This document describes a method for determination of grindability of graded thermally treated and densified biomass fuels such as classified in ISO/TS 17225-8, for the purposes of preparing fuels with a defined particle size distribution for effective combustion in pulverized fuel boilers.
The grindability characteristics determined by the test method provide guidance as to the pulverizing mill performance when utilizing such fuels.
Apart from pelletized materials as described in ISO/TS 17225-8, the method can also be applied to non-compressed or non-densified thermally treated biomass as specified in ISO 17225-1 Table 14 and Table 15.
The results created with this method are not relevant for large wood chips, since limitations apply for large pulverizing coal mills, which are typically not used for grinding materials such as chips.

  • Technical specification
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidance on the risk-based approach to follow for the design and operation of the LNG bunker transfer system, including the interface between the LNG bunkering supply facilities and receiving LNG fuelled vessels. This document provides requirements and recommendations for the development of a bunkering site and facility and the LNG bunker transfer system, providing the minimum functional requirements qualified by a structured risk assessment approach taking into consideration LNG properties and behaviour, simultaneous operations and all parties involved in the operation. This document is applicable to bunkering of both seagoing and inland trading vessels. It covers LNG bunkering from shore or ship, mobile to ship and ship to ship LNG supply scenarios, as described in Clause 4.

  • Technical specification
    38 pages
    English language
    sale 15% off

This document is applicable to dry gas sealing systems for axial, centrifugal, and rotary screw compressors and expanders as described in ISO 10439 (all parts), ISO 10440-1 and ISO 10440-2. Although intended for use primarily in oil refineries, it is also applicable to petrochemical facilities, gas plants, liquefied natural gas (LNG) facilities and oil and gas production facilities. The information provided is designed to aid in the selection of the system that is most appropriate for the risks and circumstances involved in various installations. This document does not apply to other types of shaft seals such as clearance seals, restrictive ring seals or oil seals. This document is a supplement to API Std 692, 1st edition (2018), the requirements of which are applicable with the exceptions specified in this document.

  • Standard
    5 pages
    English language
    sale 15% off

This document specifies requirements for managing and controlling the weight and centre of gravity (CoG) of offshore facilities by means of mass management during all lifecycle phases including; conceptual design, front end engineering design (FEED), detail engineering, construction and operations. These can be new facilities (greenfield) or modifications to existing facilities (brownfield). Weight management is necessary throughout operations, decommissioning and removal to facilitate structural integrity management (SIM). The provisions of this document are applicable to fixed and floating facilities of all types. Weight management only includes items with static mass. Snow and ice loads are excluded as they are not considered to be part of the facility. Dynamic loads are addressed in ISO 19904-1, ISO 19901-6 and ISO 19901-7. This document specifies: a) requirements for managing and controlling weights and CoGs of assemblies and entire facilities; b) requirements for managing weight and CoG interfaces; c) standardized terminology for weight and CoG estimating and reporting; d) requirements for determining not-to-exceed (NTE) weights and budget weights; e) requirements for weighing and determination of weight and centre of gravity (CoG) of tagged equipment, assemblies, modules and facilities; This document can be used: f) as a basis for costing, scheduling or determining suitable construction method(s) or location(s) and installation strategy; g) as a basis for planning, evaluating and preparing a weight management plan and reporting system; h) as a contract reference; i) as a means of refining the structural analysis or model.

  • Standard
    65 pages
    English language
    sale 15% off
  • Draft
    64 pages
    English language
    sale 15% off

This European Standard applies to metering pumps, dispensers and remote pumping units to be installed at petrol filling stations, designed to dispense liquid fuels into the tanks of motor vehicles, boats and light aircraft and into portable containers at flow rates up to 200 l min-1, and intended for use and storage at ambient temperatures between  20 °C and +40 °C. Measures in addition to those required by this European Standard may be required for use and storage at temperature outside this range. The need for and nature of additional requirements should be determined by the manufacturer, if necessary after consulting the client.
This European Standard deals with all significant hazards, hazardous situations and events relevant to metering pumps, dispensers and remote pumping units, when they are used as intended and under the conditions foreseeable by the manufacturer (see Clause 4).
This European Standard gives health and safety related requirements for the selection, construction and performance of the equipment.
This European Standard does not deal with noise and with hazards related to transportation and installation.
This European Standard does not include any requirements for metering performance.
Vapour recovery efficiency rates are not considered within this European Standard.
Fuels other than the ones of Explosion Group IIA are excluded from this European Standard.
This European Standard is not applicable to metering pumps, dispensers and remote pumping units which are manufactured before the date of publication of this document by CEN.
This European Standard does not apply to equipment for use with liquefied petroleum gas (LPG) or liquefied natural gas (LNG) or compressed natural gas (CNG).

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies safety and environmental requirements for the construction and performance of shear valves to be fitted to metering pumps, dispensers, and/or satellite delivery systems installed at petrol filling stations and used to dispense liquid fuels into the tanks of motor vehicles, boats and light aircraft and into portable containers at flow rates up to 200 l min-1.
The requirements apply to shear valves at ambient temperatures from -20 °C to +40 °C with the possibility for an extended temperature range.
It pays particular attention to mechanical and hydraulic characteristics.
NOTE 1   This European Standard does not apply to equipment for use with liquefied petroleum gas (LPG) or liquefied natural gas (LNG) or compressed natural gas (CNG).
NOTE 2   Fuels other than of Explosion Group IIA are excluded from this European Standard.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies safety requirements for the construction and performance of safe breaks to be fitted to metering pumps and dispensers installed at filling stations and used to dispense liquid fuels into the tanks of motor vehicles, boats and light aircraft and into portable containers at flow rates up to 200 l min-1.
The requirements apply to safe breaks at ambient temperatures from –20 °C to +40 °C with the possibility for an extended temperature range.
It pays particular attention to electrical, mechanical and hydraulic characteristics of, and electrical apparatus incorporated within or mounted on, the safe break.
This European Standard applies mainly to hazards related to the ignition of liquid fuels being dispensed or their vapour. This European Standard also addresses electrical and mechanical hazards.
NOTE 1   This European Standard does not apply to equipment for use with liquefied petroleum gas (LPG) or liquefied natural gas (LNG) or compressed natural gas (CNG).
NOTE 2   Fuels other than of Explosion Group IIA are excluded from this European Standard.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance on multifuel stations. It was prepared to facilitate the integration of alternative fuels in existing fuelling stations and to facilitate the design, authorization and operation of multifuel stations.
This document compares the terms and definitions used in a selection of standards applicable to each fuel: electricity, hydrogen, compressed and liquefied natural gas, LPG, diesel and petrol.
It compares the requirements addressed in these standards for each fuel.
It describes the internal and external separation distances applied for different fuels.
It gives guidance on the design and operation of Emergency Shut Down systems and on combined activities.

  • Guide
    76 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies safety requirements for the construction and performance of swivels to be fitted to delivery hose assemblies on metering pumps and dispensers installed at filling stations and used to dispense liquid fuels into the tanks of motor vehicles, boats and light aircraft and into portable containers at flow rates up to 200 l min-1. It pays particular attention to electrical, mechanical and hydraulic characteristics of swivels.
The requirements apply to swivels at ambient temperatures from –20 °C to +40 °C with the possibility for an extended temperature range.
This European Standard applies mainly to hazards related to the ignition of liquid fuels being dispensed or their vapour. This European Standard also addresses electrical and mechanical hazards of swivels.
This European Standard is not applicable to swivels for the dispensing of any compressed gas.
NOTE 1   This European Standard does not apply to equipment for use with liquefied petroleum gas (LPG) or liquefied natural gas (LNG) or compressed natural gas (CNG).
NOTE 2   Fuels other than of Explosion Group IIA are excluded from this European Standard.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies safety and environmental requirements for the construction and performance of nozzles to be fitted to metering pumps and dispensers installed at filling stations and which are used to dispense liquid fuels and aqueous urea solution into the tanks of motor vehicles, boats and light aircraft and into portable containers, at flow rates up to 200 l · min-1.
This document applies to fuels of Explosion Group IIA and also aqueous urea solution according to ISO 22241-1.
NOTE   Fuels other than of Explosion Group IIA are excluded from this document.
The requirements apply to automatic nozzles dispensing flammable liquid fuels at ambient temperatures from –20 °C to +40 °C with the possibility for an extended temperature range.
This document does not apply to equipment dispensing compressed or liquefied gases.
This document does not include any requirements for metering performance, such as might be specified under the Measuring Instruments Directive, nor those requirements specified under the Electromagnetic Compatibility Directive.
Vapour recovery efficiency rates are not covered in this document.

  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for a) determining the true relative density of coke, crushed to NOTE        “True relative density” varies according to the displacement liquid used. b) determining the apparent relative density of coke, i.e. the ratio of the mass of a volume of dry coke to the mass of an equal volume of water; c) calculating the porosity of the coke.

  • Standard
    10 pages
    English language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off

This document specifies requirements for two types of thermoplastic multi-layer (non-vulcanized) transfer hoses and hose assemblies for carrying liquefied petroleum gas and liquefied natural gas. Each type is subdivided into two classes, one for onshore duties, and the other for offshore. —   Class A hose is for use onshore. —   Class B hose is for use offshore. This document is applicable for hose sizes from 25 mm to 250 mm, working pressures from 10,5 bar to 25 bar and operating temperatures from −196 °C to +45 °C, according to class. NOTE     Offshore liquefied natural gas (LNG) hose assemblies are also specified in EN 1474-2. EN 1474-2 does not only specify offshore use, but also ship to shore and other LNG transfer applications.

  • Standard
    20 pages
    English language
    sale 15% off
  • Draft
    20 pages
    English language
    sale 15% off

This European Standard describes a method for the determination of the boiling range distribution of petroleum products by capillary gas chromatography using flame ionization detection. The standard is applicable to stabilized crude oils and for the boiling range distribution and the recovery up to and including n-nonane. A stabilized crude oil is defined as having a Reid Vapour Pressure equivalent to or less than 82,7 kPa as determined by IP 481 [3].
NOTE   For the purposes of this European Standard, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, ω, and the volume fraction, φ.
WARNING —The use of this European Standard may involve hazardous materials, operations and equipment. This European Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes the general principles to be adopted to minimize the effects of stray current
corrosion caused by direct-current (d.c.) on buried or immersed pipeline systems. A brief description of
alternating current (a.c.) effects is provided.
The document is intended to offer guidance for:
— the design of cathodic protection systems which may produce stray currents;
— the design of pipeline systems, or elements of pipeline systems, which are to be buried or immersed and which may be subject to stray current corrosion;
— the selection of appropriate protection or mitigation measures.
The effects of a.c. induced voltages are not dealt with in detail in this document because they are
covered in ISO 18086. General principles and guidelines are, however, provided.
Stray current corrosion can also occur internally in systems containing a conducting electrolyte e.g.
near insulating joints or high resistance pipe joints in pipelines transporting conductive fluids.
Internal corrosion risks from stray currents are not dealt with in detail in this document but principles
and measures described here can be applicable for minimizing the interference effects.
Stray currents can also cause other effects such as overheating. These other effects are not covered in
this document.
A.C. currents can induce unacceptable touch voltages on above-ground appurtenances of pipeline
systems. These are not covered in detail in this document. They are covered in EN 50443, EN 61140,
IEC 60364-4-41, IEC TS 60479-1, IEC 60364-5-52, IEC /TS 61201, and IEC TR 60479-5.
Systems which may be affected by stray currents include buried or immersed metal structures such as:
a) pipeline systems;
b) metal sheathed cables;
c) tanks and vessels;
d) earthing systems;
e) steel reinforcement in concrete;
f) sheet steel piling.
This document provides details only for pipeline systems although the principles can be applied to
other buried structures. The EN 50162 series of standards also provide guidance for railway related
structures.

  • Standard
    76 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determining the strength of coke by the shatter test.

  • Standard
    5 pages
    English language
    sale 15% off
  • Draft
    5 pages
    English language
    sale 15% off

This document describes a method for determination of grindability of graded thermally treated and densified biomass fuels such as classified in ISO/TS 17225-8, for the purpose of preparing fuels with a defined particle size distribution for effective combustion in pulverized fuel boilers. The grindability characteristics determined by the test method provide guidance as to the pulverizing mill performance when utilizing such fuels. Apart from pelletized materials as described in ISO/TS 17225-8, the method can also be applied to non-compressed or non-densified thermally treated biomass as specified in ISO 17225-1:2021, Table 14 and Table 15. The results created with this method are not relevant for large wood chips, since limitations apply for large pulverizing coal mills, which are typically not used for grinding materials such as chips.

  • Technical specification
    9 pages
    English language
    sale 15% off
  • Technical specification
    9 pages
    French language
    sale 15% off
  • Draft
    9 pages
    English language
    sale 15% off

This document specifies the selection criteria and minimum requirements for protective coating systems for field maintenance and repair of risers exposed to conditions in the splash zone.
This document does not cover the selection of techniques and materials used to restore integrity of the risers to be coated.
This document neither covers the selection of additional mechanical protective materials that are not part of the described coating systems included in this document.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document illustrates the formulae and templates necessary to calculate the various pipe properties given in International Standards, including
— pipe performance properties, such as axial strength, internal pressure resistance and collapse resistance,
— minimum physical properties,
— product assembly force (torque),
— product test pressures,
— critical product dimensions related to testing criteria,
— critical dimensions of testing equipment, and
— critical dimensions of test samples.
For formulae related to performance properties, extensive background information is also provided regarding their development and use.
Formulae presented here are intended for use with pipe manufactured in accordance with ISO 11960 or API 5CT, ISO 11961 or API 5D, and ISO 3183 or API 5L, as applicable. These formulae and templates can be extended to other pipe with due caution. Pipe cold-worked during production is included in the scope of this document (e.g. cold rotary straightened pipe). Pipe modified by cold working after production, such as expandable tubulars and coiled tubing, is beyond the scope of this document.
Application of performance property formulae in this document to line pipe and other pipe is restricted to their use as casing/tubing in a well or laboratory test, and requires due caution to match the heat-treat process, straightening process, yield strength, etc., with the closest appropriate casing/tubing product. Similar caution is exercised when using the performance formulae for drill pipe.
This document and the formulae contained herein relate the input pipe manufacturing parameters in ISO 11960 or API 5CT, ISO 11961 or API 5D, and ISO 3183 or API 5L to expected pipe performance. The design formulae in this document are not to be understood as a manufacturing warranty. Manufacturers are typically licensed to produce tubular products in accordance with manufacturing specifications which control the dimensions and physical properties of their product. Design formulae, on the other hand, are a reference point for users to characterize tubular performance and begin their own well design or research of pipe input properties.
This document is not a design code. It only provides formulae and templates for calculating the properties of tubulars intended for use in downhole applications. This document does not provide any guidance about loads that can be encountered by tubulars or about safety margins needed for acceptable design. Users are responsible for defining appropriate design loads and selecting adequate safety factors to develop safe and efficient designs. The design loads and safety factors will likely be selected based on historical practice, local regulatory requirements, and specific well conditions.
All formulae and listed values for performance properties in this document assume a benign environment and material properties conforming to ISO 11960 or API 5CT, ISO 11961 or API 5D and ISO 3183 or API 5L. Other environments can require additional analyses, such as that outlined in Annex D.
Pipe performance properties under dynamic loads and pipe connection sealing resistance are excluded from the scope of this document.
Throughout this document tensile stresses are positive.

  • Technical report
    239 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    236 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies several methods for the empirical estimation of the consistency of lubricating greases and petrolatum by measuring the penetration of a standardized cone.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    24 pages
    French language
    sale 15% off

This document specifies the procedure for a determination of major and minor element concentrations in solid recovered fuel material by energy dispersive X-ray fluorescence (EDXRF) spectrometry or wavelength dispersive X-ray fluorescence (WDXRF) spectrometry using a calibration with solid recovered fuel reference materials or solid recovered fuel samples with known content. A semiquantitative determination may be carried out using matrix independent standards.
X-ray fluorescence spectrometry can be used as a fast method for a qualitative overview of elements and impurities and after suitable calibration it is very useful for determining major elements or even minor elements (except Hg) in order to quickly identify increased concentrations of minor elements in solid recovered fuels (e.g. during SRF-production).
This document is applicable for the following elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Mo, Cd, Sb, Tl and Pb. Concentrations from approximately 0,000 1 % and above can be determined depending on the element, the calibration materials used and the instrument used.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    1 page
    English language
    sale 15% off
  • Standard
    1 page
    French language
    sale 15% off
  • Draft
    1 page
    English language
    sale 15% off
  • Draft
    1 page
    French language
    sale 15% off

This document specifies the requirements for two groups of rubber hoses and rubber hose assemblies for loading and discharge of liquid hydrocarbon fuels with a maximum working pressure of 1,0 MPa (10 bar). Both groups of hoses are designed for a) use with hydrocarbon fuels having an aromatic-hydrocarbon content not exceeding 50 % by volume and containing up to 15 % of oxygenated compounds, and b) operation within the temperature range of −30 °C to +70 °C, undamaged by climatic conditions of −50 °C to +70 °C when stored in static conditions. NOTE     Hoses for use at temperatures lower than −30 °C can be the subject of discussion between manufacturer and end user. This document is not applicable to hoses and hose assemblies for LPG systems, aviation fuel systems, fuel station systems or marine applications.

  • Standard
    14 pages
    English language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off

This document specifies the selection criteria and minimum requirements for protective coating systems for maintenance and field repair of risers exposed to conditions in the splash zone. It is applicable for maintenance requirements and field repairs of riser coatings. This document does not apply to the selection of techniques and materials used to restore integrity of the risers to be coated, nor does it apply to the selection of additional mechanical protective materials that are not part of the coating systems described in this document. New construction shop applied riser coatings are covered in ISO 18797-1. Compatible maintenance and repair coating systems specified in ISO 18797-1 are covered in this document.

  • Standard
    65 pages
    English language
    sale 15% off
  • Draft
    64 pages
    English language
    sale 15% off

This document determines the fuel quality classes and specifications of graded non-woody pellets.
This document covers only non-woody pellets produced from the following raw material (see
ISO 17225-1:2021, Table 1):
— 2 Herbaceous biomass
— 3 Fruit biomass
— 4 Aquatic biomass
— 5 Biomass blends and mixtures
NOTE 1 Herbaceous biomass originates from plants that have a non-woody stem and which die back at the end
of the growing season. It includes grains or seeds crops from food production or processing industry and their
by-products such as cereals.
NOTE 2 Blends and mixtures include blends and mixtures from the main origin-based solid biofuel groups
woody biomass, herbaceous biomass, fruit biomass and aquatic biomass.
Blends are intentionally mixed biofuels, whereas mixtures are unintentionally mixed biofuels. The
origin of the blend and mixture is to be described using ISO 17225-1:2021, Table 1.
If solid biofuel blend or mixture contains chemically treated material it shall be stated.
NOTE 3 Thermally treated biomass pellets (e.g. torrefied pellets) are not included in the scope of this
document.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document determines the fuel quality classes and specifications of graded non-woody briquettes. This document covers only non-woody briquettes produced from the following raw materials (see ISO 17225-1:2021, Table 1):
— 2 Herbaceous biomass
— 3 Fruit biomass
— 4 Aquatic biomass
— 5 Biomass blends and mixtures
NOTE 1 Herbaceous biomass originates from plants that have a non-woody stem and which die back at the end of the growing season. It includes grains or seeds crops from food production or processing industry and their by-products such as cereals.
NOTE 2 Blends and mixtures include blends and mixtures from the main origin-based solid biofuel groups woody biomass, herbaceous biomass, fruit biomass and aquatic biomass.
Blends are intentionally mixed biofuels, whereas mixtures are unintentionally mixed biofuels. The origin of the blend and mixture is to be described using ISO 17225-1:2021, Table 1.
If solid biofuel blend or mixture contains chemically treated material it shall be stated.
NOTE 3 Thermally treated biomass briquettes (e.g. torrefied briquettes) are not included in the scope of this document.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document determines the fuel quality classes and specifications of graded firewood. This document
covers only firewood produced from the following raw materials (see ISO 17725-1:2021, Table 1):
— 1.1.1 Whole trees without roots;
— 1.1.3 Stem wood;
— 1.1.4 Logging residues (thick branches, tops etc.);
— 1.2.1 Chemically untreated by-products and residues from wood processing industry.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard specifies a method for the determination of gross calorific value of solid recovered fuels
at constant volume and at the reference temperature 25 °C in a bomb calorimeter calibrated by
combustion of certified benzoic acid.

  • Standard
    69 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    66 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document determines the fuel quality classes and specifications of graded hog fuel and wood chips for industrial use. It covers only hog fuel and wood chips produced from the following raw materials (see ISO 17225-1:—, Table 1):
— 1.1 forest, plantation and other virgin wood;
— 1.2 by-products and residues from wood processing industry;
— 1.3.1 chemically untreated used wood;
— 1.4 blends and mixtures.
This document covers hog fuel, which is produced with blunt tools, and wood chips, which are produced with sharp tools.
NOTE 1 1.2.2 By-products and residues from wood processing industry, which can include chemically treated material (e.g. glued, painted, laminated) are not allowed include halogenated organic compounds or heavy metals at levels higher than those in typical virgin material values (see Annex B in ISO 17225-1) or higher than typical values of the country of origin.
NOTE 2 If class I4 includes chemically treated used wood (1.3.2), it can be only used in the installations permitted to use 1.3.2.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a reference method for determining the total sulfur content of hard coal, brown coals and lignites, and coke by the Eschka method.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    7 pages
    English language
    sale 15% off
  • Draft
    7 pages
    English language
    sale 15% off

This document specifies the gas chromatographic (GC) method for the determination of saturated,
olefinic and aromatic hydrocarbons in automotive motor gasoline and ethanol (E85) automotive fuel.
Additionally, the benzene and toluene content, oxygenated compounds and the total oxygen content can
be determined.
NOTE 1 For the purposes of this document, the terms % (m/m) and % (V/V) are used to represent respectively
the mass fraction, w, and the volume fraction, φ.
This document defines two procedures, A and B.
Procedure A is applicable to automotive motor gasoline with total aromatics of 19,32 % (V/V) up to
46,29 % (V/V); total olefins from 0,40 % (V/V) up to 26,85 % (V/V); oxygenates from 0,61 % (V/V) up to
9,85 % (V/V); oxygen content from 1,50 % (m/m) to 12,32 % (m/m); benzene content from 0,38 % (V/V)
up to 1,98 % (V/V) and toluene content from 5,85 % (V/V) up to 31,65 % (V/V).
The method has also been tested for individual oxygenates. A precision has been determined for
a total volume of methanol from 1,05 % (V/V) up to 16,96 % (V/V); a total volume of ethanol from
0,50 % (V/V) up to 17,86 % (V/V); a total volume of MTBE from 0,99 % (V/V) up to 15,70 % (V/V), a total
volume of ETBE from 0,99 % (V/V) up to 15,49 % (V/V), a total volume of TAME from 0,99 % (V/V) up to
5,92 % (V/V), and a total volume of TAEE from 0,98 % (V/V) up to 15,59 % (V/V).
Although this test method can be used to determine higher-olefin contents of up to 50 % (V/V), the
precision for olefins was tested only in the range from 0,40 % (V/V) to 26,85 % (V/V).
Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates,
this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such
as naphthas and reformates.
NOTE 2 For Procedure A, applicability of this document has also been verified for the determination of
n-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these
compounds.
Procedure B describes the analysis of oxygenated groups (ethanol, methanol, ethers, C3 – C5 alcohols)
in ethanol (E85) automotive fuel containing ethanol between 50 % (V/V) and 85 % (V/V). The gasoline
is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % (V/V)
before the analysis by GC.
The sample can be fully analysed including hydrocarbons. Precision data for the diluted sample are
only available for the oxygenated groups.
NOTE 3 For Procedure B, the precision can be used for an ethanol fraction from about 50 % up to 85 % (V/V).
For the ether fraction, the precision as specified in Table 6 can be used for samples containing at least 11 % (V/V)
of ethers. For the higher alcohol fraction, too few data were obtained to derive a full precision statement and the
data presented in Table 6 are therefore only indicative.
NOTE 4 An overlap between C9 and C10 aromatics can occur. However, the total is accurate. Isopropyl benzene
is resolved from the C8 aromatics and is included with the other C9 aromatics.

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides requirements and guidance for reporting of production performance data and production loss data in the operating phase by use of production loss categorization. It supplements the principles of ISO 20815:2018, Clause E.3 and Annex G by providing additional details. This document focusses on installations and asset elements within the upstream business category. Business categories and associated installations and plants/units, systems and equipment classes are used in line with ISO 14224:2016, Annex A. The production loss categories given in Annex A are given at a high taxonomic level and supplements the reporting of failure and maintenance parameters as defined in ISO 14224:2016, Annex B.

  • Technical specification
    71 pages
    English language
    sale 15% off
  • Draft
    71 pages
    English language
    sale 15% off

This European standard specifies a method for the direct determination of water in ethanol to be used in gasoline blends. It is applicable in the range 0,05 % (m/m) to 0,54 % (m/m).
NOTE   For the purposes of this European Standard, the term “% (m/m)” is used to represent the mass fraction.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of the bulk density of coke in a cubical or cylindrical container of small capacity (0,2Â m3). It is applicable to coke with a nominal top size not greater than 125Â mm.

  • Standard
    4 pages
    English language
    sale 15% off
  • Draft
    4 pages
    English language
    sale 15% off

This document specifies the procedure for a determination of major and minor element concentrations in solid recovered fuel material by energy-dispersive X-ray fluorescence (EDXRF) spectrometry or wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry using a calibration with solid recovered fuel reference materials or solid recovered fuel samples with known content. A semiquantitative determination can be carried out using matrix independent standards. This document is applicable to the following elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Mo, Cd, Sb, Sn, Tl and Pb. Concentration levels between approximately 0,000Â 1Â % and 100Â % can be determined depending on the element, the calibration materials used and the instrument used. NOTEÂ Â Â Â Â Â Â Â Â Â Â X-ray fluorescence spectrometry can be used as a fast method for a qualitative overview of elements and impurities and after suitable calibration it is very useful for determining major elements or even minor elements (except Hg) in order to quickly identify increased concentrations of minor elements in solid recovered fuels (SRF), for example during SRF-production.

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    37 pages
    French language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off
  • Draft
    37 pages
    French language
    sale 15% off
  • Standard
    8 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    8 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

The objective of ISO 20257 is to provide functional guidelines and recommend practices for the design of
floating liquefied natural gas (LNG) installations in order to have a safe and environmentally acceptable design and operation of floating LNG installations. ISO 20257 gives functional guidelines for the design and operation of all floating LNG installations including those for the liquefaction, storage, vaporisation, transfer and handling of LNG.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document covers the design and manufacturing, installation and testing, operation and maintenance for vehicle fuelling appliances (VFAs) – the assemblies of the pressure equipment with limited technical parameters, intended for the non-commercial fuelling of natural gas vehicles (NGVs) with compressed natural gas (CNG).
This document is applicable to VFAs supplied with natural gas as defined in local applicable gas composition regulations or EN 16723-2, or with other gases meeting these requirements including biomethane, upgraded coal-bed methane (CBM) and gas from liquefied natural gas (LNG) vaporizer (on-site or off-site).
In case of combination of the certified VFA assembly with additional equipment, such as external storage and/or dispenser, EN ISO 16923 applies to the new assembly - the certified VFA assembly with added external equipment.
In case of combinations of interconnected VFA assemblies, EN ISO 16923 applies to the whole new assembly of the certified VFA assemblies.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document determines the fuel quality classes and specifications for solid biofuels of raw and
processed materials originating from
a) forestry and arboriculture;
b) agriculture and horticulture;
c) aquaculture.
Chemically treated material may not include halogenated organic compounds or heavy metals at levels
higher than those in typical virgin material values (see Annex B) or higher than typical values of the
country of origin.
NOTE Raw and processed material includes woody, herbaceous, fruit, aquatic biomass and biodegradable
waste originating from above sectors.

  • Standard
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    68 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for evaluating the resistance of a lubricating grease to washout by water from a bearing, when tested at 38 °C or 79 °C under specified laboratory test conditions. This test method estimates the resistance of greases to washout from ball bearings under specified conditions. No formal correlation with field service has been established so far. This document is used for development and specification purposes. NOTE     For the purposes of this document, the term “% (m/m)” is used to represent the mass fraction.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off

This document specifies the technical delivery conditions for unalloyed or low-alloy steel seamless and welded pipeline fittings for use in pipeline transportation systems for the petroleum and natural gas industries as defined in ISO 13623. This document is applicable to welding-end fittings such as elbows, caps, tees, single or multiple extruded headers, reducers, and transition sections made from seamless and welded pipe of unalloyed or low-alloy steels. This document specifies two classes of fitting one related to material used in non-sour service and one for material to be use in sour service environment as shown in Table 1. This document is not applicable to the selection of the fitting class. This document is not applicable to the materials for, or the attachment of, factory-welded extensions.

  • Standard
    27 pages
    English language
    sale 15% off
  • Draft
    27 pages
    English language
    sale 15% off

This document specifies the minimum requirements for mineral or synthetic based lubricants, as delivered, and intended for use in flooded rotary air compressors (vane and screw). This document can be read in conjunction with ISO 6743-3. NOTE     For the purposes of this document, the term “% (m/m)” is used to represent the mass fraction of a material.

  • Technical specification
    8 pages
    English language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off

This document establishes a classification and specifies the minimum requirements for mineral or synthetic base stock-based greases for the categories CKG and CKL according to ISO 6743-6 intended for the lubrication of enclosed and open gear systems. This document does not cover the extreme cases of use in terms of temperature and extreme charges conditions. For use in exceptional conditions, suppliers and purchasers of lubricants are intended to mutually agree on the testing methods and the acceptability criteria of the products, not covered by this document. NOTE 1  This document can be read in conjunction with ISO 6743-6, ISO 6743-9[1], ISO 12924[3] and ISO 6743-99[2]. NOTE 2  For the purpose of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction of a material.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off
  • Draft
    9 pages
    English language
    sale 15% off
  • Draft
    10 pages
    French language
    sale 15% off

This document specifies the gas chromatographic (GC) method for the determination of saturated, olefinic and aromatic hydrocarbons in automotive motor gasoline and ethanol (E85) automotive fuel. Additionally, the benzene and toluene content, oxygenated compounds and the total oxygen content can be determined. NOTE 1  For the purposes of this document, the terms % (m/m) and % (V/V) are used to represent respectively the mass fraction, w, and the volume fraction, φ. This document defines two procedures, A and B. Procedure A is applicable to automotive motor gasoline with total aromatics of 19,32 % (V/V) up to 46,29 % (V/V); total olefins from 0,40 % (V/V) up to 26,85 % (V/V); oxygenates from 0,61 % (V/V) up to 9,85 % (V/V); oxygen content from 1,50 % (m/m) to 12,32 % (m/m); benzene content from 0,38 % (V/V) up to 1,98 % (V/V) and toluene content from 5,85 % (V/V) up to 31,65 % (V/V). The method has also been tested for individual oxygenates. A precision has been determined for a total volume of methanol from 1,05 % (V/V) up to 16,96 % (V/V); a total volume of ethanol from 0,50 % (V/V) up to 17,86 % (V/V); a total volume of MTBE from 0,99 % (V/V) up to 15,70 % (V/V), a total volume of ETBE from 0,99 % (V/V) up to 15,49 % (V/V), a total volume of TAME from 0,99 % (V/V) up to 5,92 % (V/V), and a total volume of TAEE from 0,98 % (V/V) up to 15,59 % (V/V). Although this test method can be used to determine higher-olefin contents of up to 50 % (V/V), the precision for olefins was tested only in the range from 0,40 % (V/V) to 26,85 % (V/V). Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates, this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates. NOTE 2  For Procedure A, applicability of this document has also been verified for the determination of n-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these compounds. Procedure B describes the analysis of oxygenated groups (ethanol, methanol, ethers, C3 – C5 alcohols) in ethanol (E85) automotive fuel containing ethanol between 50 % (V/V) and 85 % (V/V). The gasoline is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % (V/V) before the analysis by GC. The sample can be fully analysed including hydrocarbons. Precision data for the diluted sample are only available for the oxygenated groups. NOTE 3  For Procedure B, the precision can be used for an ethanol fraction from about 50 % up to 85 % (V/V). For the ether fraction, the precision as specified in Table 6 can be used for samples containing at least 11 % (V/V) of ethers. For the higher alcohol fraction, too few data were obtained to derive a full precision statement and the data presented in Table 6 are therefore only indicative. NOTE 4  An overlap between C9 and C10 aromatics can occur. However, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics.

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    22 pages
    French language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off
  • Draft
    22 pages
    French language
    sale 15% off

This document specifies a method for the determination of the rust prevention characteristics of lubricating grease in the presence of a flow of an aqueous test fluid. This test method is used to assess the ability of a grease to prevent corrosion in rolling bearings operated in presence of water, synthetic sea water or any industrial aqueous pollutant, under wash out conditions. NOTE     For the purposes of this document, the term “% (m/m)” is used to represent the mass fraction.

  • Technical specification
    10 pages
    English language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off

This document specifies a method for the determination of the rust prevention characteristics of lubricating grease under dynamic wet conditions. This test method is used to assess the ability of a grease to prevent corrosion in rolling bearings operated in presence of water, synthetic sea water or any industrial aqueous pollutant. NOTE     For the purposes of this document, the term “% (m/m)” is used to represent the mass fraction.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    11 pages
    French language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off

This International Standard specifies a classification system for solid recovered fuels (SRF)
and a template for the specification of their properties.
SRF are produced from non-hazardous waste.
Excluded:
— untreated municipal solid waste
— Solid Biofuels included in the scope of ISO TC238

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document determines the fuel quality classes and specifications of graded wood pellets for nonindustrial
and industrial use. This document covers only wood pellets produced from the following raw
materials (see ISO 17225-1:2021, Table 1):
— 1.1 Forest, plantation and other virgin wood;
— 1.2 By-products and residues from wood processing industry;
— 1.3.1 Chemically untreated used wood.
Thermally treated biomass pellets (e.g. torrefied pellets) are not included in the scope of this document.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document determines the fuel quality classes and specifications of graded hog fuel and wood chips for industrial use. It covers only hog fuel and wood chips produced from the following raw materials (see ISO 17225-1, Table 1): —   1.1 Forest, plantation and other virgin wood; —   1.2 By-products and residues from wood processing industry; —   1.3 Used wood; —   1.4 Blends and mixtures. This document covers hog fuel that has pieces of varying size and shape, produced by crushing with blunt tools such as rollers, hammers, or flails, and wood chips which are defined as chipped woody biomass with a sub-rectangular shape and a typical length of 5 mm to 50 mm typically in the form of pieces with a defined particle size produced by mechanical treatment with sharp tools such as knives. See 1.1.2 in ISO 17225-1, Table 1 for by-products and residues from wood processing industry, which can include chemically treated material (e.g. glued, painted, laminated), are not allowed to contain halogenated organic compounds or heavy metals at levels higher than those in typical virgin material values or higher than typical values of the country of origin (see Annex B in ISO 17225-1). NOTE      If 1.4 Blends and mixtures includes 1.3.2 Chemically treated used wood, it can be only used in the installations permitted to use 1.3.2.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off
  • Draft
    8 pages
    French language
    sale 15% off

This document determines the fuel quality classes and specifications of graded non-woody briquettes. This document covers only non-woody briquettes produced from the following raw materials (see ISO 17225‑1:2021, Table 1): —   2 Herbaceous biomass —   3 Fruit biomass —   4 Aquatic biomass —   5 Biomass blends and mixtures NOTE 1   Herbaceous biomass originates from plants that have a non-woody stem and which die back at the end of the growing season. It includes grains or seeds crops from food production or processing industry and their by-products such as cereals. NOTE 2   Blends and mixtures include blends and mixtures from the main origin-based solid biofuel groups woody biomass, herbaceous biomass, fruit biomass and aquatic biomass. Blends are intentionally mixed biofuels, whereas mixtures are unintentionally mixed biofuels. The origin of the blend and mixture is to be described using ISO 17225‑1:2021, Table 1. If solid biofuel blend or mixture contains chemically treated material it shall be stated. NOTE 3             Thermally treated biomass briquettes (e.g. torrefied briquettes) are not included in the scope of this document

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    French language
    sale 15% off
  • Draft
    6 pages
    English language
    sale 15% off
  • Draft
    7 pages
    French language
    sale 15% off