU 168/2013 of the European Parliament and of the Council with traction battery of more than 25kg.
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes steps, conditions and protocols for safe maintenance and repair to facilitate remanufacturing, re-use and preparation for repurposing of battery systems, battery packs and battery modules designed for EV applications for alkali-ion (Li-ion, Na-ion), Pb, NiMH and combined chemistries.
This document also includes an informative guidance on design and assembly techniques that facilitate the maintenance, repair, re-use and preparation for repurposing of EV battery systems, battery packs and battery modules (Annex B).
NOTE Individual cell is replaced when it is allowed and described by the EV battery systems, battery packs and battery modules manufacturer. In this case, battery modules manufacturer provides the necessary instructions for cell replacement.
- Standard24 pagesEnglish languagesale 10% offe-Library read for1 day
This document is applicable to lead-acid batteries with a nominal voltage of 12 V, used primarily as power source for the starting of internal combustion engines (ICE), lighting and also for auxiliary equipment of ICE vehicles. These batteries are commonly called "starter batteries". Batteries with a nominal voltage of 6 V are also included in the scope of this document. All referenced voltages need to be divided by two for 6 V batteries. The batteries under the scope of this document are used for micro-cycle applications in vehicles which can also be called Start-Stop (or Stop-Start, idling-stop system, micro-hybrid or idle-stop-and-go) applications. In cars with this special capability, the internal combustion engine is switched off during a complete vehicle stop, during idling with low speed or during idling without the need of supporting the vehicle movement by the internal combustion engine. During the phases in which the engine is switched off, most of the electric and electronic components of the car need to be supplied by the battery without support of the alternator. In addition, in most cases an additional regenerative braking (recuperation or regeneration of braking energy) function is installed. The batteries under these applications are stressed in a completely different way compared to classical starter batteries. Aside of these additional properties, those batteries need to crank the ICE and support the lighting and also auxiliary functions in a standard operating mode with support of the alternator when the internal combustion engine is switched on. All batteries under this scope need to fulfil basic functions, which are tested under application of EN 50342 1:2015.
This document is applicable to batteries for the following purposes:
- Lead-acid batteries of the dimensions according to EN 50342 2 for vehicles with the capability to automatically switch off the ICE during vehicle operation either in standstill or moving (“Start-Stop”);
- Lead-acid batteries of the dimensions according to EN 50342 2 for vehicles with Start-Stop applications with the capability to recover braking energy or energy from other sources.
This document is not applicable to batteries for purposes other than mentioned above, but it is applicable to EFB delivered in dry-charged conditions according to EN 50342 1:2015, Clause 7.
NOTE The applicability of this document also for batteries according to EN 50342 4 is under consideration.
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes steps, conditions and protocols for safe maintenance and repair to facilitate remanufacturing, re-use and preparation for repurposing of battery systems, battery packs and battery modules designed for EV applications for alkali-ion (Li-ion, Na-ion), Pb, NiMH and combined chemistries.
This document also includes an informative guidance on design and assembly techniques that facilitate the maintenance, repair, re-use and preparation for repurposing of EV battery systems, battery packs and battery modules (Annex B).
NOTE Individual cell is replaced when it is allowed and described by the EV battery systems, battery packs and battery modules manufacturer. In this case, battery modules manufacturer provides the necessary instructions for cell replacement.
- Standard24 pagesEnglish languagesale 10% offe-Library read for1 day
This document is applicable to lead-acid batteries with a nominal voltage of 12 V, used primarily as power source for the starting of internal combustion engines (ICE), lighting and also for auxiliary equipment of ICE vehicles. These batteries are commonly called "starter batteries". Batteries with a nominal voltage of 6 V are also included in the scope of this document. All referenced voltages need to be divided by two for 6 V batteries. The batteries under the scope of this document are used for micro-cycle applications in vehicles which can also be called Start-Stop (or Stop-Start, idling-stop system, micro-hybrid or idle-stop-and-go) applications. In cars with this special capability, the internal combustion engine is switched off during a complete vehicle stop, during idling with low speed or during idling without the need of supporting the vehicle movement by the internal combustion engine. During the phases in which the engine is switched off, most of the electric and electronic components of the car need to be supplied by the battery without support of the alternator. In addition, in most cases an additional regenerative braking (recuperation or regeneration of braking energy) function is installed. The batteries under these applications are stressed in a completely different way compared to classical starter batteries. Aside of these additional properties, those batteries need to crank the ICE and support the lighting and also auxiliary functions in a standard operating mode with support of the alternator when the internal combustion engine is switched on. All batteries under this scope need to fulfil basic functions, which are tested under application of EN 50342 1:2015. This document is applicable to batteries for the following purposes: - Lead-acid batteries of the dimensions according to EN 50342 2 for vehicles with the capability to automatically switch off the ICE during vehicle operation either in standstill or moving (“Start-Stop”); - Lead-acid batteries of the dimensions according to EN 50342 2 for vehicles with Start-Stop applications with the capability to recover braking energy or energy from other sources. This document is not applicable to batteries for purposes other than mentioned above, but it is applicable to EFB delivered in dry-charged conditions according to EN 50342 1:2015, Clause 7. NOTE The applicability of this document also for batteries according to EN 50342 4 is under consideration.
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62902:2025 specifies methods for the clear identification of secondary cells, batteries, battery modules and monoblocs according to their chemistry (electrochemical storage technology).
The markings described in this document are applicable to
- secondary cells,
- batteries,
- battery modules, and
- monoblocs,
when they are placed on the market for end use and when their battery volume exceeds 900 cm3.
The chemistry marking is useful for the installation, operation and decommissioning phases in the battery's life cycle.
This document defines the conditions of use of the markings indicating the chemistry of these secondary batteries.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62902:2025 specifies methods for the clear identification of secondary cells, batteries, battery modules and monoblocs according to their chemistry (electrochemical storage technology). The markings described in this document are applicable to - secondary cells, - batteries, - battery modules, and - monoblocs, when they are placed on the market for end use and when their battery volume exceeds 900 cm3. The chemistry marking is useful for the installation, operation and decommissioning phases in the battery's life cycle. This document defines the conditions of use of the markings indicating the chemistry of these secondary batteries.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment12 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62902:2025 specifies methods for the clear identification of secondary cells, batteries, battery modules and monoblocs according to their chemistry (electrochemical storage technology).
The markings described in this document are applicable to
- secondary cells,
- batteries,
- battery modules, and
- monoblocs,
when they are placed on the market for end use and when their battery volume exceeds 900 cm3.
The chemistry marking is useful for the installation, operation and decommissioning phases in the battery's life cycle.
This document defines the conditions of use of the markings indicating the chemistry of these secondary batteries.
- Standard73 pagesEnglish languagesale 15% off
IEC 63338:2024 applies to the reuse and repurposing of secondary lithium ion and nickel-metal hydride cells and batteries after extraction from the application for which they were first placed on the market (hereafter "relevant cells and batteries").
This document does not permit reuse or repurposing of single cells or cell assemblies if battery lifetime traceability data are not recorded. See Clause 4. Swappable batteries such as those used in e-scooters are removed and installed by the user (such as for charging) without conducting a safety assessment (such as battery lifetime traceability data assessment) as part of intended use, which is not considered reuse or repurposing. This document does not cover system component reuse and repurposing. The original manufacturer can be contacted to confirm suitability of components for reuse and repurposing.
The primary purpose of this document is to provide basic guidance on the environmental aspects of reuse and repurposing of relevant cells and batteries; basic guidance on safety risks for the reuse and repurposing of relevant cells and batteries; basic guidance on original manufacturer warning notice on the applicability of a product for reuse or repurposing; and useful information regarding reuse and repurposing and relevant cell and battery regulations and standards to interested parties.
- Standard60 pagesEnglish and French languagesale 15% off
IEC 63330-1:2024 provides general requirements for repurposing of secondary cells, modules, battery packs and battery systems, herein also referred to as "PRODUCT", that are originally manufactured for other applications such as electric vehicles. This document specifies the procedure to evaluate the performance and safety of used PRODUCT for repurposing. This document also provides basic requirements for application of repurposed PRODUCT. This document targets secondary lithium ion PRODUCT and battery technologies with data traceability.
This document intends to provide basic requirements and a procedure to evaluate the performance and safety of used batteries and battery systems, and also provide general requirements for application of repurposed batteries.
- Standard54 pagesEnglish and French languagesale 15% off
- Amendment12 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62973-3:2024 establishes the framework for the selection and operation of lead acid batteries of the VRLA type for auxiliary power supply systems on rolling stock of railways and complements IEC 62973-1, unless otherwise specified. This document provides guidance and links to standards for the required battery qualification tests procedures and safety measures to be implemented. In this document, the most appropriate clauses of these cited standards have been selected and adapted as needed to reflect the intended use of these batteries as auxiliary power sources on rolling stock of railways.
The battery-specific requirements for subcomponents of battery systems such as containers, charging controls, temperature probes, nameplates and similar are covered in this document as needed.
Charging systems are excluded from the scope of this document.
- Standard31 pagesEnglish languagesale 15% off
- Standard20 pagesEnglish and French languagesale 15% off
IEC 61427-2:2015 relates to secondary batteries used in on-grid Electrical Energy Storage (EES) applications and provides the associated methods of test for the verification of their endurance, properties and electrical performance in such applications. The test methods are essentially battery chemistry neutral, i.e. applicable to all secondary battery types. On-grid applications are characterized by the fact that batteries are connected, via power conversion devices, to a regional or nation- or continent-wide electricity grid and act as instantaneous energy sources and sinks to stabilize the grids performance when randomly major amounts of electrical energy from renewable energy sources are fed into it. Related power conversion and interface equipment is not covered by this part of IEC 61427.
- Standard116 pagesEnglish languagesale 15% off
- Standard108 pagesEnglish and French languagesale 15% off
IEC 62877-1:2023 is available as IEC 62877-1:2023 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 62877-1:2023 applies to electrolytes and their components used for filling vented lead acid batteries with dry-charged cells and for electrolyte replenishment, replacement or electrolyte density adjustment of batteries in operation. This document defines the composition, purity and properties of electrolyte, for application where specific instructions from the battery manufacturer are not available. This second edition cancels and replaces the first edition published in 2016. This edition includes the following significant technical changes with respect to the previous edition:
- Addition of the concentration values of halogens in Table 4.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62877-1:2023 is available as IEC 62877-1:2023 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62877-1:2023 applies to electrolytes and their components used for filling vented lead acid batteries with dry-charged cells and for electrolyte replenishment, replacement or electrolyte density adjustment of batteries in operation. This document defines the composition, purity and properties of electrolyte, for application where specific instructions from the battery manufacturer are not available. This second edition cancels and replaces the first edition published in 2016. This edition includes the following significant technical changes with respect to the previous edition: - Addition of the concentration values of halogens in Table 4.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62877-1:2023 applies to electrolytes and their components used for filling vented lead acid batteries with dry-charged cells and for electrolyte replenishment, replacement or electrolyte density adjustment of batteries in operation. This document defines the composition, purity and properties of electrolyte, for application where specific instructions from the battery manufacturer are not available. This second edition cancels and replaces the first edition published in 2016. This edition includes the following significant technical changes with respect to the previous edition:
- Addition of the concentration values of halogens in Table 4.
- Standard39 pagesEnglish languagesale 15% off
- Standard25 pagesEnglish and French languagesale 15% off
IEC 62973-5:2023 applies to lithium-ion batteries for auxiliary power supply systems used on rolling stock. This document specifies the requirements of the characteristics and tests for the lithium-ion cells, and supplements IEC 62973-1 which is applied to any rolling stock types (e.g. light rail vehicles, tramways, streetcars, metros, commuter trains, regional trains, high speed trains, locomotives, etc.). This document specifies the requirements of the interface between battery system including BMS and the converter. This document is used in conjunction with generic IEC 62619 (safety requirements) and IEC 62620 (performance requirements) of lithium-ion cells and batteries used in industrial applications. This document specifies the requirements for railway rolling stock applications.
- Standard69 pagesEnglish and French languagesale 15% off
- Standard3 pagesEnglish and French languagesale 15% off
IEC Corrected version
- Corrigendum4 pagesEnglish and French languagesale 10% offe-Library read for1 day
This document is applicable to lead-acid batteries used for starting, lighting and ignition of passenger automobiles and light commercial vehicles with a nominal voltage of 12 V. All batteries in accordance with this document can be fastened to the vehicle either by means of the ledges around the case or by means of a hold-down device engaging with the lid.
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
IEC Corrected version
- Corrigendum4 pagesEnglish and French languagesale 10% offe-Library read for1 day
- Standard2 pagesEnglish and French languagesale 15% off
This part of IEC 62660 specifies test procedures and acceptance criteria for safety performance of secondary lithium-ion cells and cell blocks used for propulsion of electric vehicles (EV) including battery electric vehicles (BEV) and hybrid electric vehicles (HEV).
This document determines the basic safety performance of cells used in a battery pack and system under intended use and reasonably foreseeable misuse or incident, during the normal operation of the EV. The safety requirements of the cell in this document are based on the premise that the cells are properly used in a battery pack and system within the limits for voltage, current and temperature as specified by the cell manufacturer (cell operating region).
The evaluation of the safety of cells during transport and storage is not covered by this document.
NOTE 1 The safety performance requirements for lithium-ion battery packs and systems are defined in ISO 6469‑1. The specifications and safety requirements for lithium-ion battery packs and systems of electrically propelled mopeds and motorcycles are defined in ISO 18243. IEC 62619 covers the safety requirements for the lithium-ion cells and batteries for industrial applications, including, for example, forklift trucks, golf carts, and automated guided vehicles.
NOTE 2 Lithium cells, modules, battery packs, and battery systems are regulated by International Air Transport Association (IATA) and International Maritime Organization (IMO) for air and sea transport, and, regionally, by other authorities, mainly for land transport. Refer to IEC 62281 for additional information.
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 62660 specifies test procedures and acceptance criteria for safety performance of secondary lithium-ion cells and cell blocks used for propulsion of electric vehicles (EV) including battery electric vehicles (BEV) and hybrid electric vehicles (HEV). This document determines the basic safety performance of cells used in a battery pack and system under intended use and reasonably foreseeable misuse or incident, during the normal operation of the EV. The safety requirements of the cell in this document are based on the premise that the cells are properly used in a battery pack and system within the limits for voltage, current and temperature as specified by the cell manufacturer (cell operating region). The evaluation of the safety of cells during transport and storage is not covered by this document. NOTE 1 The safety performance requirements for lithium-ion battery packs and systems are defined in ISO 6469‑1. The specifications and safety requirements for lithium-ion battery packs and systems of electrically propelled mopeds and motorcycles are defined in ISO 18243. IEC 62619 covers the safety requirements for the lithium-ion cells and batteries for industrial applications, including, for example, forklift trucks, golf carts, and automated guided vehicles. NOTE 2 Lithium cells, modules, battery packs, and battery systems are regulated by International Air Transport Association (IATA) and International Maritime Organization (IMO) for air and sea transport, and, regionally, by other authorities, mainly for land transport. Refer to IEC 62281 for additional information.
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies methods for the clear identification of secondary cells, batteries, battery modules and monoblocs according to their chemistry (electrochemical storage technology). The markings described in this document are applicable for secondary cells, batteries, battery modules and monoblocs with a volume of more than 900 cm3. The marking of the chemistry is useful for the installation, operation and decommissioning phases of battery life. Many recycling processes are chemistry specific, thus undesired events can occur when a battery which is not of the appropriate chemistry enters a given recycling process. In order to ensure safe handling during sorting and recycling processes, therefore, the battery is marked so as to identify its chemistry. This document defines the conditions of utilization of the markings indicating the chemistry of these secondary batteries. The details of markings and their application are defined in this document. NOTE Nothing in this document precludes the marking of batteries with recycling and chemistry symbols required by state, federal, national or regional laws or regulations or with a seal under license by a national recycling program.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62660-3:2022 specifies test procedures and acceptance criteria for safety performance of secondary lithium-ion cells and cell blocks used for propulsion of electric vehicles (EV) including battery electric vehicles (BEV) and hybrid electric vehicles (HEV). This document determines the basic safety performance of cells used in a battery pack and system under intended use and reasonably foreseeable misuse or incident, during the normal operation of the EV. The safety requirements of the cell in this document are based on the premise that the cells are properly used in a battery pack and system within the limits for voltage, current and temperature as specified by the cell manufacturer (cell operating region).
- Standard85 pagesEnglish languagesale 15% off
- Standard55 pagesEnglish and French languagesale 15% off
This part of IEC 62660 specifies test procedures to observe the reliability and abuse behaviour of secondary lithium-ion cells and cell blocks used for propulsion of electric vehicles including battery electric vehicles (BEV) and hybrid electric vehicles (HEV). NOTE 1 Secondary lithium-ion cells used for propulsion of plug-in hybrid electric vehicles (PHEV) can be tested by the procedure either for BEV application or HEV application, according to the battery system design, based on the agreement between the cell manufacturer and the customer. This document specifies the standard test procedures and conditions for basic characteristics of lithium-ion cells for use in propulsion of battery and hybrid electric vehicles. The tests are indispensable for obtaining essential data on reliability and abuse behaviour of lithium-ion cells for use in various designs of battery systems and battery packs. This document provides standard classification of description of test results to be used for the design of battery systems or battery packs. NOTE 2 Cell blocks can be used as an alternative to cells according to the agreement between the cell manufacturer and the customer. NOTE 3 The safety requirements of lithium-ion cells for electric vehicle application are defined in IEC 62660-3 [3].
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62660-1:2018 is available as IEC 62660-1:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62660-1:2018 specifies performance and life testing of secondary lithium-ion cells used for propulsion of electric vehicles including battery electric vehicles (BEV) and hybrid electric vehicles (HEV). This document specifies the test procedures to obtain the essential characteristics of lithium-ion cells for vehicle propulsion applications regarding capacity, power density, energy density, storage life and cycle life. This document provides the standard test procedures and conditions for testing basic performance characteristics of lithium-ion cells for vehicle propulsion applications, which are indispensable for securing a basic level of performance and obtaining essential data on cells for various designs of battery systems and battery packs. IEC 62660-1:2018 cancels and replaces the first edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The purpose of each test has been added. b) The power test has been revised for clarification, and an informative part of the current-voltage characteristic test has been moved to the new Annex C.
- Standard42 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard42 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard is applicable to lead-acid batteries with a nominal voltage of 12 V, used primarily as power source for the starting of internal combustion engines (ICE), lighting and also for auxiliary equipment of ICE vehicles. These batteries are commonly called “starter batteries”. Batteries with a nominal voltage of 6 V are also included in the scope of this standard. All referenced voltages need to be divided by two for 6 V batteries. The batteries under scope of this standard are used for micro-cycle applications in vehicles which can also be called Start-Stop (or Stop-Start, idling-stop system, micro-hybrid or idle-stop-and-go) applications. In cars with this special capability, the internal combustion engine is switched off during a complete vehicle stop, during idling with low speed or during idling without the need of supporting the vehicle movement by the internal combustion engine. During the phases in which the engine is switched off, most of the electric and electronic components of the car need to be supplied by the battery without support of the alternator. In addition, in most cases an additional regenerative braking (recuperation or regeneration of braking energy) function is installed. The batteries under these applications are stressed in a completely different way compared to classical starter batteries. Aside of these additional properties, those batteries need to crank the ICE and support the lighting and also auxiliary functions in a standard operating mode with support of the alternator when the internal combustion engine is switched on. All batteries under this scope need to fulfil basic functions, which are tested under application of EN 50342-1:2015. This European Standard is applicable to batteries for the following purposes: • Lead-acid batteries of the dimensions according to EN 50342-2 for vehicles with the capability to automatically switch off the ICE during vehicle operation either in standstill or moving (“Start-Stop”); • Lead-acid batteries of the dimensions according to EN 50342-2 for vehicles with Start-Stop applications with the capability to recover braking energy or energy from other sources. This standard is not applicable to batteries for purposes other than mentioned above, but it is applicable to EFB delivered in dry-charged conditions according to EN 50342-1:2015, Clause 7. NOTE The applicability of this standard also for batteries according to EN 50342-4 is under consideration.
- Amendment5 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard is applicable to lead-acid batteries with a nominal voltage of 12 V, used primarily as a power source for the starting of internal combustion engines, lighting and also for auxiliary equipment of internal combustion engine vehicles. These batteries are commonly called “starter batteries”. Batteries with a nominal voltage of 6 V are also included within the scope of this standard. All referenced voltages need to be divided by two for 6 V batteries. This European Standard is applicable to batteries for the following purposes: − batteries for passenger cars, − batteries for commercial and industrial vehicles. This European Standard is not applicable to batteries for other purposes, for example the starting of railcar internal combustion engines or for motorcycles.
- Amendment7 pagesEnglish languagesale 10% offe-Library read for1 day
TC21X working group 3 has been agree to implement following changes to EN 50342-1:2015/1:2018
- Deletion of high current discharge after water consumption test. This is not needed as a dedicated corrosion test is available in the document.
- Limitation of the maximum discharge time in cranking performance test. Batteries with high power capability might be damaged if discharge until the cut off voltage of 6,0 V is reached. To prevent this the maximum discharge time of the second step of the cranking performance test has been limited to 180 s.
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
TC21X working group 3 has been agree to implement following changes to EN 50342-1:2015/1:2018 - Deletion of high current discharge after water consumption test. This is not needed as a dedicated corrosion test is available in the document. - Limitation of the maximum discharge time in cranking performance test. Batteries with high power capability might be damaged if discharge until the cut off voltage of 6,0 V is reached. To prevent this the maximum discharge time of the second step of the cranking performance test has been limited to 180 s.
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60095-2:2021 is applicable to lead-acid batteries used for starting, lighting and ignition of passenger cars and light vehicles with a nominal voltage of 12 V.
All batteries in accordance with this document can be fastened to the vehicle either by means of the ledges around the container or by means of a hold-down device engaging with the lid.
This document specifies dimensions of battery for Europe, East Asia and North America.
- Standard43 pagesEnglish languagesale 15% off
IEC TS 61044:2021(E) covers opportunity charging of lead-acid traction batteries, i.e., the use of idle time during a working period to increase the state of charge (SoC) so as to extend the daily working period of a lead-acid traction battery while at the same time avoiding an excessive depth of discharge.
This document specifies requirements for the use of opportunity charging of lead-acid traction batteries of vented and valve regulated types when the battery manufacturer has not provided alternative specific operating procedures.
- Technical specification12 pagesEnglish languagesale 15% off
IEC 60095-4:2021 is applicable to lead-acid batteries used for starting, lighting and ignition of heavy trucks, commercial vehicles, busses and agricultural trucks. The object of this document is to specify global requirements of the main dimensions of starter batteries for Europe, North America and East Asia. This document comprises 12 types of "preferred types" of batteries. This document specifies dimensions of 4 types of batteries each for Europe (types A, B, C and D2), North America (types 4D, 8D, 31T, 31A) and East Asia (types E41, F51, G51, H52).
- Standard17 pagesEnglish languagesale 15% off
- Standard40 pagesEnglish languagesale 15% off
IEC 62485-2:2010 applies to stationary secondary batteries and battery installations with a maximum voltage of DC 1 500 V (nominal) and describes the principal measures for protections against hazards generated from: - electricity, - gas emission, - electrolyte. This International Standard provides requirements on safety aspects associated with the erection, use, inspection, maintenance and disposal. It covers lead-acid and NiCd/NiMH batteries.
- Standard41 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62485-1:2015 specifies the basic requirements for secondary batteries and battery installations. The requirements regarding safety, reliability, life expectancy, mechanical strength, cycle stability, internal resistance, and battery temperature, are determined by various applications, and this, in turn, determines the selection of the battery design and technology. In general, the requirements and definitions are specified for lead-acid and nickel-cadmium batteries. For other battery systems with aqueous electrolyte, the requirements may be applied accordingly. The standard covers safety aspects taking into account hazards associated with: - electricity (installation, charging, discharging, etc.); - electrolyte; - inflammable gas mixtures; - storage and transportation.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62485-4:2015 applies to the safety aspects associated with the accommodation, the arrangements of circuits and the operation of secondary valve-regulated lead-acid cells and batteries in portable appliances. Requirements are specified which oblige the manufacturers of appliances and secondary batteries to prevent the misuse of batteries in the course of operation to provide protective measures avoiding injury to persons in case of battery failure and to provide sufficient information to users. This standard does not apply to secondary cells and batteries containing alkaline or other non-acid electrolytes. This first edition cancels and replaces the first edition of IEC TR 61056-3 published in 1991. It constitutes a technical revision. This edition includes the following significant technical changes with respect to the IEC TR 61056-3: a) updating of the requirements, and harmonisation of the text for consistency with the IEC 62485 series.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62485-6:2021 applies to battery installations used for electric off-road vehicles; it does not cover the design of such vehicles.
Examples of the main applications are:
- industrial
• cleaning machines,
• trucks for material handling, for example, lift trucks, tow trucks, automatic guided vehicles,
• electrically propulsed lifting platforms;
- other applications
• electric powered boats and ships.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62485-6:2021 applies to battery installations used for electric off-road vehicles; it does not cover the design of such vehicles. Examples of the main applications are: - industrial • cleaning machines, • trucks for material handling, for example, lift trucks, tow trucks, automatic guided vehicles, • electrically propulsed lifting platforms; - other applications • electric powered boats and ships.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62485-5:2020 applies to the installation of one or more stationary secondary batteries having a maximum aggregate DC voltage of 1 500 V to any DC part of the power network, and describes the principal measures for protections during normal operation or under expected fault conditions against hazards generated from:
– electricity,
– short-circuits,
– electrolyte,
– gas emission,
– fire,
– explosion.
This document provides requirements on safety aspects associated with the installation, use, inspection, and maintenance and disposal of lithium ion batteries used in stationary applications.
- Standard42 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62984-2:2020 specifies safety requirements and test procedures for high-temperature batteries for mobile and/or stationary use and whose rated voltage does not exceed 1 500 V.
This document does not cover aircraft batteries, which are covered by IEC 60952 (all parts), and batteries for the propulsion of electric road vehicles, covered by IEC 61982 (all parts).
- Standard39 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63193:2020 is applicable to lead-acid batteries powering electric two-wheelers (mopeds) and three-wheelers (e-rickshaws and delivery vehicles), and also to golf cars and similar light utility and multi-passenger vehicles.
The document specifies methods of tests tailored to batteries destined for the above‑referenced types of vehicles so as to ensure satisfactory and safe battery performance in the intended application.
This document does not apply for example to lead-acid cells and batteries used for:
vehicle engine starting applications (IEC 60095 series);
traction applications (IEC 60254 series);
stationary applications (IEC 60896 series);
general purpose applications (IEC 61056 series); or to
motorized wheelchairs and similar personal assist vehicles
- Standard59 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62984-1:2020 specifies general aspects, definitions and tests for high-temperature secondary batteries for mobile and/or stationary use and whose nominal voltage does not exceed 1 500 V.
This document does not cover aircraft batteries, which are covered by IEC 60952 (all parts), or batteries for the propulsion of electric road vehicles, covered by IEC 61982 (all parts).
- Standard39 pagesEnglish languagesale 10% offe-Library read for1 day





