This document specifies methods for testing the immunity of passenger cars and commercial vehicles to electromagnetic disturbances from on-board transmitters connected to an external antenna and portable transmitters with integral antennas, regardless of the vehicle propulsion system (e.g. spark ignition engine, diesel engine, electric motor).

  • Standard
    51 pages
    English language
    sale 15% off

This document specifies transverse electromagnetic (TEM) cell tests for determining the immunity of electronic components of passenger cars and commercial vehicles to electrical disturbances from narrowband radiated electromagnetic energy, regardless of the vehicle propulsion system (e.g. spark-ignition engine, diesel engine, electric motor). The electromagnetic disturbances considered are limited to continuous narrowband electromagnetic fields.

  • Standard
    21 pages
    English language
    sale 15% off

IEC TS 60601-4-6:2024 provides practical methods to help achieve basic safety and essential performance with regard to the possible effects of em disturbances throughout the expected service life of me equipment or an me system.
These practical methods attempt to address all of the different types of errors, malfunctions or failures that can be caused by em disturbances in me equipment or me systems.
The purpose of this document is to provide recommendations for the techniques and measures used in the design, verification, and validation of systems, hardware, software, and firmware used in me equipment or me systems to help achieve basic safety and essential performance with regard to the em disturbances that could occur throughout the expected service life.

  • Technical specification
    126 pages
    English language
    sale 15% off

IEC TS 60601-4-2:2024 applies to the performance of MEDICAL ELECTRICAL EQUIPMENT or a MEDICAL ELECTRICAL SYSTEM in the presence of EM DISTURBANCES. Hereafter, MEDICAL ELECTRICAL EQUIPMENT or a MEDICAL ELECTRICAL SYSTEM are referred to as ME EQUIPMENT or an ME SYSTEM, respectively.
The object of this document is to provide guidance on the assessment of the performance of ME EQUIPMENT or an ME SYSTEM in the presence of EM DISTURBANCES.
IEC TS 60601-4-2:2024 cancels and replaces the first edition of IEC TR 60601-4-2 published in 2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to IEC TR 60601-4-2:2016:
a) aligned with IEC 60601-1-2:2014 and IEC 60601-1-2:2014/AMD1:2020,
b) updated references,
c) changed conducted disturbance cable length exclusion (Table 6) from 3 m to 1 m and added a citation of IEC 61000-4-6:2013, Annex B.

  • Technical specification
    58 pages
    English language
    sale 15% off

This part of IEC 61000 relates to the conducted immunity requirements of electrical and electronic equipment to electromagnetic disturbances coming from intended radio-frequency (RF) transmitters in the frequency range 150 kHz up to 80 MHz.
NOTE 1 Product committees might decide to use the methods described in this document also for frequencies up to 230 MHz (see Annex B) although the methods and test instrumentation is intended to be used in the frequency range up to 80 MHz.
Equipment not having at least one conducting wire and/or cable (such as mains supply, signal line or earth connection) which can couple the equipment to the disturbing RF fields is excluded from the scope of this publication.
NOTE 2 Test methods are specified in this part of IEC 61000 to assess the effect that conducted disturbing signals, induced by electromagnetic radiation, have on the equipment concerned. The simulation and measurement of these conducted disturbances are not adequately exact for the quantitative determination of effects. The test methods specified are structured for the primary objective of establishing adequate repeatability of results at various facilities for quantitative analysis of effects.
The object of this standard is to establish a common reference for evaluating the functional immunity of electrical and electronic equipment when subjected to conducted disturbances induced by RF fields. The test method documented in this part of IEC 61000 describes a consistent method to assess the immunity of an equipment or system against a specified phenomenon.
NOTE 3 As described in IEC Guide 107, this standard is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria.

  • Standard
    86 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61000 relates to the conducted immunity requirements of electrical and electronic equipment to electromagnetic disturbances coming from intended radio-frequency (RF) transmitters in the frequency range 150 kHz up to 80 MHz. NOTE 1 Product committees might decide to use the methods described in this document also for frequencies up to 230 MHz (see Annex B) although the methods and test instrumentation is intended to be used in the frequency range up to 80 MHz. Equipment not having at least one conducting wire and/or cable (such as mains supply, signal line or earth connection) which can couple the equipment to the disturbing RF fields is excluded from the scope of this publication. NOTE 2 Test methods are specified in this part of IEC 61000 to assess the effect that conducted disturbing signals, induced by electromagnetic radiation, have on the equipment concerned. The simulation and measurement of these conducted disturbances are not adequately exact for the quantitative determination of effects. The test methods specified are structured for the primary objective of establishing adequate repeatability of results at various facilities for quantitative analysis of effects. The object of this standard is to establish a common reference for evaluating the functional immunity of electrical and electronic equipment when subjected to conducted disturbances induced by RF fields. The test method documented in this part of IEC 61000 describes a consistent method to assess the immunity of an equipment or system against a specified phenomenon. NOTE 3 As described in IEC Guide 107, this standard is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria.

  • Standard
    86 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61000-4-6:2023 is available as IEC 61000-4-6:2023 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61000-4-6: 2023 relates to the conducted immunity requirements of electrical and electronic equipment to electromagnetic disturbances coming from intended radio-frequency (RF) transmitters in the frequency range 150 kHz up to 80 MHz.
NOTE 1 Product committees might decide to use the methods described in this document also for frequencies up to 230 MHz (see Annex B) although the methods and test instrumentation are intended to be used in the frequency range up to 80 MHz.
Equipment not having at least one conducting wire or cable (such as mains supply, signal line or earth connection) which can couple the equipment to the disturbing RF fields is excluded from the scope of this document.
NOTE 2 Test methods are specified in this part of IEC 61000 to assess the effect that conducted disturbing signals, induced by electromagnetic radiation, have on the equipment concerned. The simulation and measurement of these conducted disturbances are not adequately exact for the quantitative determination of effects. The test methods specified are structured for the primary objective of establishing adequate repeatability of results at various facilities for quantitative analysis of effects.
The object of this document is to establish a common reference for evaluating the functional immunity of electrical and electronic equipment when subjected to conducted disturbances induced by RF fields. The test method in this document describes a consistent method to assess the immunity of an equipment or system against a specified phenomenon.
NOTE 3 As described in IEC Guide 107, this document is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria.
This fifth edition cancels and replaces the fourth edition published in 2013. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) selection of injection devices revised;
b) need of AE impedance check for clamp injection removed and Annex H deleted;
c) saturation check revised;
d) new Annex H on testing with multiple signals;
e) level-setting only with feedback loop.

  • Standard
    83 pages
    English language
    sale 15% off
  • Standard
    189 pages
    English language
    sale 15% off
  • Standard
    184 pages
    English and French language
    sale 15% off

This document specifies methods for testing the immunity of passenger cars and commercial vehicles to electromagnetic disturbances, regardless of the vehicle propulsion system (e.g. spark ignition engine, diesel engine, electric motor) using a reverberation chamber. The electromagnetic disturbances considered are limited to narrowband electromagnetic fields. While this document refers specifically to passenger cars and commercial vehicles, generalized as “vehicle(s)”, it can readily be applied to other types of vehicles. ISO 11451-1 specifies general test conditions, definitions, practical use, and basic principles of the test procedure. Function performance status classification guidelines for immunity to electromagnetic radiation from an off-vehicle radiation source are given in Annex A.

  • Standard
    87 pages
    English language
    sale 15% off

CISPR 36:2020 defines limits for 3 m measurement distance and methods of measurement that are designed to provide protection for off-board receivers (at 10 m distance) in the frequency range of 150 kHz to 30 MHz when used in the residential environment.
NOTE Protection of receivers used on board the same vehicle as the disturbance source(s) is covered by CISPR 25.
This document applies to the emission of electromagnetic energy which might cause interference to radio reception and which is emitted from electric and hybrid electric vehicles propelled by an internal traction battery (see 3.2 and 3.3) when operated on the road. This document applies to vehicles that have a traction battery voltage between 100 V and 1 000 V.
Electric vehicles to which CISPR 14-1 applies are not in the scope of this document. This document applies only to road vehicles where an electric propulsion is used for sustained speed of more than 6 km/h. Vehicles where the electric motor is only used to start up the internal combustion engine (e.g. "micro hybrid") and vehicles where the electric motor is used for additional propulsion only during acceleration (e.g. "48 V mild hybrid vehicles") are not in the scope of this document. The radiated emission requirements in this document are not applicable to the intentional transmissions from a radio transmitter as defined by the ITU including their spurious emissions. Annex C lists work being considered for future revisions.

  • Standard
    48 pages
    English and French language
    sale 15% off
  • Standard
    104 pages
    English and French language
    sale 15% off

This part of IEC 61547 which deals with electromagnetic immunity requirements, applies to
lighting equipment which is within the scope of IEC technical committee 34, including
apparatus such as lamps, luminaires, and modules.
Excluded from the scope of this document are:
– components or modules intended to be built into lighting equipment and which are not
end-user replaceable;
– equipment for which the electromagnetic compatibility requirements in the radio-frequency
range are explicitly formulated in other product immunity standards, even if they
incorporate a built-in lighting function.
NOTE Examples of exclusions are:
– equipment with built-in lighting devices for display back lighting, scale illumination and signaling;
– SSL-displays;
– range hoods, refrigerators, freezers;
– photocopiers, projectors;
– electronic switches for fixed installations;
– lighting equipment for road vehicles (within the scope of CISPR 12);
– lighting equipment for aircraft and airfield facilities.
However, in multi-function equipment where the lighting function operates independently from
other functions, the electromagnetic immunity requirements of this document apply to the
lighting function only.
Lighting equipment with a wireless control function are also within the scope of this document.
However, the test is limited to the control of the lighting function only. Radio properties like
frequency stability or spurious emissions are not assessed.
EXAMPLE Colour/light level control via a wireless interface are meant to stay intact after an immunity test.
Also included in the scope of this document is lighting equipment that interfaces with systems
or installations other than common power supply networks.
The requirements of this document are based on the requirements for domestic, commercial
and light-industrial environments as given in IEC 61000-6-1:2016, but modified to lighting
engineering practice.
It can be expected that lighting equipment complying with the requirements of this document
will operate satisfactorily in other environments. In some special cases, measures can be
taken to provide higher immunity. In this document it is impracticable to deal with all these
possibilities. Such requirements can be established by contractual agreement between
supplier and purchaser.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60118-13:2019 covers the relevant EMC phenomena for hearing aids. Hearing aid immunity to high frequency fields originating from digital wireless devices such as mobile phones was identified as one of the most relevant EMC phenomena impacting hearing aids. IEC 60118-13:2019 cancels and replaces the fourth edition published in 2016 and constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) it introduces a new measurement method and set of EMC requirements for hearing aids immunity to mobile digital wireless devices; b) generic EMC requirements for hearing aids are no longer included – should be covered by other standards as appropriate.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Amendment to indicate the complete list of standards to be superseded by EN 55035:2017

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

CISPR 35:2016 applies to multimedia equipment (MME) having a rated AC or DC supply voltage not exceeding 600 V. The objectives of this document are:
- to establish requirements which provide an adequate level of intrinsic immunity so that the MME will operate as intended in its environment in the frequency range 0 kHz to 400 GHz; and
- to specify procedures to ensure the reproducibility of tests and the repeatability of results.

  • Standard
    90 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61000 focuses on the immunity requirements and test methods for electrical and electronic equipment, under operational conditions, with regard to: a) repetitive slow damped oscillatory waves occurring mainly in power, control and signal cables installed in high voltage and medium voltage (HV/MV) substations; b) repetitive fast damped oscillatory waves occurring mainly in power, control and signal cables installed in gas insulated substations (GIS) and in some cases also air insulated substations (AIS) or in any installation due to high-altitude electromagnetic pulse (HEMP) phenomena. The object of this document is to establish a common and reproducible reference for evaluating the immunity of electrical and electronic equipment when subjected to damped oscillatory waves on supply, signal, control and earth ports. The test method documented in this part of IEC 61000 describes a consistent method to assess the immunity of an equipment or system against a defined phenomenon. NOTE As described in IEC Guide 107, this is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard is applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria. 1 The document defines: – test voltage and current waveforms; – ranges of test levels; – test equipment; – calibration and verification procedures of test equipment; – test setups; – test procedure.

  • Standard
    60 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61000 focuses on emission and immunity test methods for electrical and
electronic equipment using various types of transverse electromagnetic (TEM) waveguides.
These types include open structures (for example striplines and electromagnetic pulse
simulators) and closed structures (for example TEM cells). These structures can be further
classified as one-port, two-port, or multi-port TEM waveguides. The frequency range depends
on the specific testing requirements and the specific TEM waveguide type.
The object of this document is to describe
– TEM waveguide characteristics, including typical frequency ranges and equipment-undertest (EUT) size limitations;
– TEM waveguide validation methods for electromagnetic compatibility (EMC) tests;
– the EUT (i.e. EUT cabinet and cabling) definition;
– test set-ups, procedures, and requirements for radiated emission measurements in TEM
waveguides; and
– test set-ups, procedures, and requirements for radiated immunity testing in TEM
waveguides.
NOTE Test methods are defined in this document to measure the effects of electromagnetic radiation on equipment
and the electromagnetic emissions from the equipment concerned. The simulation and measurement of
electromagnetic radiation is not adequately exact for the quantitative determination of effects for all end-use
installations. The test methods defined are structured for a primary objective of establishing adequate reproducibility
of results at various test facilities for qualitative analysis of effects.
This document does not intend to specify the tests to be applied to any particular apparatus or
system(s). The main intention of this document is to provide a general basic reference for all
interested product committees of the IEC. For radiated emission measurements, product
committees select emission limits and measurement methods in consultation with CISPR
standards. For radiated immunity testing, product committees remain responsible for the
appropriate choice of immunity tests and immunity test limits to be applied to equipment within
their scope. This document describes test methods that are separate from those of
IEC 61000‑4‑3 [34].1

  • Standard
    116 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies harness excitation methods for testing the electromagnetic immunity of electronic components for passenger cars and commercial vehicles regardless of the propulsion system (e.g. spark-ignition engine, diesel engine, electric motor). The bulk current injection (BCI) test method is based on current injection into the wiring harness using a current probe as a transformer where the harness forms the secondary winding. The tubular wave coupler (TWC) test method is based on a wave coupling into the wiring harness using the directional coupler principle. The TWC test method was developed for immunity testing of automotive components with respect to radiated disturbances in the GHz ranges (GSM bands, UMTS, ISM 2,4 GHz). It is best suited to small (with respect to wavelength) and shielded device under test (DUT), since in these cases the dominating coupling mechanism is via the harness. The electromagnetic disturbance considered in this document is limited to continuous narrowband electromagnetic fields. ISO 11451-1 gives definitions, practical use and basic principles of the test methods.

  • Standard
    24 pages
    English language
    sale 15% off

This document contains limits and procedures for the measurement of radio disturbances in the
frequency range of 150 kHz to 5 925 MHz. This document applies to vehicles, boats, internal
combustion engines, trailers, devices and any electronic/electrical component intended for use
in vehicles, boats, trailers and devices. Refer to International Telecommunications Union (ITU)
publications for details of frequency allocations. The limits are intended to provide protection
for on-board receivers installed (per the manufacturer’s guidelines) in a vehicle from
disturbances produced by components/modules in the same vehicle.
The receiver types to be protected are, for example, broadcast receivers (sound and television),
land mobile radio, radio telephone, amateur, citizens' radio, Satellite Navigation (GPS etc.), WiFi, V2X, and Bluetooth.
This document does not include protection of electronic control systems from radio frequency
(RF) emissions or from transient or pulse-type voltage fluctuations. These subjects are included
in ISO publications.
The limits in this document are recommended and subject to modification as agreed between
the customer (e.g. vehicle manufacturer) and the supplier (e.g. component manufacturer). This
document is also intended to be applied by vehicle manufacturers and suppliers which are to
be added and connected to the vehicle harness or to an on-board power connector after delivery
of the vehicle.
This document defines test methods for use by vehicle manufacturers and suppliers, to assist
in the design of vehicles and components and ensure controlled levels of on-board radio
frequency emissions.
The emission requirements in this document are not intended to be applicable to the intentional
transmissions from a radio transmitter as defined by the ITU including their spurious emissions.
NOTE 1 This exclusion is limited to those intended transmitter emissions, which leave the EUT as radiated
emissions and are coupled onto the wire line in the measurement setup. For conducted transmissions on frequencies
intentionally produced by the radio part of an EUT, this exclusion does not apply.
NOTE 2 It is usual for customers and suppliers to use radio regulation standards to manage the effect of spurious
emissions from a radio transmitter unless limits of spurious emission are agreed in the test plan.

  • Standard
    186 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61000-4-20:2022 focuses on emission and immunity test methods for electrical and electronic equipment using various types of transverse electromagnetic (TEM) waveguides. These types include open structures (for example striplines and electromagnetic pulse simulators) and closed structures (for example TEM cells). These structures can be further classified as one-port, two-port, or multi-port TEM waveguides. The frequency range depends on the specific testing requirements and the specific TEM waveguide type. The object of this document is to describe  
TEM waveguide characteristics, including typical frequency ranges and equipment-under-test (EUT) size limitations;
TEM waveguide validation methods for electromagnetic compatibility (EMC) tests;
the EUT (i.e. EUT cabinet and cabling) definition;
test set-ups, procedures, and requirements for radiated emission measurements in TEM waveguides; and
test set-ups, procedures, and requirements for radiated immunity testing in TEM waveguides.  NOTE Test methods are defined in this document to measure the effects of electromagnetic radiation on equipment and the electromagnetic emissions from the equipment concerned. The simulation and measurement of electromagnetic radiation is not adequately exact for the quantitative determination of effects for all end-use installations. The test methods defined are structured for a primary objective of establishing adequate reproducibility of results at various test facilities for qualitative analysis of effects. This document does not intend to specify the tests to be applied to any particular apparatus or system(s). The main intention of this document is to provide a general basic reference for all interested product committees of the IEC. For radiated emission measurements, product committees select emission limits and measurement methods in consultation with CISPR standards. For radiated immunity testing, product committees remain responsible for the appropriate choice of immunity tests and immunity test limits to be applied to equipment within their scope. This document describes test methods that are separate from those of IEC 61000‑4‑3. This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
provide information on the testing of large EUTs (including cables);
apply the work on measurement uncertainties by adapting the work completed in CISPR and TC 77 (for emissions and immunity);
update the validation procedure for the test volume regarding field uniformity and TEM mode verification;
provide information concerning two-port and four-port TEM waveguides;
add a new informative annex (Annex I) dealing with transient TEM waveguide characterization; and
add information dealing with dielectric test stands for EUTs.

  • Standard
    116 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies a procedure for the determination of the kinematic viscosity of mineral insulating oils, both transparent and opaque, at very low temperatures, after a cold soaking period of at least 20 h, by measuring the time for a volume of liquid to flow under gravity throught a calibrated glass capillary viscometer.  Applies at all temperatures to both Newtonian and non-Newtonian liquids having viscosities of up to 20 000 mm2/s.

  • Standard
    48 pages
    English and French language
    sale 15% off

Applies to electrical and electronic apparatus intended for use in residential, commercial and light-industrial environments. Immunity requirements in the frequency range 0 Hz to 400 GHz are covered. No tests need to be performed at frequencies where no requirements are specified. This generic EMC immunity standard is applicable if no relevant dedicated product or product-family EMC immunity standard exists. This standard applies to apparatus intended to be directly connected to a low-voltage public mains network or connected to a dedicated DC source which is intended to interface between the apparatus and the low-voltage public mains network. This standard applies also to apparatus which is battery operated or is powered by a non-public, but non-industrial, low-voltage power distribution system if this apparatus is intended to be used in the locations described below. The environments encompassed by this standard are residential, commercial and light-industrial locations, both indoor and outdoor. The following list, although not comprehensive, gives an indication of locations which are included: - residential properties, for example houses, apartments; - retail outlets, for example shops, supermarkets; - business premises, for example offices, banks; - areas of public entertainment, for example cinemas, public bars, dance halls; - outdoor locations, for example petrol stations, car parks, amusement and sports centres; - light-industrial locations, for example workshops, laboratories, service centres. Locations which are characterised by being supplied directly at low voltage from the public mains network are considered to be residential, commercial or light-industrial. The immunity requirements have been selected to ensure an adequate level of immunity for apparatus at residential, commercial and light-industrial locations. The levels do not, however, cover extreme cases, which may occur at any location, but with an extremely low probability of occurrenc

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    24 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

applies to electrical and electronic apparatus intended for use in industrial environments, as described below. Immunity requirements in the frequency range 0 Hz to 400 GHz are covered. No tests need to be performed at frequencies where no requirements are specified. This generic EMC immunity standard is applicable if no relevant dedicated product or product-family EMC immunity standard exists. This standard applies to apparatus intended to be connected to a power network supplied from a high or medium voltage transformer dedicated to the supply of an installation feeding manufacturing or similar plant, and intended to operate in or in proximity to industrial locations, as described below. This standard applies also to apparatus which is battery operated and intended to be used in industrial locations. The environments encompassed by this standard are industrial, both indoor and outdoor. The immunity requirements have been selected to ensure an adequate level of immunity for apparatus at industrial locations. The levels do not, however, cover extreme cases, which may occur at any location, but with an extremely low probability of occurrence. Not all disturbance phenomena have been included for testing purposes in this standard, but only those considered as relevant for the equipment covered by this standard. These test requirements represent essential electromagnetic compatibility immunity requirements.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61000-4-20:2022 focuses on emission and immunity test methods for electrical and electronic equipment using various types of transverse electromagnetic (TEM) waveguides. These types include open structures (for example striplines and electromagnetic pulse simulators) and closed structures (for example TEM cells). These structures can be further classified as one-port, two-port, or multi-port TEM waveguides. The frequency range depends on the specific testing requirements and the specific TEM waveguide type. The object of this document is to describe
TEM waveguide characteristics, including typical frequency ranges and equipment-under-test (EUT) size limitations;
TEM waveguide validation methods for electromagnetic compatibility (EMC) tests;
the EUT (i.e. EUT cabinet and cabling) definition;
test set-ups, procedures, and requirements for radiated emission measurements in TEM waveguides; and
test set-ups, procedures, and requirements for radiated immunity testing in TEM waveguides.  NOTE Test methods are defined in this document to measure the effects of electromagnetic radiation on equipment and the electromagnetic emissions from the equipment concerned. The simulation and measurement of electromagnetic radiation is not adequately exact for the quantitative determination of effects for all end-use installations. The test methods defined are structured for a primary objective of establishing adequate reproducibility of results at various test facilities for qualitative analysis of effects.
This document does not intend to specify the tests to be applied to any particular apparatus or system(s). The main intention of this document is to provide a general basic reference for all interested product committees of the IEC. For radiated emission measurements, product committees select emission limits and measurement methods in consultation with CISPR standards. For radiated immunity testing, product committees remain responsible for the appropriate choice of immunity tests and immunity test limits to be applied to equipment within their scope. This document describes test methods that are separate from those of IEC 61000‑4‑3.
This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:  
provide information on the testing of large EUTs (including cables);
apply the work on measurement uncertainties by adapting the work completed in CISPR and TC 77 (for emissions and immunity);
update the validation procedure for the test volume regarding field uniformity and TEM mode verification;
provide information concerning two-port and four-port TEM waveguides;
add a new informative annex (Annex I) dealing with transient TEM waveguide characterization; and
add information dealing with dielectric test stands for EUTs.

  • Standard
    229 pages
    English and French language
    sale 15% off

This part of CISPR 16 specifies the characteristics and performance of equipment for the
measurement of radiated disturbances in the frequency range 9 kHz to 18 GHz. Specifications
for antennas and test sites are included.
NOTE In accordance with IEC Guide 107, CISPR 16-1-4 is a basic EMC publication for use by product committees
of the IEC. As stated in Guide 107, product committees are responsible for determining the applicability of the EMC
standard. CISPR and its sub-committees are prepared to cooperate with product committees in the evaluation of
the value of particular EMC tests for specific products.
The requirements of this publication apply at all frequencies and for all levels of radiated
disturbances within the CISPR indicating range of the measuring equipment.
Methods of measurement are covered in Part 2-3, further information on radio disturbance is
given in Part 3, and uncertainties, statistics and limit modelling are covered in Part 4 of
CISPR 16.

  • Standard
    110 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document contains limits and procedures for the measurement of radio disturbances in the
frequency range of 150 kHz to 5 925 MHz. This document applies to vehicles, boats, internal
combustion engines, trailers, devices and any electronic/electrical component intended for use
in vehicles, boats, trailers and devices. Refer to International Telecommunications Union (ITU)
publications for details of frequency allocations. The limits are intended to provide protection
for on-board receivers installed (per the manufacturer’s guidelines) in a vehicle from
disturbances produced by components/modules in the same vehicle.
The receiver types to be protected are, for example, broadcast receivers (sound and television),
land mobile radio, radio telephone, amateur, citizens' radio, Satellite Navigation (GPS etc.), WiFi, V2X, and Bluetooth.
This document does not include protection of electronic control systems from radio frequency
(RF) emissions or from transient or pulse-type voltage fluctuations. These subjects are included
in ISO publications.
The limits in this document are recommended and subject to modification as agreed between
the customer (e.g. vehicle manufacturer) and the supplier (e.g. component manufacturer). This
document is also intended to be applied by vehicle manufacturers and suppliers which are to
be added and connected to the vehicle harness or to an on-board power connector after delivery
of the vehicle.
This document defines test methods for use by vehicle manufacturers and suppliers, to assist
in the design of vehicles and components and ensure controlled levels of on-board radio
frequency emissions.
The emission requirements in this document are not intended to be applicable to the intentional
transmissions from a radio transmitter as defined by the ITU including their spurious emissions.
NOTE 1 This exclusion is limited to those intended transmitter emissions, which leave the EUT as radiated
emissions and are coupled onto the wire line in the measurement setup. For conducted transmissions on frequencies
intentionally produced by the radio part of an EUT, this exclusion does not apply.
NOTE 2 It is usual for customers and suppliers to use radio regulation standards to manage the effect of spurious
emissions from a radio transmitter unless limits of spurious emission are agreed in the test plan.

  • Standard
    186 pages
    English language
    sale 10% off
    e-Library read for
    1 day

CISPR 25:2021 contains limits and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 5 925 MHz. This document applies to vehicles, boats, internal combustion engines, trailers, devices and any electronic/electrical component intended for use in vehicles, boats, trailers and devices. Refer to International Telecommunications Union (ITU) publications for details of frequency allocations. The limits are intended to provide protection for on-board receivers installed (per the manufacturer’s guidelines) in a vehicle from disturbances produced by components/modules in the same vehicle. The receiver types to be protected are, for example, broadcast receivers (sound and television), land mobile radio, radio telephone, amateur, citizens' radio, Satellite Navigation (GPS etc.), Wi-Fi, V2X, and Bluetooth. This document does not include protection of electronic control systems from radio frequency (RF) emissions or from transient or pulse-type voltage fluctuations. These subjects are included in ISO publications. The limits in this document are recommended and subject to modification as agreed between the customer (e.g. vehicle manufacturer) and the supplier (e.g. component manufacturer). This document is also intended to be applied by vehicle manufacturers and suppliers which are to be added and connected to the vehicle harness or to an on-board power connector after delivery of the vehicle. This document defines test methods for use by vehicle manufacturers and suppliers, to assist in the design of vehicles and components and ensure controlled levels of on-board radio frequency emissions. The emission requirements in this document are not intended to be applicable to the intentional transmissions from a radio transmitter as defined by the ITU including their spurious emissions.
NOTE 1 This exclusion is limited to those intended transmitter emissions, which leave the EUT as radiated emissions and are coupled onto the wire line in the measurement setup. For conducted transmissions on frequencies intentionally produced by the radio part of an EUT, this exclusion does not apply.
NOTE 2 It is usual for customers and suppliers to use radio regulation standards to manage the effect of spurious emissions from a radio transmitter unless limits of spurious emission are agreed in the test plan.
This fifth edition cancels and replaces the fourth edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
inclusion of new frequency bands,
deletion of the annex on TEM cells,
inclusion of annexes on measurement uncertainty,
overall improvement.

  • Standard
    372 pages
    English and French language
    sale 15% off

This part of IEC 61326 covers all equipment within the scope of IEC 61326-1, but is limited to systems and equipment for industrial applications within a specified electromagnetic environment and intended to perform safety functions as defined in IEC 61508 with SIL 1-3. The electromagnetic environments encompassed by this product family standard are industrial, both indoor and outdoor, and based on the requirements of the process industry, specifically chemical/petrochemical/pharmaceutical manufacturing plants using the mitigation measures given in Annex C. The difference between the electromagnetic environment covered by this document compared to the general industrial environment (see IEC 61326-3- 1) is due to the mitigation measures employed against electromagnetic phenomena leading to a specified electromagnetic environment with test values that have been proven in practice. The environment of industrial application with a specified electromagnetic environment typically includes the following characteristics: – industrial area with limited access; – limited use of mobile transmitters; – dedicated cables for power supply and control, signal or communication lines; – separation between power supply and control, signal or communication cables; – factory building mostly consisting of metal construction; – overvoltage/lightning protection by appropriate measures (for example, metal construction of the building or use of protection devices); - pipe heating systems driven by AC main power; - no high-voltage substation close to sensitive areas; - presence of CISPR 11 Group 2 ISM equipment using ISM frequencies only with low power; - competent staff; - periodical maintenance of equipment and systems; - mounting and installation guidelines for equipment and systems. Equipment and systems considered as "proven-in-use" according to IEC 61508 or "prior use" according to IEC 61511 are excluded from the scope of this document. Fire alarm systems and security alarm systems intended for protection of buildings are excluded from the scope of this document.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test methods and procedures for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles to portable transmitters in close proximity, regardless of the propulsion system (e.g. spark-ignition engine, diesel engine, electric motor). The device under test (DUT), together with the wiring harness (prototype or standard test harness), is subjected to an electromagnetic disturbance generated by portable transmitters inside an absorber-lined shielded enclosure, with peripheral devices either inside or outside the enclosure. The electromagnetic disturbances considered are limited to continuous narrowband electromagnetic fields.

  • Standard
    81 pages
    English language
    sale 15% off
  • Standard
    81 pages
    English language
    sale 15% off

IEC 61326-2-1:2020 is available as IEC 61326-2-1:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61326:2020 specifies more detailed test configurations, operational conditions and performance criteria for equipment with test and measurement circuits (internal or, external to the equipment, or both) that are not EMC protected for operational and/or functional reasons, as specified by the manufacturer. The manufacturer specifies the environment for which the product is intended to be used and selects the appropriate test level specifications of IEC 61326-1:2020.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61326-2-2:2020 is available as IEC 61326-2-2:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61326-2-2:2020 specifies more detailed test configurations, operational conditions and performance criteria for equipment covered by Annex A of IEC 61326-1:2020 which is: - used for testing, measuring or monitoring of protective measures in low-voltage distribution systems, and; - powered by battery and/or from the circuit measured, and - portable. Examples of such EUTs include, but are not limited to, voltage detectors, insulation testers, earth continuity testers, earth resistance testers, leakage current clamps, loop impedance testers, “residual-current-device-testers” (RCD-testers) and phase sequence testers as defined in IEC 61557 (all parts).

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61326-1:2020 is available as IEC 61326-1:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61326:2020 specifies requirements for immunity and emissions regarding electro¬magnetic compatibility (EMC) for electrical equipment, operating from a supply or battery of less than 1 000 V AC or 1 500 V DC or from the circuit being measured. Equipment intended for professional, industrial-process, industrial-manufacturing and educational use is covered by this part. It includes equipment and computing devices for - measurement and test; - control; - LABORATORY use; - accessories intended for use with the above (such as sample handling equipment), intended to be used in industrial and non-industrial locations.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61326-2-5:2020 is available as IEC 61326-2-5:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61326-2-5:2020 treats the particular features for EMC testing of field devices with field bus interfaces. This part of IEC 61326 covers only the field bus interface of the equipment. This part refers only to field devices intended for use in process control and process measuring. In this document, field devices with interfaces according to IEC 61784-1:2019, CP 3/2 and CP 1/1 as defined in IEC 61784 are covered. Other field bus interfaces may be included in future editions of this document.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61326-2-3:2020 is available as IEC 61326-2-3:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61326-2-3:2020 specifies more detailed test configurations, operational conditions and performance criteria for transducers with integrated or remote signal conditioning. This document applies only to transducers characterized by their ability to transform, with the aid of an auxiliary energy source, a non-electric quantity to a process-relevant electrical signal, and to output the signal at one or more PORTS. This document includes transducers for electrochemical and biological measured quantities. The transducers covered by this document can be powered by AC or DC voltage and/or by battery or with internal power supply.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61326-2-6:2020 is available as IEC 61326-2-6:2020 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61326-2-6:2020 specifies minimum requirements for immunity and emissions regarding electromagnetic compatibility for IN VITRO DIAGNOSTIC (IVD) MEDICAL EQUIPMENT, taking into account the particularities and specific aspects of this electrical equipment and their electromagnetic environment.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day