This document specifies a method using gas chromatography with mass selective detector (GC-MS) for detection and quantification of extractable N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP) in filaments and coatings of textile products.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidance on sample preparation, and on qualitative and quantitative determination of elements in particulate matter collected on filtering membranes (PM filter) by energy dispersive X-ray Fluorescence (EDXRF) in different geometrical configurations. This document does not apply to PM filter sampling. This document only applies to the analysis of X-ray emission from filters that are probed using an X-ray beam as the exciting source. X-ray emissions generated by electron microscope are excluded[1]. This document is applicable under a range of contexts including, but not limited to, those highlighted in the introduction. The described method is generally applicable for the determination of elements with atomic number higher than 11 (Na) and having a deposited mass on the filter greater than 10 ng. The elements that can be identified and the detection limits depend on the specific instrumental configuration employed. Various types of filtering membranes (filter) materials can be used, such as glass fibre, quartz fibre, cellulose, nylon, polycarbonate (PC) and polytetrafluoroethylene (PTFE). The entire filter, or portions of various sizes thereof, can be submitted for analysis. NOTE Reference free analysis, based on fundamental parameters is excluded, as the nature of the PM filter samples means that the parameters are not sufficiently well defined.

  • Standard
    27 pages
    English language
    sale 15% off

This document specifies a method using energy-dispersive X-ray fluorescence spectrometry for the determination of the sulfur content of petroleum products, such as naphthas, unleaded motor gasolines, middle distillates, residual fuel oils, base lubricating oils and components. The method is applicable to products with sulfur content in the range of a mass fraction of 0,03 % to a mass fraction of 5,00 %.
This test method can be used for biofuel or biofuel blends.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste, and waste using GC-MS and GC-ECD (see Table 2).
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, lower limit of application from 1 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μg/kg cannot be reached.
Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCB and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
NOTE            The analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to in EN 61619, EN 12766-1 and ISO 6468 respectively.
The method can be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a wavelength-dispersive X-ray fluorescence (WDXRF) test method for the determination of the sulfur content in ethanol (E85) automotive fuel [3], containing ethanol between 50 % (V/V) and 85 % (V/V), from 5 mg/kg to 20 mg/kg, using instruments with either monochromatic or polychromatic excitation.
NOTE 1   Sulfur contents higher than 20 mg/kg can be determined after sample dilution with an appropriate solvent. However, the precision was not established for diluted samples.
NOTE 2   For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction (µ) and the volume fraction (φ) of a material respectively.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the most commonly used terms for transmission electron microscopy (TEM) specimen preparation using focused ion beam (FIB).

  • Standard
    14 pages
    English language
    sale 15% off

This document specifies a test method, including the degradation of certain side-chain fluorinated polymers during the extraction with simultaneous alkaline hydrolysis, and using liquid chromatography (LC) and tandem mass spectrometry (MS/MS) for identification and quantification of certain per- and polyfluoroalkyl substances (PFAS). The document is applicable to all materials of textile products.
Table 2 indicates a list of target PFAS which can be analysed with this document. PFAS of Table 2 marked with the footnote e) and footnote f) undergo alkaline hydrolysis and only their per- or polyfluorinated degradation products such as PFOA or n:2 fluorotelomer alcohols (n:2 FTOHs, n = 4, 6, 8, 10) can be determined.
Through the methods outlined in the informative Annex E and Annex F, free n:2 FTOHs, PFOA and non-polymeric PFAS of Table 2 marked with the footnote e) and footnote f), that are not stable to alkaline hydrolysis, can be identified and quantified.
Certain side-chain fluorinated polymers release n:2 FTOHs (n = 4, 6, 8, 10) under the described extraction conditions. Since these side-chain fluorinated polymers can be PFOA or C9-C14 PFCA-related substances restricted by the EU-POPs [1] or EU-REACH [2] regulations, the amounts of released n:2 FTOHs can be used to indirectly assess whether the concentration of the aforementioned side-chain fluorinated polymers exceed limits for PFOA or C9-C14 PFCA-related substances.
This document is also applicable to the determination of further PFAS, provided that the method is validated with the additional substances and that these PFAS are stable to alkaline hydrolysis and dehydrofluorination.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the method for selected area electron diffraction (SAED) analysis using a transmission electron microscope (TEM) to analyse thin crystalline specimens. This document applies to test areas of micrometres and sub-micrometres in size. The minimum diameter of the selected area in a specimen which can be analysed by this method is restricted by the spherical aberration coefficient of the objective lens of the microscope and approaches hundreds of nanometres for a modern TEM. When the size of an analysed specimen area is smaller than the spherical aberration coefficient restriction, this document can also be used for the analysis procedure. However, because of the effect of spherical aberration and deviation of the specimen height position, some of the diffraction information in the pattern can be generated from outside of the area defined by the selected area aperture. In such cases, the use of microdiffraction (nano-beam diffraction) or convergent beam diffraction, where available, can be preferred. This document is applicable to the acquisition of SAED patterns from crystalline specimens, indexing the patterns and calibration of the camera constant.

  • Standard
    42 pages
    English language
    sale 15% off

This document specifies a method using headspace gas chromatography and mass selective spectroscopy (HS-GC-MS) for detection and quantification of benzene in components of textile products.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62321-12:2023 specifies a reference test method for the simultaneous determination of polybrominated biphenyls, polybrominated diphenyl ethers, and four phthalates: di-isobutyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) in polymers of electrotechnical products.
The extraction technique described in this document is the ultrasonic-assisted extraction used for simultaneous extraction for sample preparation.
Gas chromatography-mass spectrometry (GC-MS) is considered as the reference technique for the measurement of the simultaneous determination of analytes in the range of 25 mg/kg to 2 000 mg/kg.
The test method using ultrasonic-assisted extraction followed by GC-MS detection has been evaluated by the tests of polypropylene (PP), polyvinylchloride (PVC), acrylonitrile butadiene styrene (ABS), acrylate rubber (ACM), polystyrene (PS), polyurethane (PU) and polyethylene (PE) materials.
This document has the status of a horizontal publication in accordance with IEC Guide 108.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of the mass concentration of particulate cadmium and cadmium compounds in workplace air, using either flame or electrothermal atomic absorption spectrometry.
The sample digestion procedure specified in 10.2.2 has been validated for a selection of cadmium compounds and pigments and glass enamels containing cadmium.
The analytical method has been validated for the determination of masses of 10 ng to 600 ng of cadmium per sample using electrothermal atomic absorption spectrometry, and 0,15 µg to 96 µg of cadmium per sample using flame atomic absorption spectrometry. The concentration range for cadmium in air for which this procedure is applicable is determined in part by the sampling procedure selected by the user.
The method is applicable to personal sampling of the inhalable or respirable fraction of airborne particles, as defined in ISO 7708, and to stationary sampling.

  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    21 pages
    English language
    sale 15% off

This document specifies the sampling and analysis of phthalates in indoor air and describes the sampling and analysis of phthalates in house dust and in solvent wipe samples of surfaces by means of gas chromatography-mass spectrometry (GC-MS).
Two alternative sampling, sample preparation and sample introduction methods, whose comparability has been proven in an interlaboratory test, are specified for indoor air[1]:
— sorbent tubes sampling with subsequent thermal desorption GC-MS, and
— sampling by adsorption and subsequent solvent extraction and injection to GC-MS.
Additional adsorbents that can be used are described in Annex B.
Depending on the sampling method, the compounds dimethyl phthalate to diisoundecylphthalate can be analysed in house dust as described in Annex D. The investigation of house dust samples is only appropriate as a screening method. This investigation only results in indicative values and is not acceptable for a final assessment of a potential need for action.
Dimethyl phthalate to diisoundecylphthalate can be analysed in solvent wipe samples as described in Annex C. Solvent wipe samples are suitable for non-quantitative source identification.
NOTE In principle, the method is also suitable for the analysis of other phthalates, adipates and cyclohexane dicarboxylic acid esters, but this is confirmed by determination of the performance characteristics in each case.
General information on phthalates are given in Annex A.

  • Standard
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    45 pages
    English language
    sale 15% off

This document specifies the gas chromatographic (GC) method for the determination of saturated, olefinic and aromatic hydrocarbons in automotive motor gasoline, small engine petrol and ethanol (E85) automotive fuel. Additionally, the benzene and toluene content, oxygenated compounds and the total oxygen content can be determined.
Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates, this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for the determination of the content of n-butyl phenyl ether (BPE, CAS: 1126-79-0, also known as butoxy-benzene) in gas oils, kerosene, diesel fuel and biodiesel blends. The method uses a two-column gas chromatograph with an FID-type of detector. The application range is 0,1 mg/l to 21,25 mg/l of BPE, with a limit of detection of 0,05 mg/l.
NOTE   This corresponds to 1 % to 150 % of the average marking level of the ACCUTRACE™ Plus required by Commission Implementing Decision (EU) 2022/197 [1] of 17 January 2022 establishing a common fiscal marker for gas oils and kerosene.
The method is found to be applicable to determinations beyond this range or for specific other chemical markers that fall within the distillation temperature range of middle-distillates, but for that no precision has been determined.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the sampling and testing of low volatile organic compound (VOC) coating materials and their raw materials. In particular, this document specifies a gas-chromatographic method to quantitatively determine the VOC content (i.e. the content of organic compounds with boiling points up to 250 °C) under standard conditions (101,325 kPa). It is applicable to VOC contents between 0,01 % and 0,1 % by mass.
This document does not apply to the determination of the semi-volatile organic compounds (SVOC) content, which is covered in ISO 11890-2.
This document does not apply to volatile organic and volatile inorganic compounds that cannot be determined by gas chromatography.
The procedure for identifying the appropriate method for the determination of VOC content and the SVOC content of coating materials and their raw materials is described in ISO/TR 5601.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a spectrophotometric method for determining the chlorophyll-a content corrected for phaeopigments as a measure of the amount of phytoplankton for all types of surface water including marine water. The determination limit is usually 2 µg/l to 5 µg/l and is calculated by each laboratory individually. It can be as low as 0,5 µg/l using 2 l of sample (or even more) and a 50 mm cuvette.
NOTE   In some measurement programs like marine studies on time series data and ecological status/classification no correction for phaeopigments is used and acidification is omitted, e.g. as recommended by OSPAR.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a procedure for the determination of the averaged interface position between two different layered materials recorded in the cross-sectional image of the multi-layered material. This document does not apply for determining the simulated interface of the multi-layered materials expected through the multi-slice simulation (MSS) method. This document is applicable to the cross-sectional images of multi-layered materials recorded using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM) and cross-sectional elemental mapping images using an energy dispersive X-ray spectrometer (EDS) or an electron energy loss spectrometer (EELS). This document is also applicable to digitized images recorded on an image sensor built into a digital camera, a digital memory set in the PC or an imaging plate, where the digitalized image is obtained by converting an analogue image recorded on photographic film using an image scanner.

  • Standard
    47 pages
    English language
    sale 15% off

This document gives a method for determination of the apparent growth direction of nanocrystals by transmission electron microscopy. This method is applicable to all kinds of wire-like crystalline materials synthetized by various methods. This document can also guide in determining an axis direction of the second-phase particles in steels, alloys, or other materials. The applicable diameter or width of the crystals to be tested is in the range of tens to one hundred nanometres, depending on the accelerating voltage of the transmission electron microscope (TEM) and the material itself. Position, which is curved, twisted, and folded, to determine the apparent growth direction, should not be used.

  • Standard
    20 pages
    English language
    sale 15% off

This document specifies a chromatographic method for the determination of levoglucosan in aqueous or organic extracts of filter samples collected in accordance with EN 12341:2023 [5]. The method has been tested for concentrations of ca. 10 ng/m3 up to ca. 3 000 ng/m3 with a sampling duration of 24 h. The procedure is also suitable for the determination of galactosan and mannosan.
Depending on the analysis instrumentation used, the carbohydrates inositol, glycerol, threitol/erythritol, xylitol, arabitol, sorbitol, mannitol, threalose, mannose, glucose, galactose and fructose can also be determined. However, no performance characteristics are given for these compounds in this document.

  • Technical specification
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a spectrophotometric method for determining the chlorophyll-a content corrected for phaeopigments as a measure of the amount of phytoplankton for all types of surface water including marine water. The determination limit is usually 2 µg/l to 5 µg/l and is calculated by each laboratory individually. It can be as low as 0,5 µg/l using 2 l of sample (or even more) and a 50 mm cuvette.
NOTE   In some measurement programs like marine studies on time series data and ecological status/classification no correction for phaeopigments is used and acidification is omitted, e.g. as recommended by OSPAR.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a method for sampling and analysis of volatile organic compounds (VOCs), including siloxanes, terpenes, organic sulfur compounds, in natural gas and biomethane matrices, using thermal desorption gas chromatography with flame ionization and/or mass spectrometry detectors (TD-GC-FID/MS).

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives general guidance for the sampling and gas chromatographic analysis of compressor oil in biomethane or compressed natural gas (CNG). The compressor oil mass fraction is determined by sampling on coalescing filters under defined operational conditions (the two first cubic meters of gas referring to standard conditions, delivered at a refuelling station).
Compressor oils are lubricants used in mechanical devices where the purpose is to reduce the volume and increase the pressure of gases for use in a variety of applications.
The method is solely applicable to compressed gas (p>18 MPa).
The compressor oil content is expressed as mass fraction. The scope of this method is from 3 mg/kg – 30 mg/kg.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives general guidelines for the determination of experimental parameters relating to the electron probe, the wavelength spectrometer, and the specimen that need to be taken into account when carrying out electron probe microanalysis. It also defines procedures for the determination of probe current, probe diameter, dead time, wavelength resolution, background, analysis area, analysis depth, and analysis volume. This document is applicable for the analysis of a well-polished specimen using normal beam incidence. This document does not apply to energy dispersive X-ray spectroscopy.

  • Standard
    18 pages
    English language
    sale 15% off

This document specifies a test method for the determination of the content of the preservative agents (biocidal products) 2-phenylphenol (OPP) and triclosan in textile materials and articles composed of textile products, by liquid chromatography.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gallium (Ga), gadolinium (Gd), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu) magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tantalum (Ta), tellurium (Te), terbium (Tb), thallium (Tl), thulium (Tm), thorium (Th), tin (Sn), titanium (Ti), tungsten (W), vanadium (V), yttrium (Y), ytterbium (Yb), zinc (Zn) and zirconium (Zr).
The method is also applicable to other extracts or digests originating from, for example, DTPA extraction, fusion methods or total digestion methods, provided the user has verified the applicability.
The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for other solid matrices and other elements as listed above, provided the user has verified the applicability.
This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200[22]).
NOTE            Construction products include e.g. mineral-based products; bituminous products; metals; wood-based products; plastics and rubbers; sealants and adhesives; paints and coatings.

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies an empirical method for the simultaneous direct determination of the fluorine, chlorine, bromine, and sulfur content in environmental solid matrices by oxidative pyrohydrolytic combustion at (1 050 ± 50) °C, followed by ion chromatography. The method is applicable for the determination of concentrations ≥ 10 mg/kg of each element based on dry matter. The upper limit and exact concentration range covered depends on the blank levels of the instrumentation and the capacity of the chromatographic separation column used for determination.
NOTE 1   Simultaneous determination of iodine content is possible but currently not validated.
NOTE 2   Other detection methods can be applied if validated.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for the determination of the content of mono-aromatic, di aromatic and tri+-aromatic hydrocarbons in diesel fuels, paraffinic diesel fuels and petroleum distillates.
This document specifies two procedures, A and B.
Procedure A is applicable to diesel fuels that may contain fatty acid methyl esters (FAME) up to 30 % (V/V) (as in [1], [2] or [3]) and petroleum distillates in the boiling range from 150 °C to 400 °C (as in [4].
Procedure B is applicable to paraffinic diesel fuels with up to 7 % (V/V) FAME. This procedure does not contain a dilution of the sample in order to determine the low levels of aromatic components in these fuels.
The polycyclic aromatic hydrocarbons content is calculated from the sum of di-aromatic and tri+-aromatic hydrocarbons and the total content of aromatic compounds is calculated from the sum of the individual aromatic hydrocarbon types.
Compounds containing sulfur, nitrogen and oxygen can interfere in the determination; mono-alkenes do not interfere, but conjugated di-alkenes and poly-alkenes, if present, can do so. The measurement ranges that apply to this method are given in Table 2 and Table 3.
NOTE 1   For the purpose of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction, µ, and the volume fraction, φ, of a material respectively.
NOTE 2   By convention, the aromatic hydrocarbon types are defined on the basis of their elution characteristics from the specified liquid chromatography column relative to model aromatic compounds. Their quantification is performed using an external calibration with a single aromatic compound for each of them, which may or may not be representative of the aromatics present in the sample. Alternative techniques and test methods may classify and quantify individual aromatic hydrocarbon types differently.
NOTE 3   Backflush is part of laboratory-internal maintenance.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel prior to application of the standard, and fulfil statutory and regulatory requirements for this purpose.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a method for the determination of the content of biocides in construction products, (either finished (dried) or in a ready-to-use state) and in eluates thereof, using liquid chromatography and tandem mass spectrometric detection (LC-MS/MS).
For content analysis liquid chromatography with UV-detection can also be used, if sufficient sensitivity and selectivity is ensured (see Annex A (normative)).
The method in this document is validated for the product types listed in Annex D (informative). For eluate analysis quantification limits of 0,1 µg/l can be achieved.

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the method for the determination of major, minor and trace elements in eluates and in aqua regia and nitric acid digests of construction products by inductively coupled plasma optical emission spectrometry (ICP-OES). It refers to the following 44 elements:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), phosphorus (P), potassium (K), praseodymium (Pr), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulphur (S), tellurium (Te), thallium (Tl), thorium (Th), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), zinc (Zn), and zirconium (Zr).
For the determination of low levels of As, Hg, Se and Sb, chemical vapour generation systems can be applied. This method is described in Annex E (normative).
NOTE   Construction products include e.g. mineral-based products (S); bituminous products (B); metals (M); wood-based products (W); plastics and rubbers (P); sealants and adhesives (A); paints and coatings (C), see also CEN/TR 16045.
The method in this document is applicable to construction products and validated for the product types listed in Annex C (informative).

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62321 specifies two different techniques for the determination of TCEP tris(2-chloroethyl) phosphate (TCEP) in plastics, the GC-MS or LC-MS method; both of which are suitable for quantitative analysis.
These two techniques have been evaluated for use with polyurethane, Polyvinyl chloride and polyethylene materials containing TCEP between 200 mg/kg to 2 000 mg/kg. Use of the methods escribed in International Standard for other polymers and concentration ranges has not been specifically evaluated.
These test methods do not apply to plastics materials having a processing temperature higher than 230 ℃.
NOTE TCEP starts thermal decomposition at approximately 230 ℃. Polymer types which have a processing temperature into shapes of plastics (e.g. pellets, moulded parts, or sheets etc.) not exceeding the decomposition temperature can contain TCEP.
Py-TD-GC-MS is another technique, suitable for the screening of TCEP in plastics (See Annex A).

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidance on how to generate reliable and reproducible crystallographic orientation measurements using electron backscatter diffraction (EBSD). It addresses the requirements for specimen preparation, instrument configuration, instrument calibration and data acquisition.

  • Standard
    40 pages
    English language
    sale 15% off

IEC 62321-3-4:2023 specifies procedures for the screening of di-isobutyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) in polymers of electrotechnical products by using high performance liquid chromatography with ultraviolet detector (HPLC-UV), thin layer chromatography (TLC) and thermal desorption mass spectrometry (TD-MS).
High performance liquid chromatography with ultraviolet detector (HPLC-UV), thin layer chromatography (TLC) and thermal desorption mass spectrometry (TD-MS) techniques are described in the normative part of this document. Fourier transform infrared spectroscopy (FT-IR) is described in the informative annexes of this document.

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies an empirical method for the simultaneous direct determination of the fluorine, chlorine, bromine, and sulfur content in environmental solid matrices by oxidative pyrohydrolytic combustion at (1 050 ± 50) °C, followed by ion chromatography. The method is applicable for the determination of concentrations ≥ 10 mg/kg of each element based on dry matter. The upper limit and exact concentration range covered depends on the blank levels of the instrumentation and the capacity of the chromatographic separation column used for determination.
NOTE 1   Simultaneous determination of iodine content is possible but currently not validated.
NOTE 2   Other detection methods can be applied if validated.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method using gas chromatography with a mass selective detector (GC-MS) for detection and quantification of chlorophenols (CPs), which are either freely present or released from salts and esters: pentachlorophenol (PCP), tetrachlorophenol- (TeCP), trichlorophenol- (TriCP), dichlorophenol- (DiCP) and monochlorophenol- (MoCP) isomers. The method is applicable to textile fibres, yarns, fabrics, coated fabrics, printed fabrics, plastic, and wooden parts of textile products (for example buttons).

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

X-ray Fluorescence Spectrometry (XRF) has been used for several decades as an important analytical tool for production analysis. XRF is characterised by its speed and high precision over a wide concentration range and since the technique in most cases is used as an relative method the limitations are often connected to the quality of the calibration samples. The technique is well established and most of its physical properties are well known.

  • Technical report
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determination of mercury in cosmetics by means of cold vapour atomic absorption spectrometry (AAS) with a prior pressure digestion.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for quantitative determination of the concentration of selected alcohols with low boiling point in liquid waste and pasty waste by gas chromatography with flame ionization detection after static headspace extraction.
Under the conditions specified in this document, a limit of application of 20 mg/kg, expressed on dry matter for pasty waste and expressed on raw waste for liquid waste, can be achieved.

  • Technical specification
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies different methods for quantitative determination of 16 polycyclic aromatic hydrocarbons (PAH) (see Table 2) in soil, sludge, treated biowaste, and waste, using GC-MS or HPLC-UV-DAD/FLD covering a wide range of PAH contamination levels (see Table 2).
NOTE   The method can be applied to sediments provided that validity is demonstrated by the user.
When using fluorescence detection, acenaphthylene cannot be measured.
[Table 2 -Target analytes of this document]
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, the lower limit of application from 10 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 100 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples (e.g. bitumen) the limit of 100 μg/kg cannot be reached.
Sludge, waste and treated biowaste can differ in properties as well as in the expected contamination levels of PAH and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
The method can be applied to the analysis of other PAH not specified in the scope, provided suitability is proven by proper in-house validation experiments.
Sampling is not part of this standard. In dependence of the materials, the following standards need to be considered, e.g. EN 14899, ISO 5667-12 and EN ISO 5667-13.

  • Standard
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method (using gas chromatography, GC) for detection and quantification of selected extractable perfluorinated and polyfluorinated substances in textile materials (fibres, yarns, fabrics) and coated fabrics.
NOTE 1 CEN/TR 16741 defines which materials are applicable to this determination.
A test method (using liquid chromatography, LC) for detection and quantification of selected extractable perfluorinated and polyfluorinated substances is specified in EN 17681-1.
NOTE 2 Both this document and EN 17681-1 are needed for PFOA related substances.
Classes of regulated compounds are listed in Table 2. Classes of other non-regulated compounds that can be determined by this document are defined in Annex C, Table C.1. This document is also applicable for further PFAS substances provided that the method is validated with the additional compounds.
NOTE 3 Commission Delegated Regulation (EU) 2020/784 amending Annex I to the POP Regulation (EU) 2019/1021 as regards the listing of perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds defines among other that “’…PFOA-related compounds’ means the following: … any substances that degrade to PFOA, including any substances (including salts and polymers) having a linear or branched perfluoroheptyl group with the moiety (C7F15)C as one of the structural elements.” To determine whether these are intentionally present it could be necessary to introduce an alkaline hydrolysis method to remove the side-chain from the polymer. According to Commission Regulation (EU) 2021/1297 [7], this applies similarly to C9-C14 PFCAs-related compounds. A future revision of this document will address this aspect.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies an analytical method to quantify nicotine of collected vapour product emissions by gas chromatography.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a calibration procedure of the energy step and the energy scale for electron energy loss spectroscopy in (scanning) transmission electron microscopes to an uncertainty of ±3 % for the energy range 0 eV to 3 000 eV. This document is intended for electron energy loss spectroscopy with transmitted electrons through sufficiently electron transparent samples, such as a thin foil sample, and is not designed for backscattered electrons from a bulk sample.

  • Standard
    15 pages
    English language
    sale 15% off

This analytical procedure specifies a reverse phase high performance liquid chromatographic with UV detection (RP-HPLC-UV) method for the simultaneous determination of four authorized carotenoids in fish compound feed and fish premix, namely astaxanthin (AXN), canthaxanthin (CXN), adonirubin (ADR) and astaxanthin dimethyldisuccinate (AXN DMDS), and of six authorized carotenoids in poultry feed and poultry premix, namely canthaxanthin (CXN); capsanthin (CSN), ethyl ester of beta-apo-8'-carotenoic acid (BACARE), citranaxanthin (CIXN), lutein (LUT) and zeaxanthin (ZEA) at levels ranging from approximately 2 mg/kg to approximately 4 500 mg/kg (depending on the carotenoid). Beta-carotene (BCAR), authorized in compound feed and premixes for all animal species, was also added to the scope. The analytical procedure is fit for the purpose of quantitation of declared carotenoids and labelling confirmation. This document is applicable to feed produced using natural and synthetic feed additives.
Xanthophyll esters like those of lutein, zeaxanthin and capsanthin that might be present in feed materials are not authorized feed additives and therefore not part of the scope of this document.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies procedures for quantitative analysis of austenite in steel using electron backscatter diffraction (EBSD). This document is mainly applied in low and medium carbon steels, low and medium carbon alloy steels. This document is used to analyse austenite with grain size larger than 50 nm. This method is not used to quantify austenite with grain size smaller than 50 nm, which can significantly affect the accuracy of the analysis results. NOTE 1 The size limit is strongly dependent both on the instrument and the instrument operating parameters. NOTE 2 The size limit is the minimum grain size of the detectable austenite.

  • Standard
    15 pages
    English language
    sale 15% off

This document defines a gas chromatographic analysis for the determination of the composition of fuel gases, as used in refinery heating gas. These results are used to calculate the carbon content and the lower calorific value.
With this gas chromatographic analysis, an overall of 23 refinery heating gas components are determined in concentrations as typically found in refineries (see Table 1 for further details).
Water is not analysed. The results represent dry gases.
NOTE 1   Depending on the equipment used, there is a possibility to determine higher hydrocarbons as well.
NOTE 2   For the purposes of this document, the terms “% (V/V)” is used to represent the volume fraction (φ).
IMPORTANT — This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes a valid method for separation of chemically heterogeneous polyethylene oxide (PEO) mixtures and for the determination the number and content of the chemically heterogeneous species in the overall sample.
The method presented in this document serves as a technical guideline and enables laboratories to learn the principle of "critical chromatography" on a validated system.
This method presented in this document with its stated system parameters is not applicable for other polymer classes, due to the diversity of the interactions between the polymer/mobile phase/stationary phase and the number of separation systems that are therefore available.
The evaluation of the interlaboratory testing has shown that many error sources relate to the technique of liquid chromatography in general. Possible error sources are described in Annex A.
Details on the evaluation of the interlaboratory testing are given in Annex B.
Elugrams of the participants (excerpts) are given in Annex C.
Investigations of the long-term stability of the test mixture are given in Annex D.

  • Technical specification
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This analytical procedure specifies a reverse phase high performance liquid chromatographic with UV detection (RP-HPLC-UV) method for the simultaneous determination of four authorized carotenoids in fish compound feed and fish premix, namely astaxanthin (AXN), canthaxanthin (CXN), adonirubin (ADR) and astaxanthin dimethyldisuccinate (AXN DMDS), and of six authorized carotenoids in poultry feed and poultry premix, namely canthaxanthin (CXN); capsanthin (CSN), ethyl ester of beta-apo-8'-carotenoic acid (BACARE), citranaxanthin (CIXN), lutein (LUT) and zeaxanthin (ZEA) at levels ranging from approximately 2 mg/kg to approximately 4 500 mg/kg (depending on the carotenoid). Beta-carotene (BCAR), authorized in compound feed and premixes for all animal species, was also added to the scope. The analytical procedure is fit for the purpose of quantitation of declared carotenoids and labelling confirmation. This document is applicable to feed produced using natural and synthetic feed additives.
Xanthophyll esters like those of lutein, zeaxanthin and capsanthin that might be present in feed materials are not authorized feed additives and therefore not part of the scope of this document.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes a valid method for separation of chemically heterogeneous polyethylene oxide (PEO) mixtures and for the determination the number and content of the chemically heterogeneous species in the overall sample.
The method presented in this document serves as a technical guideline and enables laboratories to learn the principle of "critical chromatography" on a validated system.
This method presented in this document with its stated system parameters is not applicable for other polymer classes, due to the diversity of the interactions between the polymer/mobile phase/stationary phase and the number of separation systems that are therefore available.
The evaluation of the interlaboratory testing has shown that many error sources relate to the technique of liquid chromatography in general. Possible error sources are described in Annex A.
Details on the evaluation of the interlaboratory testing are given in Annex B.
Elugrams of the participants (excerpts) are given in Annex C.
Investigations of the long-term stability of the test mixture are given in Annex D.

  • Technical specification
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the measurement of explosives and related nitrocompounds (as given in Table 1) in soil and soil materials. This document is intended for the trace analysis of explosives and related compounds by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Generally, LC-MS/MS measurement shows the lower LOQ (limit of quantification) for each compound in Table 1 than using high-performance liquid chromatography (HPLC) with UV-detection (see Annex B and Annex C).
Under the conditions specified in this document, concentrations as low as 0,005 mg/kg to 0,014 mg/kg-dry matter can be determined, depending on the substance. Similar compounds, in particular various nitroaromatics, by-products and degradation products of explosive compounds can be analysed using this method provided that the applicability is checked on a case-by-case basis.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The present method permits the identification and quantification of the volatile compounds suspected as allergens, which are present in the fragrance compounds and fragrance raw materials used in cosmetic products. The analysis is performed by gas chromatography and mass spectrometry (GC-MS) on matrix samples which are "ready to be injected" and which are compatible with gas chromatography.
The analytes covered by this procedure are based on the contents of Tables 13.1 and 13.2 in the SCCS 1459/11 opinion document (1) and as listed in the legislation proposed by the European Commission. The rationale behind the final choice of procedure analytes is given in the table found in Annex J.
The method was validated at IFRA and CEN level.

  • Standard
    70 pages
    English language
    sale 10% off
    e-Library read for
    1 day