75.160.20 - Liquid fuels
ICS 75.160.20 Details
Liquid fuels
Flussige Brennstoffe
Combustibles liquides
Tekoča goriva
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 75.160.20 - Liquid fuels
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document specifies requirements and test methods for E20 petrol marketed and delivered as such, containing a minimum oxygen content of 3,7 % (m/m) and a maximum of 8,0 % (m/m). The fuel has a maximum of 20,0 % (V/V) ethanol.
It is applicable to fuel for use in spark-ignition petrol-fuelled engines and vehicles.
This document is complementary to EN 228, which describes unleaded petrol containing an oxygen content up to 3,7 % (m/m) and a maximum ethanol content of 10 % (V/V).
NOTE 1 For general petrol engine vehicle warranty, E20 petrol might not be suitable for all vehicles and it is advised that the recommendations of the vehicle manufacturer are consulted before use. E20 petrol might need a validation step to confirm the compatibility of the fuel with the vehicle, which for some existing engines might still be needed.
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
- Technical specification16 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a test method for the determination of fatty acid methyl ester (FAME) content in diesel fuel or domestic heating fuel by mid-infrared (IR) spectrometry and a transmission sample cell, which applies to FAME contents of the three measurement ranges as follows:
— range A: for FAME contents ranging from approx. 0,05 % (V/V) to approx. 3 % (V/V);
— range B: for FAME contents ranging from approx. 3 % (V/V) to approx. 20 % (V/V);
— range C: for FAME contents ranging from approx. 20 % (V/V) to approx. 50 % (V/V).
Principally, higher FAME contents can also be analysed if diluted; however, no precision data for results outside the specified range is available at present.
This test method was verified to be applicable to samples which contain FAME conforming to EN 14214. Reliable quantitative results are obtained only if the samples do not contain any significant amounts of other interfering components, especially esters and other carbonyl compounds which possess absorption bands in the spectral region used for quantification of FAME. If such interfering components are present, this test method is expected to produce higher values.
NOTE 1 For the purposes of this document, the term “% (V/V)” is used to represent the volume fraction (φ) of a material.
NOTE 2 For conversion of grams FAME per litre (g FAME/l) to volume fraction, a fixed density for FAME of 883,0 kg/m3 is adopted.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a laboratory method for the determination of the distillation characteristics of light and middle distillates derived from petroleum and related products of synthetic or biological origin with initial boiling points above 20 °C and end-points below approximately 400 °C, at atmospheric pressure utilizing an automatic micro distillation apparatus. This test method is applicable to such products as light and middle distillates, automotive spark-ignition engine fuels, automotive spark-ignition engine fuels containing a volume fraction of up to 20 % ethanol, aviation gasolines, aviation turbine fuels, (paraffinic) diesel fuels, FAME (B100), diesel blends containing a volume fraction of up to 30 % fatty acid methyl esters (FAME), special petroleum spirits, naphthas, white spirits, kerosenes, burner fuels, and marine fuels. The test method is also applicable to hydrocarbons with a narrow boiling range, like organic solvents or oxygenated compounds. The test method is designed for the analysis of distillate products; it is not applicable to products containing appreciable quantities of residual material.
- Standard18 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the content of undissolved substances, referred to as total contamination, in middle distillates, in diesel fuels containing a volume fraction of up to 30 % fatty acid methyl esters (FAME). The working range is from 12 mg/kg to 26 mg/kg and it was established in an interlaboratory study by applying ISO 4259-1[4]. This document in general is applicable to products having a kinematic viscosity not exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C. This test method can be used for paraffinic diesel fuels as specified in EN 15940, for diesel fuels containing a volume fraction of more than 30 % FAME and for petroleum products having a kinematic viscosity exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, however in such cases the precision of the test method has not been determined. WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard9 pagesEnglish languagesale 15% off
- Standard10 pagesFrench languagesale 15% off
- National annex5 pagesSlovenian languagesale 10% offe-Library read for1 day
- National annex3 pagesSlovenian languagesale 10% offe-Library read for1 day
This document specifies requirements and test methods for marketed and delivered automotive diesel fuel. It is applicable to automotive diesel fuel for use in diesel engine vehicles designed to run on automotive diesel fuel containing up to 7,0 %(V/V) fatty acid methyl ester (FAME).
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements and test methods for marketed and delivered unleaded petrol. It is applicable to unleaded petrol for use in petrol engine vehicles designed to run on unleaded petrol.
This document specifies two types of unleaded petrol:
- one type with a maximum oxygen content of 3,7 % (m/m) and a maximum ethanol content of 10,0 % (V/V) in Table 1;
- one type in Table 2 with a maximum oxygen content of 2,7 % (m/m) and a maximum ethanol content of 5,0 % (V/V) intended for older vehicles that are not warranted to use unleaded petrol defined in Table 1.
NOTE 1 The two types are based on European Directive requirements [3], [4] and [13].
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a wavelength-dispersive X-ray fluorescence (WDXRF) test method for the determination of the sulfur content in ethanol (E85) automotive fuel [3], containing ethanol between 50 % (V/V) and 85 % (V/V), from 5 mg/kg to 20 mg/kg, using instruments with either monochromatic or polychromatic excitation.
NOTE 1 Sulfur contents higher than 20 mg/kg can be determined after sample dilution with an appropriate solvent. However, the precision was not established for diluted samples.
NOTE 2 For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction (µ) and the volume fraction (φ) of a material respectively.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
This document explains the requirements and test methods for paraffinic diesel fuel from synthesis or hydrotreatment. Synthesis refers to XTL processes where X refers to various feedstocks for example Gas (G), Biomass (B) or Coal (C) and TL stands for To-Liquid. Hydrotreatment of vegetable oils and animal fats yield Hydrotreated Vegetable Oil (HVO). Paraffinic diesel fuel can be blended with up to 7,0 % (V/V) fatty acid methyl ester (FAME). This document provides background information to the final text of EN 15940 [1] and gives guidance and explanations to the producers, blenders, marketers and users of paraffinic automotive diesel fuel.
Paraffinic diesel fuel is a high quality, clean burning fuel with virtually no sulfur and aromatics. Paraffinic diesel fuel can be used in diesel engines, also to reduce regulated emissions. In order to have the greatest possible emissions reduction, a specific calibration is needed. Some types of paraffinic diesel fuel, at present notably HVO, can also offer a meaningful contribution to the target of increased non-crude derived and/or renewable content in the transportation fuel pool.
For general diesel engine operation, durability and warranty, paraffinic automotive diesel fuel needs a validation step to confirm the compatibility of the fuel with the vehicle, which for some existing engines still needs to be done. The vehicle manufacturer needs to be consulted before use.
NOTE 1 This document is directly related to EN 15940 and will be updated once further publications take place.
NOTE 2 Paraffinic diesel fuel is also used as a blending component in automotive diesel fuel. In that case, composition and properties of the final blends are defined by relevant fuel specification standards.
NOTE 3 For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.
- Technical report51 pagesEnglish languagesale 10% offe-Library read for1 day
This document explains the requirements and test methods for paraffinic diesel fuel from synthesis or hydrotreatment. Synthesis refers to XTL processes where X refers to various feedstocks for example Gas (G), Biomass (B) or Coal (C) and TL stands for To-Liquid. Hydrotreatment of vegetable oils and animal fats yield Hydrotreated Vegetable Oil (HVO). Paraffinic diesel fuel can be blended with up to 7,0 % (V/V) fatty acid methyl ester (FAME). This document provides background information to the final text of EN 15940 [1] and gives guidance and explanations to the producers, blenders, marketers and users of paraffinic automotive diesel fuel.
Paraffinic diesel fuel is a high quality, clean burning fuel with virtually no sulfur and aromatics. Paraffinic diesel fuel can be used in diesel engines, also to reduce regulated emissions. In order to have the greatest possible emissions reduction, a specific calibration is needed. Some types of paraffinic diesel fuel, at present notably HVO, can also offer a meaningful contribution to the target of increased non-crude derived and/or renewable content in the transportation fuel pool.
For general diesel engine operation, durability and warranty, paraffinic automotive diesel fuel needs a validation step to confirm the compatibility of the fuel with the vehicle, which for some existing engines still needs to be done. The vehicle manufacturer needs to be consulted before use.
NOTE 1 This document is directly related to EN 15940 and will be updated once further publications take place.
NOTE 2 Paraffinic diesel fuel is also used as a blending component in automotive diesel fuel. In that case, composition and properties of the final blends are defined by relevant fuel specification standards.
NOTE 3 For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent respectively the mass fraction and the volume fraction.
- Technical report51 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements and test methods for marketed and delivered automotive diesel fuel. It is applicable to automotive diesel fuel for use in diesel engine vehicles designed to run on automotive diesel fuel containing up to 7,0 %(V/V) fatty acid methyl ester (FAME).
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements and test methods for marketed and delivered unleaded petrol. It is applicable to unleaded petrol for use in petrol engine vehicles designed to run on unleaded petrol.
This document specifies two types of unleaded petrol:
- one type with a maximum oxygen content of 3,7 % (m/m) and a maximum ethanol content of 10,0 % (V/V) in Table 1;
- one type in Table 2 with a maximum oxygen content of 2,7 % (m/m) and a maximum ethanol content of 5,0 % (V/V) intended for older vehicles that are not warranted to use unleaded petrol defined in Table 1.
NOTE 1 The two types are based on European Directive requirements [3], [4] and [13].
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
- Standard21 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a wavelength-dispersive X-ray fluorescence (WDXRF) test method for the determination of the sulfur content in ethanol (E85) automotive fuel [3], containing ethanol between 50 % (V/V) and 85 % (V/V), from 5 mg/kg to 20 mg/kg, using instruments with either monochromatic or polychromatic excitation.
NOTE 1 Sulfur contents higher than 20 mg/kg can be determined after sample dilution with an appropriate solvent. However, the precision was not established for diluted samples.
NOTE 2 For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction (µ) and the volume fraction (φ) of a material respectively.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a test method for the determination of the oxidation stability of fuels for diesel engines at 110 °C, by means of measuring the induction period of the fuel up to 48 h. The method is applicable to fatty acid methyl esters (FAME) intended for the use as pure biofuel or as a blending component for diesel fuels, and to blends of FAME with diesel fuel containing 2 % (V/V) of FAME at minimum.
The precision of the test method has been developed for conventional diesel. This test method is applicable for paraffinic diesel fuels as specified in EN 15940, however, a separate precision statement for paraffinic diesel is not available.
NOTE 1 EN 14112 [1] describes a similar test method for the determination of the oxidation stability of pure fatty acid methyl esters (see the Introduction to this document). Additionally, EN 16568 [4] describes a similar test method for the determination of the oxidation stability of fuels for diesel engines at 120 °C, by means of measuring the induction period of the fuel up to 20 h. EN 16568 is applicable to blends of FAME with diesel fuel containing 2 % (V/V) of FAME at minimum. Other alternative test methods for the determination of the oxidation stability of distillate fuels are described in CEN/TR 17225 [5].
NOTE 2 For induction periods higher than 48 h the precision is not covered by the precision statement of this method. The limit values of the relevant fuel standards are well within the scope of this test method.
NOTE 3 The presence of cetane improver can reduce the oxidation stability determined by this test method. Limited studies with EHN (2-ethyl hexyl nitrate) indicated, however, that the stability is reduced to an extent which is within the reproducibility of the test method.
NOTE 4 For the purposes of this document, the term “% (V/V)” is used to represent the volume fraction (φ) of a material.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the vapour pressure, exerted in vacuo, by volatile, low viscosity petroleum products, components, ethanol blends up to 85 % (V/V), and feedstocks using a variable volume chamber. A dry vapour pressure equivalent (DVPE) is calculated from the vapour pressure.
The conditions used in the test described in this document are a vapour-to-liquid ratio of 4:1 and a test temperature of 37,8 °C.
The equipment is not wetted with water during the test, and the method described is therefore suitable for testing samples with or without oxygenates; no account is taken of dissolved water in the sample.
This procedure calculates the partial pressure of the air dissolved in the test portion during the triple expansion process. It is suitable for samples with a DVPE between 15,7 kPa and 97,6 kPa; vapour pressures outside this range can be measured but the precision has not been determined.
This document is applicable to fuels containing oxygenated compounds up to the limits stated in the relevant Council Directive 85/536/EEC [6], and for ethanol-fuel blends up to 85 % (V/V) ethanol.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent the mass and volume fractions respectively.
WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel prior to application of the standard, and to determine the applicability of any further restrictions for this purpose.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day
This document presents information to producers and blenders of automotive fuels. It allows the user to assess new products or blends and their production processes to determine what information is helpful to consider:
- the applicable fuel specification standard(s);
- the ‘workmanship clause’ cited by CEN fuel specifications;
- the impact on vehicle emissions systems, material compatibility and vehicle operability;
- the correct functioning of the intended product (fitness for purpose).
This document is a collection of information. It serves as guidance and cannot be considered as a product approval paper in any way.
- Technical report9 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements on petrol fuel for use as fuel in small engines, together with the methods to be applied for testing these properties.
This document specifies requirements for two types of petrol fuel having low aromatics and sulfur content:
- one type for use in four-stroke engines with separate lubrication; and
- one mixed petrol fuel type for use in mixture-lubricated engines.
Testing the properties of the added engine oil is out of the scope of this document.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements on petrol fuel for use as fuel in small engines, together with the methods to be applied for testing these properties.
This document specifies requirements for two types of petrol fuel having low aromatics and sulfur content:
- one type for use in four-stroke engines with separate lubrication; and
- one mixed petrol fuel type for use in mixture-lubricated engines.
Testing the properties of the added engine oil is out of the scope of this document.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
- Standard14 pagesEnglish languagesale 10% offe-Library read for1 day
This document presents information to producers and blenders of automotive fuels. It allows the user to assess new products or blends and their production processes to determine what information is helpful to consider:
- the applicable fuel specification standard(s);
- the ‘workmanship clause’ cited by CEN fuel specifications;
- the impact on vehicle emissions systems, material compatibility and vehicle operability;
- the correct functioning of the intended product (fitness for purpose).
This document is a collection of information. It serves as guidance and cannot be considered as a product approval paper in any way.
- Technical report9 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the vapour pressure, exerted in vacuo, by volatile, low viscosity petroleum products, components, ethanol blends up to 85 % (V/V), and feedstocks using a variable volume chamber. A dry vapour pressure equivalent (DVPE) is calculated from the vapour pressure.
The conditions used in the test described in this document are a vapour-to-liquid ratio of 4:1 and a test temperature of 37,8 °C.
The equipment is not wetted with water during the test, and the method described is therefore suitable for testing samples with or without oxygenates; no account is taken of dissolved water in the sample.
This procedure calculates the partial pressure of the air dissolved in the test portion during the triple expansion process. It is suitable for samples with a DVPE between 15,7 kPa and 97,6 kPa; vapour pressures outside this range can be measured but the precision has not been determined.
This document is applicable to fuels containing oxygenated compounds up to the limits stated in the relevant Council Directive 85/536/EEC [6], and for ethanol-fuel blends up to 85 % (V/V) ethanol.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent the mass and volume fractions respectively.
WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel prior to application of the standard, and to determine the applicability of any further restrictions for this purpose.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for determining the total acidity, calculated as acetic acid, of ethanol to be used in petrol blends. It is applicable to ethanol having total acid contents of between 0,003 % (m/m) and 0,015 % (m/m).
NOTE For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction and the volume fraction, respectively.
WARNING - Use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to take appropriate measures to ensure the safety and health of personnel prior to the application of the document, and to fulfil statutory and regulatory restrictions for this purpose.
- Standard9 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for determining the total acidity, calculated as acetic acid, of ethanol to be used in petrol blends. It is applicable to ethanol having total acid contents of between 0,003 % (m/m) and 0,015 % (m/m).
NOTE For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction and the volume fraction, respectively.
WARNING - Use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to take appropriate measures to ensure the safety and health of personnel prior to the application of the document, and to fulfil statutory and regulatory restrictions for this purpose.
- Standard9 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the gas chromatographic (GC) method for the determination of saturated, olefinic and aromatic hydrocarbons in automotive motor gasoline, small engine petrol and ethanol (E85) automotive fuel. Additionally, the benzene and toluene content, oxygenated compounds and the total oxygen content can be determined.
Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates, this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.
- Standard35 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a procedure for the direct determination of the content of the soap building elements Calcium (Ca), Magnesium (Mg), Sodium (Na) and Potassium (K) as well as Phosphorus (P) in fatty acid methyl esters (FAME) by ICP OES.
The concentrations of each component or the combinations of some to which this method is applicable are given in Table 1.
Table 1 - Scope ranges for each element
Element Scope range
mg/kg
Ca 0,3 - 5,4
Mg 0,3 - 4,6
Na 0,4 - 5,0
K 0,6 - 5,3
P 1,0 - 5,0
Ca + Mg 0,5 - 9,4
Na + K 1,0 - 9,9
Ca + Mg + Na + K 1,4 - 19,3
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
NOTE For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction, φ, of a material.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a test method for the determination of the content of n-butyl phenyl ether (BPE, CAS: 1126-79-0, also known as butoxy-benzene) in gas oils, kerosene, diesel fuel and biodiesel blends. The method uses a two-column gas chromatograph with an FID-type of detector. The application range is 0,1 mg/l to 21,25 mg/l of BPE, with a limit of detection of 0,05 mg/l.
NOTE This corresponds to 1 % to 150 % of the average marking level of the ACCUTRACE™ Plus required by Commission Implementing Decision (EU) 2022/197 [1] of 17 January 2022 establishing a common fiscal marker for gas oils and kerosene.
The method is found to be applicable to determinations beyond this range or for specific other chemical markers that fall within the distillation temperature range of middle-distillates, but for that no precision has been determined.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a procedure for the direct determination of the content of the soap building elements Calcium (Ca), Magnesium (Mg), Sodium (Na) and Potassium (K) as well as Phosphorus (P) in fatty acid methyl esters (FAME) by ICP OES.
The concentrations of each component or the combinations of some to which this method is applicable are given in Table 1.
Table 1 - Scope ranges for each element
Element Scope range
mg/kg
Ca 0,3 - 5,4
Mg 0,3 - 4,6
Na 0,4 - 5,0
K 0,6 - 5,3
P 1,0 - 5,0
Ca + Mg 0,5 - 9,4
Na + K 1,0 - 9,9
Ca + Mg + Na + K 1,4 - 19,3
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
NOTE For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction, φ, of a material.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
- National annex – translation3 pagesSlovenian languagesale 10% offe-Library read for1 day
This document specifies a test method for the determination of the content of n-butyl phenyl ether (BPE, CAS: 1126-79-0, also known as butoxy-benzene) in gas oils, kerosene, diesel fuel and biodiesel blends. The method uses a two-column gas chromatograph with an FID-type of detector. The application range is 0,1 mg/l to 21,25 mg/l of BPE, with a limit of detection of 0,05 mg/l.
NOTE This corresponds to 1 % to 150 % of the average marking level of the ACCUTRACE™ Plus required by Commission Implementing Decision (EU) 2022/197 [1] of 17 January 2022 establishing a common fiscal marker for gas oils and kerosene.
The method is found to be applicable to determinations beyond this range or for specific other chemical markers that fall within the distillation temperature range of middle-distillates, but for that no precision has been determined.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This document defines the general requirements and specifications for methanol from all forms of production at the point of custody transfer, prior to any onboard required treatment, for use as fuel in marine diesel engines, fuel cells and other marine applications. The specifications in this document can also be applied to methanol used as fuel in land-based applications of the same or similar type as those used for marine purposes.
- Standard11 pagesEnglish languagesale 15% off
- Standard13 pagesFrench languagesale 15% off
This document specifies requirements and test methods for marketed and delivered high FAME (B20 and B30) diesel fuel for use in diesel engine vehicles designed or subsequently adapted to run on such fuel. High FAME diesel fuel is a mixture of up to 20 % (V/V) in total and up to 30 % (V/V) in total respectively fatty acid methyl esters (commonly known as FAME) complying with EN 14214 and automotive diesel fuel complying with EN 590.
For maintenance and control reasons high FAME (B20 and B30) diesel fuel is to be used in captive fleets that are intended to have an appropriate fuel management (see Clause 4).
NOTE 1 These products are allowed in Europe [4], but national legislation can set additional requirements or rules concerning, or even prohibiting, marketing or delivering of the product.
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
NOTE 3 In this document, A-deviations apply (see Annex A).
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
Standard SIST 1020 določa preskusne metode za ugotavljanje prisotnosti in določevanje markirnega indikatorja Solvent Yellow 124 z imenom IUPAC N-etil-N-[2-(1-izobutoksietoksi)etil]-4-(fenilazo) anilin (številka CAS: 34432-92-3) v kurilnem olju EL, dizelskem gorivu in v njunih mešanicah ter v petroleju za ogrevanje v območju od 0,5 do 10,0 mg/l (metoda B) oziroma v območju 0,07 do 10 mg/l (metoda C).
Za ugotavljanje prisotnosti Solvent Yellow 124 (kvalitativno) se uporablja vizualna metoda – A. Ta metoda je primerna tudi za kontrolo na terenu.
Za določevanje Solvent Yellow 124 (kvantitativno) v kurilnem olju EL, dizelskem gorivu in mešanicah obeh goriv ter v petroleju za ogrevanje se uporabljata spektrofotometrijska metoda – B in metoda s tekočinsko kromatografijo visoke ločljivosti (HPLC) – C.
OPOZORILO: Pri preskušanju na podlagi tega standarda lahko naletimo na nevarne snovi, postopke in opremo. Morebitne nevarnosti in ustrezni varnostni ukrepi v standardu niso posebej navedeni. Uporabnik tega standarda je odgovoren, da pred preskušanjem zagotovi ustrezne varnostne ukrepe v skladu z varnostnimi predpisi in upošteva morebitne zakonodajne omejitve.
- Standard10 pagesSlovenian languagesale 10% offe-Library read for1 day
This document specifies requirements and test methods for marketed and delivered high FAME (B20 and B30) diesel fuel for use in diesel engine vehicles designed or subsequently adapted to run on such fuel. High FAME diesel fuel is a mixture of up to 20 % (V/V) in total and up to 30 % (V/V) in total respectively fatty acid methyl esters (commonly known as FAME) complying with EN 14214 and automotive diesel fuel complying with EN 590.
For maintenance and control reasons high FAME (B20 and B30) diesel fuel is to be used in captive fleets that are intended to have an appropriate fuel management (see Clause 4).
NOTE 1 These products are allowed in Europe [4], but national legislation can set additional requirements or rules concerning, or even prohibiting, marketing or delivering of the product.
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction.
NOTE 3 In this document, A-deviations apply (see Annex A).
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies an energy dispersive X-ray fluorescence (EDXRF) test method for the determination of sulfur content in automotive fuels. This document is applicable to:
— gasoline containing up to 3,7 % oxygen by mass (including those blended with ethanol up to 10 % by volume) having sulfur contents in the range of 6,9 mg/kg to 56,7 mg/kg,
— diesel fuels including those containing up to about 30 % fatty acid methyl ester (FAME) by volume, paraffinic diesel fuel, and neat FAME, having sulfur contents in the range of 5,0 mg/kg to 60,2 mg/kg.
The sulfur content in other products can be determined according to the test method specified in this document; however, no precision data for products other than automotive fuels and for results outside the specified range have been established for this document.
For reasons of spectral overlap, this document is not applicable to leaded automotive gasoline, gasoline having a content of greater than 8 mg/kg lead or to product and feedstock containing lead, silicon, phosphorus, calcium, potassium or halides at concentrations greater than one tenth of the concentration of sulfur measured, or more than 10 mg/kg, whichever is the greater.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
This document lays down harmonized identifiers for marketed liquid and gaseous fuels. The requirements in this document are to complement the informational needs of users regarding the compatibility between the fuels and the vehicles that are placed on the market. The identifier is intended to be visualized at dispensers and refuelling points, on vehicles, in motor vehicle dealerships and in consumer manuals as described in this document.
Marketed fuels include for example petroleum-derived fuels, synthetic fuels, biofuels, natural gas, LPG, hydrogen and biogas and blends of the aforementioned delivered to mobile applications.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
This document in its entirety defines the general requirements and specifications for fuels used in marine diesel engines and boilers, prior to onboard fuel handling (storage, settling, centrifuging, filtration, heating) before use.
For the purposes of this document, the term “fuels” comprises of the following:
— hydrocarbons from petroleum crude oil, oil sands and shale oil;
— synthetic hydrocarbons, renewable hydrocarbons or hydrocarbons from recycled sources, with molecular structures that are indistinguishable from petroleum hydrocarbons;
— fatty acid methyl ester (FAME), where permitted as specified in this document;
— blends of any of the above, where permitted as specified in this document.
The general requirements and specifications for fuels in this document can also be applied to fuels used in stationary diesel engines of the same or similar type as those used for marine purposes.
This document specifies seven categories of distillate fuels, one of which is for diesel engines used for emergency purposes. It also specifies four categories of residual fuels for sulfur content at or below 0,50 % by mass, five categories of residual fuels containing FAME and five categories of residual fuels for sulfur content exceeding 0,50 % by mass.
- Standard48 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard41 pagesEnglish languagesale 15% off
- Standard45 pagesFrench languagesale 15% off
This document specifies an energy dispersive X-ray fluorescence (EDXRF) test method for the determination of sulfur content in automotive fuels. This document is applicable to:
— gasoline containing up to 3,7 % oxygen by mass (including those blended with ethanol up to 10 % by volume) having sulfur contents in the range of 6,9 mg/kg to 56,7 mg/kg,
— diesel fuels including those containing up to about 30 % fatty acid methyl ester (FAME) by volume, paraffinic diesel fuel, and neat FAME, having sulfur contents in the range of 5,0 mg/kg to 60,2 mg/kg.
The sulfur content in other products can be determined according to the test method specified in this document; however, no precision data for products other than automotive fuels and for results outside the specified range have been established for this document.
For reasons of spectral overlap, this document is not applicable to leaded automotive gasoline, gasoline having a content of greater than 8 mg/kg lead or to product and feedstock containing lead, silicon, phosphorus, calcium, potassium or halides at concentrations greater than one tenth of the concentration of sulfur measured, or more than 10 mg/kg, whichever is the greater.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
- National annex3 pagesSlovenian languagesale 10% offe-Library read for1 day
This test method is a standard procedure for the determination of saturates, olefins, aromatics and oxygenates in unleaded petrol using gas chromatography and vacuum ultraviolet detection (GC-VUV).
Concentrations of compound classes and certain individual compounds are determined by mass fraction % (m/m) or volume fraction % (V/V). The concentration ranges for which the method is applicable are given in Table 1.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction, respectively.
This test method has been tested for unleaded petrol according EN 228 [1]; Although specifically developed for the analysis of automotive motor gasoline including those that contain oxygenates this test method applies to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.
The method is found to be applicable to petrol containing other oxygenates than indicated in Table 1, such as isopropanol, iso-butanol, tert-butanol, n-propanol, acetone, tert-pentanol and di-isopropyl ether (DIPE), however precision has not been determined.
Table 1 —Application ranges
Compound or group Units Concentration range
Saturates % (V/V) 21,48 to 80,87
Olefins % (V/V) 0,22 to 41,90
Aromatics % (V/V) 2,35 to 64,55
Benzene % (V/V) 0,20 to 2,54
Toluene % (V/V) 0,87 to 30,97
Ethylbenzene % (V/V) 0,20 to 3,45
Xylenes % (V/V) 0,49 to 18,59
Methanol % (V/V) 0,07 to 15,30
Ethanol % (V/V) 0,08 to 24,96
MTBE % (V/V) 0,22 to 22,21
ETBE % (V/V) 0,13 to 23,44
TAME % (V/V) 0,24 to 21,96
TAEE % (V/V) 0,24 to 8,60
Total oxygen content % (m/m) 0,52 to 12,19
Individual hydrocarbon components are typically not baseline-separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra (Annex A) and deconvolution algorithms.
While this test method reports by mass fraction % (m/m) or volume fraction % (V/V) for several specific components that can be present in unleaded petrol, it does not attempt to speciate all possible components that can occur in unleaded petrol. In particular, this test method is not intended as a type of detailed hydrocarbon analysis (DHA).
WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies an energy dispersive X-ray fluorescence (EDXRF) test method for the determination of sulfur content in automotive fuels. This document is applicable to: — gasoline containing up to 3,7 % oxygen by mass (including those blended with ethanol up to 10 % by volume) having sulfur contents in the range of 6,9 mg/kg to 56,7 mg/kg, — diesel fuels including those containing up to about 30 % fatty acid methyl ester (FAME) by volume, paraffinic diesel fuel, and neat FAME, having sulfur contents in the range of 5,0 mg/kg to 60,2 mg/kg. The sulfur content in other products can be determined according to the test method specified in this document; however, no precision data for products other than automotive fuels and for results outside the specified range have been established for this document. For reasons of spectral overlap, this document is not applicable to leaded automotive gasoline, gasoline having a content of greater than 8 mg/kg lead or to product and feedstock containing lead, silicon, phosphorus, calcium, potassium or halides at concentrations greater than one tenth of the concentration of sulfur measured, or more than 10 mg/kg, whichever is the greater.
- Standard14 pagesEnglish languagesale 15% off
- Standard15 pagesFrench languagesale 15% off
This document lays down harmonized identifiers for marketed liquid and gaseous fuels. The requirements in this document are to complement the informational needs of users regarding the compatibility between the fuels and the vehicles that are placed on the market. The identifier is intended to be visualized at dispensers and refuelling points, on vehicles, in motor vehicle dealerships and in consumer manuals as described in this document.
Marketed fuels include for example petroleum-derived fuels, synthetic fuels, biofuels, natural gas, LPG, hydrogen and biogas and blends of the aforementioned delivered to mobile applications.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, µ, and the volume fraction, φ.
- Standard20 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the air saturated vapour pressure (ASVP) (total vapour pressure), exerted in vacuo, by volatile, low viscosity petroleum products, components, ethanol blends up to 85 % (V/V), and feedstocks containing air. A dry vapour pressure equivalent (DVPE) can be calculated from the air containing vapour pressure (ASVP) measurement.
The conditions used in the test described in this document are a vapour-to-liquid ratio of 4:1 and a test temperature of 37,8 °C.
The equipment is not wetted with water during the test, and the method described is therefore suitable for testing samples with or without oxygenates; no account is taken of dissolved water in the sample.
The method described is suitable for testing air saturated samples with a DVPE between 15,5 kPa and 106,0 kPa; vapour pressures outside this range can be measured, but the precision has not been determined.
This document is applicable to fuels containing oxygenated compounds up to the limits stated in the relevant Council Directive 85/536/EEC [10], and for ethanol-fuel blends up to 85 % (V/V) ethanol.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent the mass and volume fractions, respectively.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel prior to application of the document, and to determine the applicability of any other restrictions for this purpose.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This test method is a standard procedure for the determination of saturates, olefins, aromatics and oxygenates in unleaded petrol using gas chromatography and vacuum ultraviolet detection (GC-VUV).
Concentrations of compound classes and certain individual compounds are determined by mass fraction % (m/m) or volume fraction % (V/V). The concentration ranges for which the method is applicable are given in Table 1.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction and the volume fraction, respectively.
This test method has been tested for unleaded petrol according EN 228 [1]; Although specifically developed for the analysis of automotive motor gasoline including those that contain oxygenates this test method applies to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.
The method is found to be applicable to petrol containing other oxygenates than indicated in Table 1, such as isopropanol, iso-butanol, tert-butanol, n-propanol, acetone, tert-pentanol and di-isopropyl ether (DIPE), however precision has not been determined.
Table 1 —Application ranges
Compound or group Units Concentration range
Saturates % (V/V) 21,48 to 80,87
Olefins % (V/V) 0,22 to 41,90
Aromatics % (V/V) 2,35 to 64,55
Benzene % (V/V) 0,20 to 2,54
Toluene % (V/V) 0,87 to 30,97
Ethylbenzene % (V/V) 0,20 to 3,45
Xylenes % (V/V) 0,49 to 18,59
Methanol % (V/V) 0,07 to 15,30
Ethanol % (V/V) 0,08 to 24,96
MTBE % (V/V) 0,22 to 22,21
ETBE % (V/V) 0,13 to 23,44
TAME % (V/V) 0,24 to 21,96
TAEE % (V/V) 0,24 to 8,60
Total oxygen content % (m/m) 0,52 to 12,19
Individual hydrocarbon components are typically not baseline-separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra (Annex A) and deconvolution algorithms.
While this test method reports by mass fraction % (m/m) or volume fraction % (V/V) for several specific components that can be present in unleaded petrol, it does not attempt to speciate all possible components that can occur in unleaded petrol. In particular, this test method is not intended as a type of detailed hydrocarbon analysis (DHA).
WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.
- Standard27 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the content of undissolved substances, referred to as total contamination, in middle distillates, in diesel fuels containing up to 30 % (V/V) fatty acid methyl esters (FAME). The working range is from 12 mg/kg to 26 mg/kg and it was established in an interlaboratory study by applying EN ISO 4259-1 [4].
This document in general is applicable to products having a kinematic viscosity not exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C.
This test method can be used for paraffinic diesel fuels as specified in EN 15940, for diesel fuels containing more than 30 % (V/V) FAME and for petroleum products having a kinematic viscosity exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, however in such cases the precision of the test method has not been determined.
NOTE For the purposes of this document, the term “% (V/V)” is used to represent the volume fraction, φ, of a material.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard13 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the content of undissolved substances, referred to as total contamination, in neat fatty acid methyl esters (FAME). The working range is from 5 mg/kg to 27 mg/kg and it was established in an interlaboratory study by applying EN ISO 4259-1 [1].
This document in general is applicable to FAME having a kinematic viscosity not exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, e.g. as specified in EN 14214 [2].
This test method can be used for FAME having a kinematic viscosity exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, however in such cases the precision of the test method has not been determined.
NOTE For the purposes of this document, the term “% (V/V)” is used to represent the volume fraction, φ, of a material.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard13 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the air saturated vapour pressure (ASVP) (total vapour pressure), exerted in vacuo, by volatile, low viscosity petroleum products, components, ethanol blends up to 85 % (V/V), and feedstocks containing air. A dry vapour pressure equivalent (DVPE) can be calculated from the air containing vapour pressure (ASVP) measurement.
The conditions used in the test described in this document are a vapour-to-liquid ratio of 4:1 and a test temperature of 37,8 °C.
The equipment is not wetted with water during the test, and the method described is therefore suitable for testing samples with or without oxygenates; no account is taken of dissolved water in the sample.
The method described is suitable for testing air saturated samples with a DVPE between 15,5 kPa and 106,0 kPa; vapour pressures outside this range can be measured, but the precision has not been determined.
This document is applicable to fuels containing oxygenated compounds up to the limits stated in the relevant Council Directive 85/536/EEC [10], and for ethanol-fuel blends up to 85 % (V/V) ethanol.
NOTE For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent the mass and volume fractions, respectively.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel prior to application of the document, and to determine the applicability of any other restrictions for this purpose.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a calculation procedure for the determination of iodine value (“CIV” - “calculated iodine value”) of fatty acid methyl esters (FAME) to be used either as automotive fuel for diesel engines as specified in EN 14214 [2] or heating fuel or as an extender for automotive fuel for diesel engines as specified in EN 590 [3]. This procedure does not apply to Ethyl esters or esters made from fish oil and mixtures thereof.
The calculation procedure is applicable to methyl esters between C6 and C24:1. The calculation procedure uses as data entry the results from the gas chromatography determination (GC) according to EN 14103 of individual fatty acid methyl esters and is based on AOCS recommended practice Cd 1c - 85 for the determination of the iodine value of edible oil from its fatty acid composition. It is important to recognize that the latest version of EN 14103 is intended to be used for the determination of individual FAME components.
NOTE 1 Experience from the field and from several precision evaluation campaigns in Germany and elsewhere indicates that the results of the determination of iodine value by the calculation specified here are very close to results obtained by titration with Wijs solvent according to EN 14111 [1]. Observed small differences were always found to be smaller than the reproducibility published in the actual EN 14111.
For informative purposes only, but not for cases of dispute, EN 14331 [4] can also be used to extract the FAME contents from FAME containing diesel fuels (like B5, B7, B30, etc.) and to use the contents of the individual FAME components from this method as data entry for the calculation specified in this document.
This calculation method can be used only if the evaluated sample fulfils the requirement for ester content as reported in EN 14214.
The precision statement of this test method was determined by calculation from a Round Robin exercise with iodine values in the range of 16 g iodine/100 g to 126 g iodine/100 g.
The test method is also applicable for higher iodine values; however, the precision statement is not established for iodine values above 126 g iodine/100 g.
NOTE 2 For the purposes of this document, the term “% (m/m)” is used to represent the mass fraction.
- Standard11 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the content of undissolved substances, referred to as total contamination, in neat fatty acid methyl esters (FAME). The working range is from 5 mg/kg to 27 mg/kg and it was established in an interlaboratory study by applying EN ISO 4259-1 [1].
This document in general is applicable to FAME having a kinematic viscosity not exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, e.g. as specified in EN 14214 [2].
This test method can be used for FAME having a kinematic viscosity exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, however in such cases the precision of the test method has not been determined.
NOTE For the purposes of this document, the term “% (V/V)” is used to represent the volume fraction, φ, of a material.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard13 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of the content of undissolved substances, referred to as total contamination, in middle distillates, in diesel fuels containing up to 30 % (V/V) fatty acid methyl esters (FAME). The working range is from 12 mg/kg to 26 mg/kg and it was established in an interlaboratory study by applying EN ISO 4259-1 [4].
This document in general is applicable to products having a kinematic viscosity not exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C.
This test method can be used for paraffinic diesel fuels as specified in EN 15940, for diesel fuels containing more than 30 % (V/V) FAME and for petroleum products having a kinematic viscosity exceeding 8 mm2/s at 20 °C, or 5 mm2/s at 40 °C, however in such cases the precision of the test method has not been determined.
NOTE For the purposes of this document, the term “% (V/V)” is used to represent the volume fraction, φ, of a material.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
- Standard13 pagesEnglish languagesale 10% offe-Library read for1 day
This document in its entirety defines the general requirements and specifications for fuels used in marine diesel engines and boilers, prior to onboard fuel handling (storage, settling, centrifuging, filtration, heating) before use. For the purposes of this document, the term “fuels” comprises of the following: — hydrocarbons from petroleum crude oil, oil sands and shale oil; — synthetic hydrocarbons, renewable hydrocarbons or hydrocarbons from recycled sources, with molecular structures that are indistinguishable from petroleum hydrocarbons; — fatty acid methyl ester (FAME), where permitted as specified in this document; — blends of any of the above, where permitted as specified in this document. The general requirements and specifications for fuels in this document can also be applied to fuels used in stationary diesel engines of the same or similar type as those used for marine purposes. This document specifies seven categories of distillate fuels, one of which is for diesel engines used for emergency purposes. It also specifies four categories of residual fuels for sulfur content at or below 0,50 % by mass, five categories of residual fuels containing FAME and five categories of residual fuels for sulfur content exceeding 0,50 % by mass.
- Standard48 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard41 pagesEnglish languagesale 15% off
- Standard45 pagesFrench languagesale 15% off





