33.180 - Fibre optic communications
ICS 33.180 Details
Fibre optic communications
Glasfaser-Kommunikation
Communication par fibres optiques
Komunikacije po optičnih vlaknih
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 33.180 - Fibre optic communications
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
IEC 60794-1-129:2025 applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. The document defines test procedures used in establishing uniform requirements for mechanical performance-straight midspan access to optical elements. Throughout this document, the wording "optical cable" also includes optical fibre units, microduct fibre units, etc. NOTE See IEC 60794‑1‑2 for a reference guide to test methods of all types and for general requirements and definitions. This edition includes the following significant technical changes with respect to IEC 60794‑1‑21:2015 and IEC 60794-1-21:2015/AMD 1:2020: a) this document cancels and replaces method E29 of IEC 60794-1-21:2015 and IEC 60794‑1‑21:2015/AMD 1:2020; b) addition of the description for applicable cable types; c) update of Figure 2a), Figure 2b) and Figure 3; d) addition of the displacement measure description; e) addition of the details to be reported.
- Draft10 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-207:2025 describes test procedures to be used in establishing uniform requirements for optical fibre cables for the environmental property: performance degradation when exposed to nuclear radiation. This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. Method F7A evaluates performance degradation of optical fibre cable in environmental background radiation; Method F7B evaluates performance degradation of optical fibre cable in adverse nuclear environments. NOTE Throughout the document, the wording "optical cable" can also include optical fibre units, microduct fibre units, etc. This first edition cancels and replaces the method F7 of the second edition of IEC 60794-1-22 published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) detailed content of sample, apparatus, procedure, requirements and details of the method to be specified and reported are added.
- Draft9 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-107:2025 applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. This document defines test procedures used in establishing uniform requirements for torsion performance. Refer to IEC 60794-1-2 for a reference guide to test methods and for general requirements and definitions. NOTE Throughout this document, the wording "optical cable" also includes optical fibre units, microduct fibre units, etc. This first edition partially cancels and replaces IEC 60794-1-21:2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794-1-21:2015: a) Update of the typical test length according to the different types of cables; b) Update of Figure 2 by loading weights to cable gripping fixture.
- Draft10 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61757-1-4:2025 defines the terminology, structure, and measurement methods of distributed fibre optic sensors for absolute strain measurements based on spectral correlation analysis of Rayleigh backscattering signatures in single-mode fibres, where the fibre is the distributed strain measurement element in a measurement range from about 10 m to tens of km. This document also applies to hybrid sensor systems that combine the advantages of Brillouin and Rayleigh backscattering effects to obtain optimal measurement quality. This document also specifies the most important features and performance parameters of these distributed fibre optic strain sensors defines procedures for measuring these features and parameters. This part of IEC 61757 does not apply to point measurements or to dynamic strain measurements. Distributed strain measurements using Brillouin scattering in single-mode fibres are covered in IEC 61757-1-2. The most relevant applications of this strain measurement technique are listed in Annex A, while Annex B provides a short description of the underlying measurement principle.
- Standard27 pagesEnglish languagesale 15% off
- Standard29 pagesFrench languagesale 15% off
- Standard56 pagesEnglish and French languagesale 15% off
IEC 61300-3-50:2025 describes the procedure to measure the crosstalk of optical signals between the ports of a multiport M x N (M input ports and N output ports) fibre optic spatial switch. This second edition cancels and replaces the first edition published in 2013. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) revising structure of the document.
- Standard11 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
- Standard23 pagesEnglish and French languagesale 15% off
IEC 61300-3-7:2021 describes methods available to measure the wavelength dependence of attenuation and return loss of two-port, single mode passive optical components. It is not, however, applicable to dense wavelength division multiplexing (DWDM) devices. Measurement methods of wavelength dependence of attenuation of DWDM devices are described in IEC 61300-3-29. There are two measurement cases described in this document:
a) measurement of attenuation only;
b) measurement of attenuation and return loss at the same time.
This third edition cancels and replaces the second edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) reduction of the number of alternative methods proposed to bring in-line with industry practice;
b) re-statement of the equations for insertion loss and return loss using logarithmic forms more common in the industry;
c) additional recommendations with respect to the creation of fibre terminations;
d) additional discussion on the characterization of the optical sources used in this document;
e) simplification of bi-directional testing;
f) removal of separate return loss only measurement procedures.
- Standard31 pagesEnglish languagesale 15% off
- Standard62 pagesEnglish languagesale 15% off
- Standard64 pagesEnglish and French languagesale 15% off
IEC 61757-8-1:2025 defines the terminology, structure, and measurement methods of optical pressure sensors for gases or liquids based on a diaphragm in combination with fibre Bragg gratings (FBGs) as the sensing element. This document also specifies the most important features and characteristics of these fibre optic pressure sensors and defines procedures for measuring these features and characteristics.
- Standard24 pagesEnglish languagesale 15% off
- Standard26 pagesFrench languagesale 15% off
- Standard50 pagesEnglish and French languagesale 15% off
IEC 61300-3-7: 2025 Amendment 1
- Standard2 pagesEnglish languagesale 15% off
IEC 61300-3-14:2025 provides a method to measure the error and repeatability of the attenuation value settings of a variable optical attenuator (VOA). There are two control technologies for VOAs: manually controlled and electrically controlled. This document covers both VOA control technologies and also both single-mode fibres and multimode fibres VOAs. For electrically controlled VOAs, the hysteresis characteristics of attenuation are sometimes important. The hysteresis characteristics can be measured as stated in Annex B. This fourth edition cancels and replaces the third edition published in 2014.
This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) addition of IEC 61315, Calibration of fibre-optic power meters as normative reference;
b) addition of Clause 3 containing terms, definitions and abbreviated terms;
c) addition of notes for permission of repeatability definition with 2σ;
d) correction of error in Figure 1 a) and Figure 1 b);
e) addition of a clear statement on EF launch condition requirement for MM source;
f) change of “Detector” to “Power meter”;
g) combination of Clause 7 and Clause 8 into a new Clause 8 titled “Details to be specified and reported”;
h) addition of uncertainty considerations in Clause 7;
i) correction of error in Formula (B.3).
- Standard44 pagesEnglish languagesale 15% off
IEC TS 62627-09:2016, which is a Technical Specification, applies to passive optical devices (components). It provides the definitions which are commonly used in the generic specifications, performance standards and tests and measurement standards for passive optical devices (components) prepared by SC 86B. It has the following three types of terms and definitions:
- basic terms and definitions;
- component terms and definitions;
- performance parameter terms and definitions. The generic specifications for passive optical devices (components) are listed in Annex A.
Keywords: terms and definitions for passive optical devices
- Technical specification17 pagesEnglish languagesale 15% off
- Technical specification32 pagesEnglish languagesale 15% off
IEC TS 62629-09: 2025 Amendment 1
- Technical specification2 pagesEnglish languagesale 15% off
IEC 61300-1:2022 provides general information and guidance for the basic test and measurement procedures defined in IEC 61300-2 (all parts) and IEC 61300-3 (all parts) for interconnecting devices, passive components, mechanical splices, fusion splice protectors, fibre management systems and protective housings. This document is used in combination with the relevant specification which defines the tests to be used, the required degree of severity for each of them, their sequence, if relevant, and the permissible performance limits. In the event of conflict between this document and the relevant specification, the latter takes precedence. This fifth edition cancels and replaces the fourth edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
- addition of the information of measurement uncertainties in 4.2.1;
- change of the requirements for attenuation variation in 4.2.2;
- addition of the multimode launch conditions of other fibres than A1-OM2, A1-OM3, A1-OM4, A1-OM5 and A3e in 10.4;
- addition of the multimode launch conditions of the planer waveguide in 10.6;
- splitting Annex A for EF and Annex B for EAF;
- correction of errors in the definitions of encircled flux and encircled angular flux.
- Standard68 pagesEnglish languagesale 15% off
- Standard70 pagesEnglish languagesale 15% off
- Standard70 pagesEnglish languagesale 15% off
- Standard45 pagesEnglish and French languagesale 15% off
IEC 61300-1: 2025 Amendment 2
- Standard2 pagesEnglish languagesale 15% off
- Standard2 pagesFrench languagesale 15% off
- Standard4 pagesEnglish and French languagesale 15% off
IEC 60794-1-130:2025 describes test procedures to evaluate the coefficient of dynamic friction of the sheathing material of a cable when pulled over or between other cables. Methods E30A and E30B evaluate the coefficient of friction between cables for when either a cable is pulled over the top of other cables (drum test) or when pulling a cable between other cables of the same shape (flat plate test). This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. Throughout the document, wording "optical cable" can also include optical fibre units and microduct fibre units.
This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015, Amendment 1:2020. This edition constitutes a technical revision.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TR 62284:2025 which is a Technical Report, applies to single-mode optical fibres. Its object is to document the methods for measuring the effective area (Aeff) of these fibres. It defines three methods of measuring Aeff. Information common to all the methods is found in the body of this document. Information specific to each method is found in the annexes. The three methods are:
a) direct far-field (DFF);
b) variable aperture in the far-field (VAMFF);
c) near-field (NF).
The reference method, used to resolve disputes, is method A, direct far-field.
Effective area is an optical attribute that is specified for single-mode fibres and used in system designs probably affected by the non-linear refractive index coefficient, n2. There is agreement in both national and international standards bodies concerning the definition used in this document. Methods A, B, and C have been recognised as providing equivalent results, provided that good engineering is used in implementation.
The direct far-field is the reference method because it is the most direct method and is named as the reference method for mode field diameter in IEC 60793-1-45 and ITU-T Recommendation G.650.1.
A mapping function is a formula by which the measured results of one attribute are used to predict the value of another attribute on a given fibre. For a given fibre type and design, the mode field diameter (MFD) (IEC 60793-1-45) can be used to predict the effective area with a mapping function. A mapping function is specific to a particular fibre type and design. Mapping functions are generated by doing an experiment in which a sample of fibre is chosen to represent the spectrum of values of MFD and in which the fibres in the sample are measured for both MFD and Aeff. Linear regression can be used to determine the fitting coefficient, k, as defined by the following:
NOTE 1 Other mathematical models can be used if they are generally more accurate.
NOTE 2 See Annex E for more information.
This second edition cancels and replaces the first edition published in 2003. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) improvement of the description of measurement details for B-657 fibre;
b) modification of the minimum distance between the fibre end and the detector for the direct far field scan (Annex A);
c) deletion of Annex H.
- Technical report39 pagesEnglish languagesale 15% off
IEC 60794-1-130:2025 describes test procedures to evaluate the coefficient of dynamic friction of the sheathing material of a cable when pulled over or between other cables. Methods E30A and E30B evaluate the coefficient of friction between cables for when either a cable is pulled over the top of other cables (drum test) or when pulling a cable between other cables of the same shape (flat plate test). This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. Throughout the document, wording "optical cable" can also include optical fibre units and microduct fibre units. This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015, Amendment 1:2020. This edition constitutes a technical revision.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61754-37:2025 defines the standard mechanical interface dimensions for the type MDC family of connectors.
- Standard28 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60793-2-60:2025 is applicable to optical fibre types C1, C2, C3, and C4, as described in Table 1. These fibres are used for the interconnections within or between optical components systems and are optimized to support dense optical connectivity. While the fibres can be overcoated or buffered for the purpose of making protected pigtails, they can be used without overcoating. They can, however, be colour coded. This second edition cancels and replaces the first edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) replacement of "intraconnection" with "interconnection" and addition of the definition of "interconnection fibres";
b) modification of the nominal MFD limit of C1 fibres;
c) addition of "Primary coating diameter-coloured" limits for class C fibres and change of "Primary coating diameter-uncoloured" limits for class C_80 fibres;
d) change of coating strip force limits for class C1, class C2, and class C3 fibres;
e) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" and revision of "Note b" in Table 6;
f) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" and deletion of the "Note" in Table 8;
g) addition of 200 μm coating diameter requirements for C1_125 fibres and change of coating diameters limits for C1_80 fibres in Table A.1;
h) addition of 200 µm coating diameter requirements for C1_125 fibres and change of coating strip force limits in Table A.2 and in Table A.5;
i) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength", modification of the "Cable cut-off wavelength" limit and addition of a new "Note" in Table A.3;
j) addition of a transmission requirements at 1 625 nm and deletion of 1 310 nm for C1 fibres in Table A.4;
k) modification of "Fibre cut-off wavelength" limits of C3 fibres in Table C.3;
l) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" for C4 fibres in Table D.3.
- Standard26 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Product definition
This document contains the dimensional, optical, mechanical and environmental performance requirements of a fully installed optical fibre wall or pole mounted box for up to 288 fibre splices, in order for it to be categorized as a European standard product.
The typical configuration is splicing of incoming fibres to optional splitters, connecting on the other side to outgoing fibres.
A box is a protective housing containing a fibre management system with splice trays of various fibre separation levels. The box can contain one or more of the following:
- storage and routing for fibre and cable;
- uncut fibre cable storage;
- splice trays;
- passive optical devices (optical splitters or WDM).
A box can be installed on a vertical indoor or outdoor surface above ground level. If the box is required to be relocatable with cables attached, the following additional tests are expected to be performed:
- cable bending;
- cable torsion.
This document specifies the number of splice trays and splice capacity for each fibre separation level. The maximum capacity is 288 splices. For housings with a higher number of splices, EN 50411 4 1 (street cabinets) can be used.
Boxes for fibre splice and patchcord connections are covered in EN 50411 3 4.
1.2 Operating environment
The tests selected, combined with the severity and duration, are representative of indoor and outside plant for above ground environments defined by EN IEC 61753 1:
- category C: Controlled (indoor) environment;
- category A: Aerial (outdoor above ground) environment.
1.3 Reliability
Whilst the anticipated service life expectancy of the product in this environment is 20 years, compliance with this document does not guarantee the reliability of the product. This is expected to be predicted using a recognized reliability assessment programme.
1.4 Quality assurance
Compliance with this document does not guarantee the manufacturing consistency of the product. This is expected to be maintained using a recognized quality assurance programme.
1.5 Allowed fibre and cable types
This box standard accommodates EN IEC 60793 2 50 single-mode fibres and EN IEC 60793 2 10 A1-OM2 to A1-OM5 and A1-OM1 multimode fibres and all EN 60794 series optical fibre cables with various fibre capacities, types and designs.
- Standard38 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60793-2-60:2025 is applicable to optical fibre types C1, C2, C3, and C4, as described in Table 1. These fibres are used for the interconnections within or between optical components systems and are optimized to support dense optical connectivity. While the fibres can be overcoated or buffered for the purpose of making protected pigtails, they can be used without overcoating. They can, however, be colour coded. This second edition cancels and replaces the first edition published in 2008. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) replacement of "intraconnection" with "interconnection" and addition of the definition of "interconnection fibres"; b) modification of the nominal MFD limit of C1 fibres; c) addition of "Primary coating diameter-coloured" limits for class C fibres and change of "Primary coating diameter-uncoloured" limits for class C_80 fibres; d) change of coating strip force limits for class C1, class C2, and class C3 fibres; e) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" and revision of "Note b" in Table 6; f) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" and deletion of the "Note" in Table 8; g) addition of 200 μm coating diameter requirements for C1_125 fibres and change of coating diameters limits for C1_80 fibres in Table A.1; h) addition of 200 µm coating diameter requirements for C1_125 fibres and change of coating strip force limits in Table A.2 and in Table A.5; i) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength", modification of the "Cable cut-off wavelength" limit and addition of a new "Note" in Table A.3; j) addition of a transmission requirements at 1 625 nm and deletion of 1 310 nm for C1 fibres in Table A.4; k) modification of "Fibre cut-off wavelength" limits of C3 fibres in Table C.3; l) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" for C4 fibres in Table D.3.
- Standard26 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61754-37:2025 defines the standard mechanical interface dimensions for the type MDC family of connectors.
- Standard28 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-129:2025 applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. The document defines test procedures used in establishing uniform requirements for mechanical performance-straight midspan access to optical elements. Throughout this document, the wording "optical cable" also includes optical fibre units, microduct fibre units, etc.
NOTE See IEC 60794‑1‑2 for a reference guide to test methods of all types and for general requirements and definitions.
This edition includes the following significant technical changes with respect to IEC 60794‑1‑21:2015 and IEC 60794-1-21:2015/AMD 1:2020:
a) this document cancels and replaces method E29 of IEC 60794-1-21:2015 and IEC 60794‑1‑21:2015/AMD 1:2020;
b) addition of the description for applicable cable types;
c) update of Figure 2a), Figure 2b) and Figure 3;
d) addition of the displacement measure description;
e) addition of the details to be reported.
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesFrench languagesale 15% off
- Standard18 pagesEnglish and French languagesale 15% off
IEC 60794-1-207:2025 describes test procedures to be used in establishing uniform requirements for optical fibre cables for the environmental property: performance degradation when exposed to nuclear radiation. This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. Method F7A evaluates performance degradation of optical fibre cable in environmental background radiation; Method F7B evaluates performance degradation of optical fibre cable in adverse nuclear environments.
NOTE Throughout the document, the wording "optical cable" can also include optical fibre units, microduct fibre units, etc.
This first edition cancels and replaces the method F7 of the second edition of IEC 60794-1-22 published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) detailed content of sample, apparatus, procedure, requirements and details of the method to be specified and reported are added.
- Standard9 pagesEnglish languagesale 15% off
- Standard10 pagesFrench languagesale 15% off
- Standard19 pagesEnglish and French languagesale 15% off
IEC 60794-1-110:2025 defines test procedures used to establishing uniform requirements for mechanical performance - kink. It applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. IEC 60794-1-2 gives general requirements, definitions and a complete reference guide to test methods of all types.
This first edition cancels and replaces Method E10 of the first edition of IEC 60794-1-21:2015, which will be withdrawn. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
addition of "4.7";
addition of "Annex A".
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-218:2025 defines test procedures to establish uniform requirements for the environmental performance of:
- optical fibre cables for telecommunication equipment and devices employing similar techniques, and
- cables having a combination of both optical fibres and electrical conductors.
Throughout this document, the wording "optical cable" can also include optical fibre units, microduct fibre units, etc.
This document defines a test standard to determine the ability of optical cable elements from a cable exposed in a mid-span entry (expressed) and stored in a pedestal, closure or similar to withstand the effects of temperature cycling by observing changes in attenuation. The optical cable element bundles up single or multiple optical fibres, e.g. loose tube, tight buffer tube, or optical fibre ribbon.
See IEC 60794-1-2 for a reference guide to test methods of all types and for general requirements and definitions.
This first edition partially cancels and replaces the second edition of IEC 60794-1-22 published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑22:2017:
a) extension of the test method scope to apply to any optical cables with optical cable elements including loose tubes, tight buffer tubes, and ribbons, exposed in a mid-span entry (expressed) and stored in a pedestal, closure, or similar;
b) modification of the test method title according to item a);
c) deletion of the tube diameter requirement for the test object;
d) modification of the default temperature range according to IEC 60794-1-1;
e) addition of the default coiled turns in the assembly during the test.
- Standard13 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-110:2025 defines test procedures used to establishing uniform requirements for mechanical performance - kink. It applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. IEC 60794-1-2 gives general requirements, definitions and a complete reference guide to test methods of all types. This first edition cancels and replaces Method E10 of the first edition of IEC 60794-1-21:2015, which will be withdrawn. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: addition of "4.7"; addition of "Annex A".
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-107:2025 applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. This document defines test procedures used in establishing uniform requirements for torsion performance. Refer to IEC 60794-1-2 for a reference guide to test methods and for general requirements and definitions.
NOTE Throughout this document, the wording "optical cable" also includes optical fibre units, microduct fibre units, etc.
This first edition partially cancels and replaces IEC 60794-1-21:2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794-1-21:2015:
a) Update of the typical test length according to the different types of cables;
b) Update of Figure 2 by loading weights to cable gripping fixture.
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesFrench languagesale 15% off
- Standard20 pagesEnglish and French languagesale 15% off
IEC 60794-1-214:2025 defines the test procedure used to measure the ability of cable sheath materials to maintain their integrity when exposed to ultraviolet (UV) radiation due to sunlight or fluorescent light.
This first edition cancels and replaces Method F14 of the second edition of IEC 60794‑1‑22 published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑22:2017:
a) addition of subclause as regards conditioning according to ISO 4892-2 or ISO 4892-3 for indoor-outdoor cables.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-218:2025 defines test procedures to establish uniform requirements for the environmental performance of: - optical fibre cables for telecommunication equipment and devices employing similar techniques, and - cables having a combination of both optical fibres and electrical conductors. Throughout this document, the wording "optical cable" can also include optical fibre units, microduct fibre units, etc. This document defines a test standard to determine the ability of optical cable elements from a cable exposed in a mid-span entry (expressed) and stored in a pedestal, closure or similar to withstand the effects of temperature cycling by observing changes in attenuation. The optical cable element bundles up single or multiple optical fibres, e.g. loose tube, tight buffer tube, or optical fibre ribbon. See IEC 60794-1-2 for a reference guide to test methods of all types and for general requirements and definitions. This first edition partially cancels and replaces the second edition of IEC 60794-1-22 published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑22:2017: a) extension of the test method scope to apply to any optical cables with optical cable elements including loose tubes, tight buffer tubes, and ribbons, exposed in a mid-span entry (expressed) and stored in a pedestal, closure, or similar; b) modification of the test method title according to item a); c) deletion of the tube diameter requirement for the test object; d) modification of the default temperature range according to IEC 60794-1-1; e) addition of the default coiled turns in the assembly during the test.
- Standard13 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-214:2025 defines the test procedure used to measure the ability of cable sheath materials to maintain their integrity when exposed to ultraviolet (UV) radiation due to sunlight or fluorescent light. This first edition cancels and replaces Method F14 of the second edition of IEC 60794‑1‑22 published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑22:2017: a) addition of subclause as regards conditioning according to ISO 4892-2 or ISO 4892-3 for indoor-outdoor cables.
- Standard12 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-130:2025 describes test procedures to evaluate the coefficient of dynamic friction of the sheathing material of a cable when pulled over or between other cables. Methods E30A and E30B evaluate the coefficient of friction between cables for when either a cable is pulled over the top of other cables (drum test) or when pulling a cable between other cables of the same shape (flat plate test). This document applies to optical fibre cables for use with telecommunication equipment and devices employing similar techniques, and to cables having a combination of both optical fibres and electrical conductors. Throughout the document, wording "optical cable" can also include optical fibre units and microduct fibre units.
This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015, Amendment 1:2020. This edition constitutes a technical revision.
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesFrench languagesale 15% off
- Standard20 pagesEnglish and French languagesale 15% off
IEC 60794-1-119:2025 applies to aerial optical fibre cables such as all-dielectric self-supporting (ADSS) cables, optical ground wire (OPGW) cables, and optical phase conductor (OPPC) cables that can be exposed to aeolian vibrations. This document defines the test procedures to establish uniform mechanical performance requirements relating to aeolian vibrations.
See IEC 60794‑1‑2 for general requirements and definitions and for a complete reference guide to test methods of all types.
This first edition cancels and replaces test method E19 of the first edition of IEC 60794‑1‑21 published in 2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑21:
a) addition of a system to maintain a constant cable tension during the test as well as means to measure the free loop antinode amplitude;
b) definition of the cable load which is now fixed to 25 % of the rated tensile strength for OPGW/OPPC, or to the maximum installation tension (MIT) for ADSS cables;
c) addition of the target free loop peak-to-peak antinode amplitude to the procedure. The quality of the aeolian vibration motion is done through the average antinode
d) addition of fatigue damage and ovality changes of the optical core to 4.5.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62007-2:2025 specifies measuring methods for characterizing semiconductor optoelectronic devices that are used in the field of fibre optic digital communication systems and subsystems. This third edition cancels and replaces the second edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) Modification of the definition of “optical fibre pigtail” in 3.1.3;
b) Correction of an error in Formula (1) for relative intensity noise;
c) Correction of an error in Formula (5);
d) Correction of errors in the title of Figure 11 and the text of 4.9 (replaced "LD" with "LED");
e) Clarification of how to calculate the 1 dB compression in 4.9;
f) Corrections of the circuit diagrams in Figure 2, Figure 5, Figure 11, Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21;
g) Clarification of the measurement setup in 5.10 (Figure 28).
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60793-2-60:2025 is applicable to optical fibre types C1, C2, C3, and C4, as described in Table 1. These fibres are used for the interconnections within or between optical components systems and are optimized to support dense optical connectivity. While the fibres can be overcoated or buffered for the purpose of making protected pigtails, they can be used without overcoating. They can, however, be colour coded. This second edition cancels and replaces the first edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) replacement of "intraconnection" with "interconnection" and addition of the definition of "interconnection fibres";
b) modification of the nominal MFD limit of C1 fibres;
c) addition of "Primary coating diameter-coloured" limits for class C fibres and change of "Primary coating diameter-uncoloured" limits for class C_80 fibres;
d) change of coating strip force limits for class C1, class C2, and class C3 fibres;
e) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" and revision of "Note b" in Table 6;
f) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" and deletion of the "Note" in Table 8;
g) addition of 200 μm coating diameter requirements for C1_125 fibres and change of coating diameters limits for C1_80 fibres in Table A.1;
h) addition of 200 µm coating diameter requirements for C1_125 fibres and change of coating strip force limits in Table A.2 and in Table A.5;
i) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength", modification of the "Cable cut-off wavelength" limit and addition of a new "Note" in Table A.3;
j) addition of a transmission requirements at 1 625 nm and deletion of 1 310 nm for C1 fibres in Table A.4;
k) modification of "Fibre cut-off wavelength" limits of C3 fibres in Table C.3;
l) replacement of "Fibre cut-off wavelength" with "Cable cut-off wavelength" for C4 fibres in Table D.3.
- Standard67 pagesEnglish languagesale 15% off
- Amendment5 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-119:2025 applies to aerial optical fibre cables such as all-dielectric self-supporting (ADSS) cables, optical ground wire (OPGW) cables, and optical phase conductor (OPPC) cables that can be exposed to aeolian vibrations. This document defines the test procedures to establish uniform mechanical performance requirements relating to aeolian vibrations. See IEC 60794‑1‑2 for general requirements and definitions and for a complete reference guide to test methods of all types. This first edition cancels and replaces test method E19 of the first edition of IEC 60794‑1‑21 published in 2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60794‑1‑21: a) addition of a system to maintain a constant cable tension during the test as well as means to measure the free loop antinode amplitude; b) definition of the cable load which is now fixed to 25 % of the rated tensile strength for OPGW/OPPC, or to the maximum installation tension (MIT) for ADSS cables; c) addition of the target free loop peak-to-peak antinode amplitude to the procedure. The quality of the aeolian vibration motion is done through the average antinode d) addition of fatigue damage and ovality changes of the optical core to 4.5.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63267-3-81: 2025 defines the dimensional limits of an optical interface for reference connectors with rectangular ferrules necessary to meet specific requirements for fibre-to-fibre interconnection of non-angled polished multimode reference connectors with rectangular ferrules intended to be used for attenuation measurements as defined in IEC 63267‑2‑2. Ferrule dimensions and features are contained in the IEC 61754 series of fibre optic interface standards.One grade of reference connector is defined in this document. The reference connector is terminated to restricted IEC 60793-2-10 A1-OM2b to A1-OM5b fibre at 850 nm band only. The geometrical dimensions and tolerances of the specified reference connector have been developed primarily to limit the variation in measured attenuation between multiple sets of two reference connectors, and therefore to limit the variation in measured attenuation between randomly chosen reference connectors when mated with connectors in the field or factory.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63267-3-61: 2025 defines the dimensional limits of an optical interface for reference connectors with 2,5 mm or 1,25 mm diameter cylindrical zirconia (ZrO2) ferrules necessary to meet specific requirements for fibre-to-fibre interconnection of non-angled polished multimode reference connections as defined in IEC 63267-2-2. Ferrule dimensions and features are contained in the IEC 61754 series of fibre optic connector interface standards. One grade of reference connector, Rm1, is defined in this document. The reference connector is terminated to restricted IEC 60793-2-10 using A1-OM2b to A1‑OM5b fibre in 850 nm band only. The geometrical dimensions and tolerances of the specified reference connector have been developed primarily to limit the variation in measured attenuation between multiple sets of reference connectors, and therefore to reduce the variation in measured attenuation between an arbitrarily chosen reference connector when mated with a connector in the field or factory.
This first edition and the first edition of IEC 63267-2-2 cancel and replace the first edition of IEC 61755-6-2 published in 2018. This edition constitutes a technical revision. The document includes the following significant technical changes with respect to the previous edition:
a) Definition of a reference grade, Rm1 interface;
b) Inclusion of A1-OM2b to A1-OM5b fibres;
c) Updates to normative references;
d) The addition of Annex A, which describes the attenuation test limits of reference grade Rm1 connectors to grade Bm connectors;
e) A new Annex B that describes the allowable fibre undercut.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62007-2:2025 specifies measuring methods for characterizing semiconductor optoelectronic devices that are used in the field of fibre optic digital communication systems and subsystems. This third edition cancels and replaces the second edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Modification of the definition of “optical fibre pigtail” in 3.1.3; b) Correction of an error in Formula (1) for relative intensity noise; c) Correction of an error in Formula (5); d) Correction of errors in the title of Figure 11 and the text of 4.9 (replaced "LD" with "LED"); e) Clarification of how to calculate the 1 dB compression in 4.9; f) Corrections of the circuit diagrams in Figure 2, Figure 5, Figure 11, Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21; g) Clarification of the measurement setup in 5.10 (Figure 28).
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment5 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-133: 2025 defines the test procedure to demonstrate the ability of an optical fibre cable to withstand multiple coiling and uncoiling on a specified diameter of cable reel.
This test is primarily intended to evaluate the performance of cables for mobile rapid or multiple deployment.
See IEC 60794‑1‑2 for a reference guide to test methods of all types and for general requirements.
This first edition of IEC 60794-1-133 cancels and replaces Method E33 of the second edition of the IEC 60794-1-21:2015/AMD1:2020, which will be withdrawn. It includes an editorial revision, based on the new structure and numbering system for optical fibre test methods.
- Standard15 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61754-37:2025 defines the standard mechanical interface dimensions for the type MDC family of connectors.
- Standard24 pagesEnglish languagesale 15% off
- Standard25 pagesFrench languagesale 15% off
- Standard49 pagesEnglish and French languagesale 15% off
IEC TR 63431:2025 which is a Technical report, document identifies issues which can be considered when adopting microduct technology for the provision of optical communications networks. It supplements the microduct sections of IEC 60794‑5 series of publications and refers to products and practices in current use. This documents also describes design types, colour codes, repairs, and environmental expectations, including guidance to standards and methods of installation.
- Technical report25 pagesEnglish languagesale 15% off
IEC 60794-1-133: 2025 defines the test procedure to demonstrate the ability of an optical fibre cable to withstand multiple coiling and uncoiling on a specified diameter of cable reel. This test is primarily intended to evaluate the performance of cables for mobile rapid or multiple deployment. See IEC 60794‑1‑2 for a reference guide to test methods of all types and for general requirements. This first edition of IEC 60794-1-133 cancels and replaces Method E33 of the second edition of the IEC 60794-1-21:2015/AMD1:2020, which will be withdrawn. It includes an editorial revision, based on the new structure and numbering system for optical fibre test methods.
- Standard15 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63267-3-81: 2025 defines the dimensional limits of an optical interface for reference connectors with rectangular ferrules necessary to meet specific requirements for fibre-to-fibre interconnection of non-angled polished multimode reference connectors with rectangular ferrules intended to be used for attenuation measurements as defined in IEC 63267‑2‑2. Ferrule dimensions and features are contained in the IEC 61754 series of fibre optic interface standards.One grade of reference connector is defined in this document. The reference connector is terminated to restricted IEC 60793-2-10 A1-OM2b to A1-OM5b fibre at 850 nm band only. The geometrical dimensions and tolerances of the specified reference connector have been developed primarily to limit the variation in measured attenuation between multiple sets of two reference connectors, and therefore to limit the variation in measured attenuation between randomly chosen reference connectors when mated with connectors in the field or factory.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63267-3-61: 2025 defines the dimensional limits of an optical interface for reference connectors with 2,5 mm or 1,25 mm diameter cylindrical zirconia (ZrO2) ferrules necessary to meet specific requirements for fibre-to-fibre interconnection of non-angled polished multimode reference connections as defined in IEC 63267-2-2. Ferrule dimensions and features are contained in the IEC 61754 series of fibre optic connector interface standards. One grade of reference connector, Rm1, is defined in this document. The reference connector is terminated to restricted IEC 60793-2-10 using A1-OM2b to A1‑OM5b fibre in 850 nm band only. The geometrical dimensions and tolerances of the specified reference connector have been developed primarily to limit the variation in measured attenuation between multiple sets of reference connectors, and therefore to reduce the variation in measured attenuation between an arbitrarily chosen reference connector when mated with a connector in the field or factory. This first edition and the first edition of IEC 63267-2-2 cancel and replace the first edition of IEC 61755-6-2 published in 2018. This edition constitutes a technical revision. The document includes the following significant technical changes with respect to the previous edition: a) Definition of a reference grade, Rm1 interface; b) Inclusion of A1-OM2b to A1-OM5b fibres; c) Updates to normative references; d) The addition of Annex A, which describes the attenuation test limits of reference grade Rm1 connectors to grade Bm connectors; e) A new Annex B that describes the allowable fibre undercut.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62552-3:2015 specifies the essential characteristics of household and similar refrigerating appliances cooled by internal natural convection or forced air circulation, and establishes test methods for checking these characteristics. This part of IEC 62552 describes the methods for the determination of energy consumption characteristics and defines how these can be assembled to estimate energy consumption under different usage and climate conditions. This part of IEC 62552 also defines the determination of volume.
- All parts of the standard have been largely rewritten and updated to cope with new testing requirements, new product configurations, the advent of electronic product controls and computer based test-room data collection and processing equipment.
- For more efficient analysis and to better characterise the key product characteristics under different operating conditions, the test data from many of the energy tests in Part 3 (this part) is now split into components (such as steady state operation and defrost and recovery). The approach to determination of energy consumption has been completely revised, with many internal checks now included to ensure that data complying with the requirements of the standard is as accurate as possible and of high quality.
- Part 3 (this part) now provides a method to quantify each of the relevant energy components and approaches on how these can be combined to estimate energy under different conditions on the expectation that different regions will select components and weightings that are most applicable when setting both their local performance and energy efficiency criteria while using a single set of global test measurements.
- For energy consumption measurements in Part 3 (this part), no thermal mass (test packages) is included in any compartment and compartment temperatures are based on the average of air temperature sensors (compared to the temperature in the warmest test package). There are also significant differences in the position of temperature sensors in unfrozen compartments.
- The energy consumption test in Part 3 (this part) now has two specified ambient temperatures (16°C and 32°C).
- A load processing energy efficiency test has been added in Part 3 (this part).
- Tests (both performance (Part 2) and energy (Part 3 (this part)) have been added for wine storage appliances.
- Standard326 pagesEnglish languagesale 15% off
- Standard679 pagesEnglish and French languagesale 15% off
- Standard328 pagesEnglish and French languagesale 15% off
IEC 62074-1: 2025 applies to fibre optic wavelength division multiplexing (WDM) devices. These have all of the following general features:
- they are passive, in that they contain no optoelectronic or other transducing elements; however they can use temperature control only to stabilize the device characteristics; they exclude any optical switching functions;
- they have three or more ports for either the entry or exit of optical power, or both, and share optical power among these ports in a predetermined fashion depending on the wavelength;
- the ports are optical fibres, or optical fibre connectors.
This document establishes uniform requirements for the following:
- optical, mechanical and environmental properties.
This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) harmonization of terms and definitions with IEC TS 62627-09;
b) simplified classification, documentation and standardization system in Clause 4, and moving interface style to Annex H.
- Standard55 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60794-1-124:2025 contains test procedures, referred to as Method E24, for evaluating the behaviour of microduct cabling (microduct optical cable, fibre unit or hybrid cable etc.) when blown into a microduct or protected microduct. This document describes two blowing track layouts: Method A consists of two mandrels and two long straight sections in between (same curvature). Method B consists of 3 mandrels. The middle mandrel forces the cable to experience both left- and right-hand bending, which is a feature of any realistic blowing route. In addition, this document describes an optional procedure to check the capability of blowing out an installed cable. This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015 and Amendment 1:2020. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) addition of a blowing route (see Figure 2) which includes a change in the direction of curvature. This was achieved by introducing a third mandrel;
b) addition of Annex A (Figure A.1 which shows a practical implementation of the blowing route;
c) addition of Annex B which describes the so-called Crash Test;
d) addition of Annex C which describes a cable blowing out procedure.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day





