29.240.10 - Substations. Surge arresters
ICS 29.240.10 Details
Substations. Surge arresters
Transformatorenstationen. Uberspannungsableiter
Sous-stations. Parafoudres
Transformatorske postaje. Prenapetostni odvodniki
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 29.240.10 - Substations. Surge arresters
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
IEC 61643-11:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to AC power circuits and equipment rated up to 1 000 V RMS, the preferred frequencies taken into account in this document are 50/60 Hz. Other frequencies are not excluded. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to an AC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source or to a different frequency, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
NOTE 2 Other exclusions based on national regulations are possible.
This edition includes the following significant technical changes with respect to the previous edition:
a) Specific requirements for SPDs for AC applications are now contained in this document, whereas the common requirements for all SPDs are now contained in IEC 61643-01;
b) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
c) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE;
d) Additional duty test for T1 and T2 SPDs with follow current to check variation of the follow current value at lower impulse currents;
e) Modified and amended short circuit current test requirements to better cover up to date internal SPD disconnector technologies;
f) Improved dielectric test requirements for the SPD's main circuits and added dielectric test requirements for "electrically separated circuits";
g) Additional clearance requirements for "electrically separated circuits".
The requirements of this document supplement, modify or replace certain of the general requirements contained in IEC 61643-01 and shall be read and applied together with the latest edition of IEC 61643-01, as indicated by the undated normative reference in Clause 2 of this document.
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-11:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are intended to be connected to AC power circuits and equipment rated up to 1 000 V RMS, the preferred frequencies taken into account in this document are 50/60 Hz. Other frequencies are not excluded. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. The test requirements provided by this document are based on the assumption that the SPD is connected to an AC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source or to a different frequency, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses). This document can apply for railway applications, when related product standards do not exist for that area or for certain applications. Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply. NOTE 1 More information on risk assessment is provided in IEC Guide 116. NOTE 2 Other exclusions based on national regulations are possible. This edition includes the following significant technical changes with respect to the previous edition: a) Specific requirements for SPDs for AC applications are now contained in this document, whereas the common requirements for all SPDs are now contained in IEC 61643-01; b) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly"; c) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE; d) Additional duty test for T1 and T2 SPDs with follow current to check variation of the follow current value at lower impulse currents; e) Modified and amended short circuit current test requirements to better cover up to date internal SPD disconnector technologies; f) Improved dielectric test requirements for the SPD's main circuits and added dielectric test requirements for "electrically separated circuits"; g) Additional clearance requirements for "electrically separated circuits". The requirements of this document supplement, modify or replace certain of the general requirements contained in IEC 61643-01 and shall be read and applied together with the latest edition of IEC 61643-01, as indicated by the undated normative reference in Clause 2 of this document.
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-21:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to telecommunications and signalling networks, and equipment rated up to 1 000 V RMS and 1 500 V DC.
These telecommunications and signalling networks can also provide power on the same line, e.g. Power over Ethernet (PoE).
Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one voltage-limiting component (clamping or switching) and are intended to limit surge voltages and divert surge currents.
This second edition cancels and replaces the first edition published in 2000, Amendment1:2008 and Amendment 2:2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) New structure of IEC 61643-21 based on IEC 61643-01:2024;
b) Several safety requirements based on IEC 61643-01:2024 have been added.
This International Standard is to be used in conjunction with IEC 61643-01:2024.
- Standard85 pagesEnglish languagesale 15% off
- Standard92 pagesFrench languagesale 15% off
- Standard177 pagesEnglish and French languagesale 15% off
IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
SPDs for PV applications are not covered by this document.
NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31.
NOTE 3 Other exclusions based on national regulations are possible.
This International Standard is to be used in conjunction with IEC 61643-01.
- Standard33 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses). This document can apply for railway applications, when related product standards do not exist for that area or for certain applications. Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply. NOTE 1 More information on risk assessment is provided in IEC Guide 116. SPDs for PV applications are not covered by this document. NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31. NOTE 3 Other exclusions based on national regulations are possible. This International Standard is to be used in conjunction with IEC 61643-01.
- Standard33 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-11:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to AC power circuits and equipment rated up to 1 000 V RMS, the preferred frequencies taken into account in this document are 50/60 Hz. Other frequencies are not excluded. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to an AC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source or to a different frequency, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
NOTE 2 Other exclusions based on national regulations are possible.
This edition includes the following significant technical changes with respect to the previous edition:
a) Specific requirements for SPDs for AC applications are now contained in this document, whereas the common requirements for all SPDs are now contained in IEC 61643-01;
b) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
c) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE;
d) Additional duty test for T1 and T2 SPDs with follow current to check variation of the follow current value at lower impulse currents;
e) Modified and amended short circuit current test requirements to better cover up to date internal SPD disconnector technologies;
f) Improved dielectric test requirements for the SPD's main circuits and added dielectric test requirements for "electrically separated circuits";
g) Additional clearance requirements for "electrically separated circuits".
The requirements of this document supplement, modify or replace certain of the general requirements contained in IEC 61643-01 and shall be read and applied together with the latest edition of IEC 61643-01, as indicated by the undated normative reference in Clause 2 of this document.
- Standard84 pagesEnglish and French languagesale 15% off
IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages.
These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents.
The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses).
This document can apply for railway applications, when related product standards do not exist for that area or for certain applications.
Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply.
NOTE 1 More information on risk assessment is provided in IEC Guide 116.
SPDs for PV applications are not covered by this document.
NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31.
NOTE 3 Other exclusions based on national regulations are possible.
This International Standard is to be used in conjunction with IEC 61643-01.
- Standard63 pagesEnglish and French languagesale 15% off
IEC 61643-01: 2024 contains the common requirements for all SPDs. This document is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages, hereafter referred to as Surge Protective Devices (SPDs). SPDs are intended to be connected to circuits or equipment rated up to 1 000 V AC (RMS) or 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. SPDs contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. This document, together with IEC 61643-11:— (second edition), cancels and replaces the first edition of IEC 61643-11 published in 2011. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the first edition of IEC 61643-11:
a) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
b) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE (see new Annex F);
c) Additional duty test for T1 SPD and T2 SPD with follow current to check for increased follow current at lower impulse current amplitude (see 9.3.5.5);
d) Modified and amended short circuit current test requirements to better cover up-to-date internal SPD disconnector technologies (see 9.3.6.3);
e) Improved dielectric test requirements for the SPD’s main circuits and added dielectric test requirements for "electrically separated circuits" (see 9.3.7 and 9.3.8);
f) Additional clearance requirements for "electrically separated circuits" (see 9.4.4);
g) Additional information and details for SPDs for DC installations.
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-01: 2024 contains the common requirements for all SPDs. This document is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages, hereafter referred to as Surge Protective Devices (SPDs). SPDs are intended to be connected to circuits or equipment rated up to 1 000 V AC (RMS) or 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. SPDs contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. This document, together with IEC 61643-11:— (second edition), cancels and replaces the first edition of IEC 61643-11 published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the first edition of IEC 61643-11: a) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly"; b) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE (see new Annex F); c) Additional duty test for T1 SPD and T2 SPD with follow current to check for increased follow current at lower impulse current amplitude (see 9.3.5.5); d) Modified and amended short circuit current test requirements to better cover up-to-date internal SPD disconnector technologies (see 9.3.6.3); e) Improved dielectric test requirements for the SPD’s main circuits and added dielectric test requirements for "electrically separated circuits" (see 9.3.7 and 9.3.8); f) Additional clearance requirements for "electrically separated circuits" (see 9.4.4); g) Additional information and details for SPDs for DC installations.
- Standard119 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-01: 2024 contains the common requirements for all SPDs. This document is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages, hereafter referred to as Surge Protective Devices (SPDs). SPDs are intended to be connected to circuits or equipment rated up to 1 000 V AC (RMS) or 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. SPDs contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. This document, together with IEC 61643-11:— (second edition), cancels and replaces the first edition of IEC 61643-11 published in 2011. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the first edition of IEC 61643-11:
a) Clarification on test application either to a complete SPD, to a "mode of protection", or to a complete "SPD assembly";
b) Additional measurement of voltage protection level on "combined modes of protection" between live conductors and PE (see new Annex F);
c) Additional duty test for T1 SPD and T2 SPD with follow current to check for increased follow current at lower impulse current amplitude (see 9.3.5.5);
d) Modified and amended short circuit current test requirements to better cover up-to-date internal SPD disconnector technologies (see 9.3.6.3);
e) Improved dielectric test requirements for the SPD’s main circuits and added dielectric test requirements for "electrically separated circuits" (see 9.3.7 and 9.3.8);
f) Additional clearance requirements for "electrically separated circuits" (see 9.4.4);
g) Additional information and details for SPDs for DC installations.
- Standard238 pagesEnglish and French languagesale 15% off
IEC TR 61643-03:2024 applies to SPD testing in accordance with the IEC 61643-x1 series and for SPD coordination and system level immunity purposes.
It aims to provide guidance and helpful information for correct test execution and accurate interpretation of measurement results. It is also intended to further enhance repeatability and comparability throughout different test laboratories and to establish an acceptable accuracy level for the test results obtained.
The main subjects are: Test application, Test arrangement/setup, Probe application, SPD coordination testing, and System level immunity testing
- Technical report56 pagesEnglish languagesale 15% off
IEC TR 60099-10:2024 is applicable to all tests and arrester types included in IEC 60099-4:2014 and explains the rationale behind each test specified in that document.
This document does not contain requirements and is not intended to replace any clauses of IEC 60099-4:2014.
- Technical report61 pagesEnglish languagesale 15% off
- Technical report5 pagesEnglish languagesale 15% off
IEC TR 63127:2019(E) focuses on the system design of converter stations. It is applicable to point-to-point and back-to-back HVDC systems based on line-commutated converter (LCC) technology. This document provides guidance and supporting information on the procedure for system design and the technical issues involved in the system design of HVDC transmission projects for both purchaser and potential suppliers. It can be used as the basis for drafting a procurement specification and as a guide during project implementation.
- Technical report64 pagesEnglish languagesale 15% off
- Technical report128 pagesEnglish languagesale 15% off
IEC TR 63463:2024 provides guidelines for the general procedure for performing life assessment for an HVDC converter station. Following this, a more detailed description of performance issues of the thyristor based HVDC systems is given and the life assessment measures of equipment and guidelines for accessing the techno-economic life of equipment are given. This document also deals with information for specification of refurbishing HVDC system and the testing of the refurbished and replaced equipment. Lastly, this document outlines environmental issues and regulatory issues involved in the life assessment and concludes with a financial analysis of the refurbishment options.
- Technical report100 pagesEnglish languagesale 15% off
IEC 61643-12:2020 describes the principles for the selection, operation, location and coordination of SPDs to be connected to 50/60 Hz AC power circuits, and equipment rated up to 1 000 V RMS. These devices contain at least one non-linear component and are intended to limit surge voltages and divert surge currents.
NOTE 1 Additional requirements for special applications are also applicable, If required.
NOTE 2 IEC 60364 and IEC 62305-4 are also applicable.
NOTE 3 This standard deal only with SPDs and not with surge protection components (SPC) integrated inside equipment.
This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
NOTE The following differing practice of a less permanent nature exists in the USA: In the USA, SPDs tested to Class I tests are not required. This exception applies to the entire document. This edition includes the following significant technical changes with respect to the previous edition:
a) Scope: Deleted reference to 1 500 V dc
b) Added or revised some definitions
c) Added new clause 4 on Need for protection
d) Added new information on disconnecting devices
e) Revised Characteristics of SPD
f) Revised List of parameters for SPD selection
g) Added new information on Measured Limiting Voltage
e) Added or revised some Annexes
- Standard207 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard433 pagesEnglish and French languagesale 15% off
IEC Guide 111-1:2023 is a horizontal publication which gives guidance for the harmonization of product and system standards for HV substations (higher than 1 kV). It addresses AC equipment which is found in high-voltage (HV) substations in most cases.
This document contains recommendations for common specifications for all HV substation product and system standards, each of which is augmented by the technical background specific to each technical committee, which naturally retains freedom in its technical choices.
This document is applicable when developing product and systems standards for HV power electronic equipment for the AC part of the substation.
This first edition of IEC Guide 111-1, together with IEC Guide 111-2, cancels and replaces the second edition of IEC Guide 111 published in 2004.
The main changes with respect to the previous edition are as follows:
IEC Guide 111 is revised into two parts – Part 1 for AC and Part 2 for DC (Part 2 to be prepared);
the scope of the document has been expanded to cover electric equipment in AC high-voltage substations;
new definitions have been included;
normal conditions have been revised;
a general revision of other clauses.
- Guide75 pagesEnglish and French languagesale 15% off
IEC Corrected version
- Corrigendum4 pagesEnglish and French languagesale 10% offe-Library read for1 day
IEC Corrected version
- Corrigendum4 pagesEnglish and French languagesale 10% offe-Library read for1 day
- Standard2 pagesEnglish and French languagesale 15% off
IEC 61643-31:2018 is applicable to Surge Protective Devices (SPDs), intended for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are designed to be connected to the DC side of photovoltaic installations rated up to 1 500 V DC. These devices contain at least one non-linear component and are intended to limit surge voltages and divert surge currents. Performance characteristics, safety requirements, standard methods for testing and ratings are established. SPDs complying with this standard are exclusively dedicated to be installed on the DC side of photovoltaic generators and the DC side of inverters. SPDs for PV systems with energy storage (e.g. batteries, capacitor banks) are not covered. SPDs with separate input and output terminals that contain specific series impedance between these terminal(s) (so called two-port SPDs according to IEC 61643-11:2011) are not covered. SPDs compliant with this standard are designed to be permanently connected where connection and disconnection of fixed SPDs can only be done using a tool. This standard does not apply to portable SPDs Keywords: photovoltaic installations, lightning or other transient overvoltages
- Standard64 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TS 63042-302:2021(E) applies to the commissioning of UHV AC transmission systems.
It mainly specifies the test purposes, test items, test preconditions, test methods and test acceptance criteria during pre-commissioning and system commissioning. Also, the measurement requirements for system commissioning are specified.
- Technical specification56 pagesEnglish languagesale 15% off
IEC TS 63042-102:2021(E) specifies the procedure to plan and design UHV transmission projects and the items to be considered.
The objective of UHV AC power system planning and design is to achieve both economic efficiency and high reliability, considering its impact on EHV systems.
- Technical specification67 pagesEnglish languagesale 15% off
NEW!IEC 60099-5:2018 is available as IEC 60099-5:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60099-5:2018 provides information, guidance, and recommendations for the selection and application of surge arresters to be used in three-phase systems with nominal voltages above 1 kV. It applies to gapless metal-oxide surge arresters as defined in IEC 60099-4, to surge arresters containing both series and parallel gapped structure – rated 52 kV and less as defined in IEC 60099-6 and metal-oxide surge arresters with external series gap for overhead transmission and distribution lines (EGLA) as defined in IEC 60099-8. In Annex J, some aspects regarding the old type of SiC gapped arresters are discussed. Surge arrester residual voltage is a major parameter to which most users have paid a lot of attention to when selecting the type and rating. Typical maximum residual voltages are given in Annex F. It is likely, however, that for some systems, or in some countries, the requirements on system reliability and design are sufficiently uniform, so that the recommendations of the present standard may lead to the definition of narrow ranges of arresters. The user of surge arresters will, in that case, not be required to apply the whole process introduced here to any new installation and the selection of characteristics resulting from prior practice may be continued. Annexes H and I present comparisons and calculations between old line discharge classification and new charge classification. This third edition cancels and replaces the second edition published in 2013. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition regarding the new surge arrester classification introduced in IEC 60099-4:2014: a) Expanded discussion of comparison between the old and new classification and how to calculate or estimate the corresponding charge for different stresses. b) New annexes dealing with: - Comparison between line discharge classes and charge classification - Estimation of arrester cumulative charges and energies during line switching Keywords: selection and application of surge arrestors, nominal voltages above 1 kV
- Standard193 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 60099-8:2017 is available as IEC 60099-8:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60099-8:2017 covers metal-oxide surge arresters with external series gap (externally gapped line arresters (EGLA)) that are applied on overhead transmission and distribution lines, only to protect insulator assemblies from lightning-caused flashovers. This document defines surge arresters to protect the insulator assembly from lightning-caused over-voltages only. Therefore, and since metal-oxide resistors are not permanently connected to the line, the following items are not considered for this document: - switching impulse spark-over voltage; - residual voltage at steep current and switching current impulse; - thermal stability; - long-duration current impulse withstand duty; - power-frequency voltage versus time characteristics of an arrester; - disconnector test; - aging duties by power-frequency voltage. Considering the particular design concept and the special application on overhead transmission and distribution lines, some unique requirements and tests are introduced, such as the verification test for coordination between insulator withstand and EGLA protective level, the follow current interrupting test, mechanical load tests, etc. Designs with the EGLA's external series gap installed in parallel to an insulator are not covered by this document. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: The Lightning discharge capability test has been completely re-written and re-named to Test to verify the repetitive charge transfer rating, Qrs with lightning discharges to reflect changes introduced in IEC 60099-4 Ed.3 (2014) regarding new methods for rating the energy and charge handling capability of metal-oxide arresters. In addition to testing to evaluate the performance of the MO resistors, procedures for evaluating the performance of the EGLA series gaps have been introduced. - Omissions from Ed. 1 of this standard have been included, notably an RIV test and a means for determining the thermal time constant of the SUV portion of the EGLA. - Definitions for new terms have been added - A number of NOTES in Ed. 1 have been converted to normative requirements Keywords: externally gapped line arresters (EGLA), lightning-caused over-voltages
- Standard70 pagesEnglish languagesale 10% offe-Library read for1 day
ISO/IEC 30144:2020 (E) specifies intelligent wireless sensor network (iWSN) from the perspectives of iWSN's system infrastructure and communications internal and external to the infrastructure, and technical requirements for iWSN to realize smart electrical power substations.
- Standard36 pagesEnglish languagesale 15% off
IEC 61643-12:2020 describes the principles for the selection, operation, location and coordination of SPDs to be connected to 50/60 Hz AC power circuits, and equipment rated up to 1 000 V RMS. These devices contain at least one non-linear component and are intended to limit surge voltages and divert surge currents.
NOTE 1 Additional requirements for special applications are also applicable, If required.
NOTE 2 IEC 60364 and IEC 62305-4 are also applicable.
NOTE 3 This standard deal only with SPDs and not with surge protection components (SPC) integrated inside equipment.
This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
NOTE The following differing practice of a less permanent nature exists in the USA: In the USA, SPDs tested to Class I tests are not required. This exception applies to the entire document. This edition includes the following significant technical changes with respect to the previous edition:
a) Scope: Deleted reference to 1 500 V dc
b) Added or revised some definitions
c) Added new clause 4 on Need for protection
d) Added new information on disconnecting devices
e) Revised Characteristics of SPD
f) Revised List of parameters for SPD selection
g) Added new information on Measured Limiting Voltage
e) Added or revised some Annexes
- Standard207 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard433 pagesEnglish and French languagesale 15% off
IEC 60099-6: 2019 applies to non-linear metal-oxide resistor type surge arresters with spark gaps designed to limit voltage surges on AC power circuits with system voltages Us above 1 kV up to and including 52 kV. This document basically applies to all metal-oxide distribution class surge arresters with internal series and/or parallel gaps and housed in either porcelain or polymeric housings. This second edition cancels and replaces the first edition published in 2002. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) A new concept of arrester classification and energy withstand testing was introduced: the line discharge classification was replaced by a classification based on repetitive charge transfer rating (Qrs) and thermal charge transfer rating (Qth). The new concept clearly differentiates between impulse and thermal energy handling capability, which is reflected in the requirements as well as in the related test procedures.
b) Power-frequency voltage versus time tests – with and without prior duty – were introduced as type tests.
c) Requirements and tests on disconnectors were added.
d) Definitions for new terms have been added.
e) Clause 10 contains particular requirements for polymer-housed surge arresters. These are indicated in the form of replacements, additions or amendments to the original clauses or subclauses concerned.
Keywords: testing of metal-oxide surge arresters
- Standard165 pagesEnglish and French languagesale 15% off
IEC/TS 61973:2012(E) applies to the specification and evaluation of outdoor audible noise from high voltage direct current (HVDC) substations. It is intended to be primarily for the use of the utilities and consultants who are responsible for issuing technical specifications for new HVDC projects with and evaluating designs proposed by prospective contractors. It is primarily intended for HVDC projects with line-commutated converters. Part of this technical specification can also be used for the same purpose for HVDC projects using voltage sourced converters, and for flexible a.c. transmission systems (FACTS) devices such as static Var compensators (SVCs) and static synchronous compensators (STATCOMs).
- Technical specification82 pagesEnglish languagesale 15% off
- Technical specification170 pagesEnglish languagesale 15% off
- Technical specification5 pagesEnglish languagesale 15% off
IEC TS 63042-201:2018(E), which is a Technical Specification, provides common rules for the design of substations with the highest voltages of AC transmission systems exceeding 800 kV, so as to provide safety and proper functioning for the intended use.
- Technical specification60 pagesEnglish languagesale 15% off
IEC 61643-352:2018 covers the application of surge isolation transformers (SITs) that are used in telecommunication transformer applications with signal levels up to 400 V peak to peak. These transformers have a high rated impulse voltage with or without screen between the input and output windings. SITs are components for surge protection and are used to mitigate the onward propagation of common-mode voltage surges. This document describes SITs' selection, application principles and related information. This document does not cover power line communication transformers.
Keywords: surge isolation transformers (SITs), telecommunication transformer applications
- Standard23 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 60099-5:2018 is available as IEC 60099-5:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60099-5:2018 provides information, guidance, and recommendations for the selection and application of surge arresters to be used in three-phase systems with nominal voltages above 1 kV. It applies to gapless metal-oxide surge arresters as defined in IEC 60099-4, to surge arresters containing both series and parallel gapped structure – rated 52 kV and less as defined in IEC 60099-6 and metal-oxide surge arresters with external series gap for overhead transmission and distribution lines (EGLA) as defined in IEC 60099-8. In Annex J, some aspects regarding the old type of SiC gapped arresters are discussed. Surge arrester residual voltage is a major parameter to which most users have paid a lot of attention to when selecting the type and rating. Typical maximum residual voltages are given in Annex F. It is likely, however, that for some systems, or in some countries, the requirements on system reliability and design are sufficiently uniform, so that the recommendations of the present standard may lead to the definition of narrow ranges of arresters. The user of surge arresters will, in that case, not be required to apply the whole process introduced here to any new installation and the selection of characteristics resulting from prior practice may be continued. Annexes H and I present comparisons and calculations between old line discharge classification and new charge classification. This third edition cancels and replaces the second edition published in 2013. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition regarding the new surge arrester classification introduced in IEC 60099-4:2014:
a) Expanded discussion of comparison between the old and new classification and how to calculate or estimate the corresponding charge for different stresses.
b) New annexes dealing with:
- Comparison between line discharge classes and charge classification
- Estimation of arrester cumulative charges and energies during line switching
Keywords: selection and application of surge arrestors, nominal voltages above 1 kV
- Standard193 pagesEnglish languagesale 10% offe-Library read for1 day
NEW!IEC 60099-8:2017 is available as IEC 60099-8:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 60099-8:2017 covers metal-oxide surge arresters with external series gap (externally gapped line arresters (EGLA)) that are applied on overhead transmission and distribution lines, only to protect insulator assemblies from lightning-caused flashovers. This document defines surge arresters to protect the insulator assembly from lightning-caused over-voltages only. Therefore, and since metal-oxide resistors are not permanently connected to the line, the following items are not considered for this document:
- switching impulse spark-over voltage;
- residual voltage at steep current and switching current impulse;
- thermal stability;
- long-duration current impulse withstand duty;
- power-frequency voltage versus time characteristics of an arrester;
- disconnector test;
- aging duties by power-frequency voltage.
Considering the particular design concept and the special application on overhead transmission and distribution lines, some unique requirements and tests are introduced, such as the verification test for coordination between insulator withstand and EGLA protective level, the follow current interrupting test, mechanical load tests, etc. Designs with the EGLA's external series gap installed in parallel to an insulator are not covered by this document. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
The Lightning discharge capability test has been completely re-written and re-named to Test to verify the repetitive charge transfer rating, Qrs with lightning discharges to reflect changes introduced in IEC 60099-4 Ed.3 (2014) regarding new methods for rating the energy and charge handling capability of metal-oxide arresters. In addition to testing to evaluate the performance of the MO resistors, procedures for evaluating the performance of the EGLA series gaps have been introduced.
- Omissions from Ed. 1 of this standard have been included, notably an RIV test and a means for determining the thermal time constant of the SUV portion of the EGLA.
- Definitions for new terms have been added
- A number of NOTES in Ed. 1 have been converted to normative requirements
Keywords: externally gapped line arresters (EGLA), lightning-caused over-voltages
- Standard70 pagesEnglish languagesale 10% offe-Library read for1 day
To add an annex for portable SPDs for household and similar use.
This annex will contain the following specific requirements to ensure the requested level of intrinsic safety for such products, i.e. product tests and safety cannot rely on any external means:
- The position of the disconnector(s) : internal, i.e. all tests shall be made and passed without the help of any external means,
- Additional specifications for tests taking into account that line and neutral terminals can be reversed,
- Specific requirements and tests for surge protective components used with such SPDs
- Addendum – translation7 pagesSlovenian languagesale 10% offe-Library read for1 day
- Amendment6 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60099-5:2018 provides information, guidance, and recommendations for the selection and application of surge arresters to be used in three-phase systems with nominal voltages above 1 kV. It applies to gapless metal-oxide surge arresters as defined in IEC 60099-4, to surge arresters containing both series and parallel gapped structure – rated 52 kV and less as defined in IEC 60099-6 and metal-oxide surge arresters with external series gap for overhead transmission and distribution lines (EGLA) as defined in IEC 60099-8. In Annex J, some aspects regarding the old type of SiC gapped arresters are discussed. Surge arrester residual voltage is a major parameter to which most users have paid a lot of attention to when selecting the type and rating. Typical maximum residual voltages are given in Annex F. It is likely, however, that for some systems, or in some countries, the requirements on system reliability and design are sufficiently uniform, so that the recommendations of the present standard may lead to the definition of narrow ranges of arresters. The user of surge arresters will, in that case, not be required to apply the whole process introduced here to any new installation and the selection of characteristics resulting from prior practice may be continued. Annexes H and I present comparisons and calculations between old line discharge classification and new charge classification. This third edition cancels and replaces the second edition published in 2013. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition regarding the new surge arrester classification introduced in IEC 60099-4:2014:
a) Expanded discussion of comparison between the old and new classification and how to calculate or estimate the corresponding charge for different stresses.
b) New annexes dealing with:
- Comparison between line discharge classes and charge classification
- Estimation of arrester cumulative charges and energies during line switching
Keywords: selection and application of surge arrestors, nominal voltages above 1 kV
- Standard190 pagesEnglish languagesale 15% off
- Standard396 pagesEnglish languagesale 15% off
- Standard417 pagesEnglish and French languagesale 15% off
IEC 61643-31:2018 is applicable to Surge Protective Devices (SPDs), intended for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are designed to be connected to the DC side of photovoltaic installations rated up to 1 500 V DC. These devices contain at least one non-linear component and are intended to limit surge voltages and divert surge currents. Performance characteristics, safety requirements, standard methods for testing and ratings are established. SPDs complying with this standard are exclusively dedicated to be installed on the DC side of photovoltaic generators and the DC side of inverters. SPDs for PV systems with energy storage (e.g. batteries, capacitor banks) are not covered. SPDs with separate input and output terminals that contain specific series impedance between these terminal(s) (so called two-port SPDs according to IEC 61643-11:2011) are not covered. SPDs compliant with this standard are designed to be permanently connected where connection and disconnection of fixed SPDs can only be done using a tool. This standard does not apply to portable SPDs.
The contents of the corrigendum of June 2022 have been included in this copy.
- Standard107 pagesEnglish and French languagesale 15% off
IEC 60099-8:2017 covers metal-oxide surge arresters with external series gap (externally gapped line arresters (EGLA)) that are applied on overhead transmission and distribution lines, only to protect insulator assemblies from lightning-caused flashovers. This document defines surge arresters to protect the insulator assembly from lightning-caused over-voltages only. Therefore, and since metal-oxide resistors are not permanently connected to the line, the following items are not considered for this document:
- switching impulse spark-over voltage;
- residual voltage at steep current and switching current impulse;
- thermal stability;
- long-duration current impulse withstand duty;
- power-frequency voltage versus time characteristics of an arrester;
- disconnector test;
- aging duties by power-frequency voltage.
Considering the particular design concept and the special application on overhead transmission and distribution lines, some unique requirements and tests are introduced, such as the verification test for coordination between insulator withstand and EGLA protective level, the follow current interrupting test, mechanical load tests, etc. Designs with the EGLA's external series gap installed in parallel to an insulator are not covered by this document. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
The Lightning discharge capability test has been completely re-written and re-named to Test to verify the repetitive charge transfer rating, Qrs with lightning discharges to reflect changes introduced in IEC 60099-4 Ed.3 (2014) regarding new methods for rating the energy and charge handling capability of metal-oxide arresters. In addition to testing to evaluate the performance of the MO resistors, procedures for evaluating the performance of the EGLA series gaps have been introduced.
- Omissions from Ed. 1 of this standard have been included, notably an RIV test and a means for determining the thermal time constant of the SUV portion of the EGLA.
- Definitions for new terms have been added
- A number of NOTES in Ed. 1 have been converted to normative requirements
Keywords: externally gapped line arresters (EGLA), lightning-caused over-voltages
- Standard67 pagesEnglish languagesale 15% off
- Standard137 pagesEnglish languagesale 15% off
- Standard138 pagesEnglish and French languagesale 15% off
IEC 61643-32:2017 describes the principles for selection, installation and coordination of SPDs intended for use in Photovoltaic (PV) systems up to 1 500 V DC and for the AC side of the PV system rated up to 1 000 V rms 50/60 Hz. The photovoltaic installation extends from a PV array or a set of interconnected PV-modules to include the associated cabling and protective devices and the inverter up to the connection point in the distribution board or the utility supply point. This part of IEC 61643 considers SPDs used in different locations and in different kinds of PV systems:PV systems located on the top of a building. PV systems located on the ground like free field power plants characterized by multiple earthing and a meshed earthing system. The term PV installation is used to refer to both kinds of PV systems. The term PV power plant is only used for extended free-field multi-earthed power systems located on the ground. For PV installations including batteries additional requirements may be necessary.
The contents of the corrigendum of June 2019 have been included in this copy.
- Standard90 pagesEnglish and French languagesale 15% off
IEC 60099-4:2014 applies to non-linear metal-oxide resistor type surge arresters without spark gaps designed to limit voltage surges on a.c. power circuits with Us above 1 kV. This third edition cancels and replaces the second edition published in 2009. This edition constitutes a technical revision. The numerous changes between the second and third editions are listed in the Foreward of the document. Keywords: testing of gapless metal-oxide surge arresters for a.c.power systems
- Standard172 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard – translation174 pagesSlovenian languagesale 10% offe-Library read for1 day
IEC 60099-9:2014 applies to non-linear metal-oxide resistor type surge arresters without spark gaps designed to limit overvoltages in HVDC converter stations of two terminal, multiterminal and back-to-back type up to and including an operating voltage of 1 100 kV. The standard applies in general to porcelain-housed and polymer-housed type arresters but also to gas-insulated metal enclosed arresters (GIS-arresters) solely used as d.c. bus and d.c. line/cable arresters. Arresters for voltage source converters are not covered. Arresters applied on the a.c. systems at the converter station and subjected to power-frequency voltage of 50 or 60 Hz principally without harmonics are tested as per IEC 60099-4. The arresters on a.c.-filters are tested according to this standard. Keywords: testing of gapless metal-oxide surge arrestors for HVDC converter stations
- Standard92 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-351:2016 defines test circuits and test methods for determining and verifying the SIT surge parameters. Preferred performance values for key parameters are given. Surge isolation transformers (SITs) are used for signal transformer applications with signal levels up to 400 V peak to peak. SITs are transformers, with or without an internal-winding screen, with a rated impulse withstand voltage greater than the peak voltage of the expected common-mode surge environment. SITs are applicable to components for surge protection against indirect and direct effects of lightning or other transient overvoltage. SITs are used to mitigate the onward propagation of common-mode voltage surges. This part of IEC 61643 does not cover SIT operation under differential-mode lightning surge conditions.
Keywords: Surge isolation transformers (SITs)
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61643-22:2015 describes the principles for the selection, operation, location and coordination of SPDs connected to telecommunication and signalling networks with nominal system voltages up to 1 000 V r.m.s. a.c. and 1 500 V d.c. This standard also addresses SPDs that incorporate protection for signalling lines and power lines in the same enclosure (so called multiservice SPDs). This second edition cancels and replaces the first edition published in 2004. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
- Update the use of multiservice SPDs (Article 8);
- Comparison between SPD classification of IEC 61643-11 and IEC 61643-21 (7.3.3);
- Consideration of new transmission systems as PoE (Annex F);
- EMC requirements of SPDs (Annex G);
- Maintenance cycles of SPDs (Annex I).
Keywords: SPD, surge protective devices
- Technical specification68 pagesEnglish languagesale 10% offe-Library read for1 day





