91.080.10 - Metal structures
ICS 91.080.10 Details
Metal structures
Metallbau
Structures métalliques
Kovinske konstrukcije
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 91.080.10 - Metal structures
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
This document gives guidelines and recommendations for the general principles of design appropriate to articles to be hot dip galvanized after fabrication (e.g. in accordance with ISO 1461) for the corrosion protection of, for example, articles that have been manufactured in accordance with EN 1090-2.
This document does not apply to hot dip galvanized coatings applied to continuous wire or sheet (e.g. to EN 10346).
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
This document gives guidelines and recommendations for the general principles ofdesign appropriate to articles to be hot dip galvanized after fabrication (e.g.in accordance with ISO 1461) for the corrosion protection of, for example,articles that have been manufactured in accordance with EN 1090-2. This documentdoes not apply to hot dip galvanized coatings applied to continuous wire orsheet (e.g. to EN 10346).
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies the general principles for the implementation of a system of cathodic protection against corrosive attacks on buried or immersed metal structures with and without the influence of external electrical sources.
- Standard40 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements for the execution of aluminium structural components and structures made from:
a) rolled sheet, strip and plate;
b) extrusions;
c) cold drawn rod, bar and tube;
d) forgings;
e) castings.
NOTE 1 The execution of structural components is referred to as manufacturing, in accordance with EN 1090-1.
This document specifies requirements independent of the type and shape of the aluminium structure, and this document is applicable to structures under predominantly static loads as well as structures subject to fatigue. It specifies requirements related to the execution classes that are linked with consequence classes.
NOTE 2 Consequence classes are defined in EN 1990.
NOTE 3 Recommendations for selection of execution class in relation to consequence class are given in EN 1999-1-1.
This document covers components made of constituent products with thickness not less than 0,6 mm for welded components not less than 1,5 mm.
For components made from cold formed profiled sheeting that are within the scope of EN 1090-5, the requirements of EN 1090-5 take precedence over corresponding requirements in this document.
This document applies to structures designed according to the relevant parts of EN 1999. If this document is used for structures designed according to other design rules or used for other alloys and tempers not covered by EN 1999, a judgement of the reliability elements in these design rules is intended to be made.
This document specifies requirements for surface preparation prior to application of a protective treatment, and gives guidelines for application for such treatment in an informative annex.
This document gives options for specifying requirements to match project specific requirements.
This document is also applicable to temporary aluminium structures.
- Standard127 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies requirements for the execution of aluminium structural components and structures made from:
a) rolled sheet, strip and plate;
b) extrusions;
c) cold drawn rod, bar and tube;
d) forgings;
e) castings.
NOTE 1 The execution of structural components is referred to as manufacturing, in accordance with EN 1090-1.
This European Standard specifies requirements independent of the type and shape of the aluminium structure, and this European Standard is applicable to structures under predominantly static loads as well as structures subject to fatigue. It specifies requirements related to the execution classes that are linked with consequence classes.
NOTE 2 Consequence classes are defined in EN 1990.
NOTE 3 Recommendations for selection of execution class in relation to consequence class are given in EN 1999-1-1.
This European Standard covers components made of constituent products with thickness not less than 0,6 mm for welded components not less than 1,5 mm.
For components made from cold formed profiled sheeting that are within the scope of FprEN 1090-5, the requirements of FprEN 1090-5 take precedence over corresponding requirements in this European Standard.
This European Standard applies to structures designed according to the relevant parts of EN 1999. If this European Standard is used for structures designed according to other design rules or used for other alloys and tempers not covered by EN 1999, a judgement of the reliability elements in these design rules should be made.
This European Standard specifies requirements for surface preparation prior to application of a protective treatment, and gives guidelines for application for such treatment in an informative annex.
This European Standard gives options for specifying requirements to match project specific requirements.
This European Standard is also applicable to temporary aluminium structures.
- Standard127 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies requirements for the execution, i.e. the manufacture and the installation, of cold-formed structural steel members and sheeting and cold-formed structures for roof, ceiling, floor, wall and cladding applications.
This European Standard applies to structures designed according to the EN 1993 series.
This European Standard applies to structural members and sheeting to be designed according to EN 1993 1 3.
This European Standard may be used for structures designed according to other design rules provided that conditions for execution comply with them and any necessary additional requirements are specified.
This European Standard also specifies requirements for the execution i.e. the manufacture and the installation of structures made from cold formed profiled sheeting for roof, ceiling, floor and wall applications under predominately static loading or seismic loading conditions and their documentation.
This European Standard covers sheeting of structural classes I and II according to EN 1993 1 3 used in structures.
This European Standard covers structural members of all structural classes according to EN 1993 1 3.
Structural sheeting are understood here to be:
- profiled sheet, such as trapezoidal, sinusoidal or liner trays (Figure 1), or
Structural members are understood here to be:
- members (linear profiled cross sections) that are produced by cold forming (Figure 2).
This European Standard also covers:
- not welded built-up sections (Figure 2b and 2c);
- cold-formed hollow sections including the welding of the longitudinal seam, not covered by EN 10219 1;
- perforated, punctured and micro profiled sheeting and members;
NOTE 1 Welded built-up sections, are not covered, the execution provisions are given in EN 1090–2.
This European Standard also covers spacer constructions between the outer and inner or upper and lower skins for roofs, walls and ceilings made from cold-formed profiled sheeting and the connections and attachments of the afore mentioned elements as long as all are involved in load transfer.
This European Standard covers steel profiled sheeting for composite floors, e.g. during installation and in stage of pouring concrete.
Composite structural members where the interaction between dissimilar materials are an integral part of the structural behaviour such as sandwich panels and composite floors are not covered by this standard.
This European Standard does not cover the necessary analyses and detailing and execution rules for thermal insulation, moisture protection, noise control and fire protection.
This European Standard does not cover regulations of roof cladding and wall cladding, produced by traditional plumber methods or tinsmith methods.
Annex B of this standard concerns provisions which are not yet included in EN 1993 1 3. The guidelines in this annex may be wholly or partially superseded by future guidelines added to EN 1993.
This European Standard does not cover detailed requirements for water tightness or air permeability resistance and thermal aspects of sheeting.
NOTE 2 The structures covered in this standard can be for example
- single- or multi-skin roofs, whereby the load-bearing structure (lower skin) or the actual roof covering (upper skin) or both consist of cold-formed structural members and sheeting;
- single- or multi-skin walls whereby the load-bearing structure (inner skin), the actual cladding (outer skin) or both consist of cold-formed structural members and sheeting, or
- trusses from cold formed members.
NOTE 3 Structures can consist of an assembly of structural members and sheeting made of steel according to EN 1090–4 and of aluminium according to EN 1090-5.
- Standard91 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard96 pagesGerman languagesale 10% offe-Library read for1 day
ISO 12944-9:2018 specifies the performance requirements for protective paint systems for offshore and related structures (i.e. those exposed to the marine atmosphere, as well as those immersed in sea or brackish water). Such structures are exposed to environments of corrosivity category CX (offshore) and immersion category Im4 as defined in ISO 12944‑2.
ISO 12944-9:2018 describes paint systems for high durability according to ISO 12944‑1.
ISO 12944-9:2018 is applicable to structures made of carbon steel and does not cover Cd/Bi Cr and Zn/Bi Cr surfaces. It is not applicable to surfaces under insulation or concrete.
This document is applicable for paint systems intended for a service temperature range between −20 °C and +80 °C, and the performance testing is aimed at verifying suitability of the paint systems for this temperature range.
ISO 12944-9:2018 is applicable for paint systems for submerged service (Im4) which are intended for ambient operating temperatures up to a maximum of 50 °C.
ISO 12944-9:2018 specifies:
- the test methods to be used to determine the composition of the separate components of the protective paint system;
- the laboratory performance test methods for the assessment of the likely durability of the protective paint system;
- the criteria to be used to evaluate the results of performance tests.
ISO 12944-9:2018 covers the requirements for new work and any repairs necessary before start-up. It can also be used in relation to maintenance where complete refurbishment is carried out and the underlying metal substrate is completely exposed by abrasive blast-cleaning.
ISO 12944-9:2018 does not address maintenance in general where methods of surface preparation other than abrasive blast-cleaning are typically used.
ISO 12944-9:2018 deals with structures, made of carbon steel of not less than 3 mm thickness, which are designed using an approved strength calculation.
The following are not covered by this document:
- structures built of stainless steel as well as those built of copper, titanium or aluminium or their alloys;
- steel cables;
- buried structures;
- pipelines;
- the interiors of storage tanks.
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 12944-1:2017 defines the overall scope of ISO 12944 (all parts). It gives some basic terms and definitions and a general introduction to the other parts of ISO 12944. Furthermore, it includes a general statement on health, safety and environmental protection, and guidelines for using ISO 12944 (all parts) for a given project.
- Standard17 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 12944-7:2017 deals with the execution and supervision of paint work on steel structures in the workshop or on site.
ISO 12944-7:2017 does not apply to
- the preparation of surfaces to be painted (see ISO 12944‑4) and the supervision of such work,
- the application of metallic coatings, and
- pre-treatment methods, such as phosphating and chromating, and paint application methods, such as dipping, powder coating or coil coating.
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 12944-3:2017 deals with the basic criteria for the design of steel structures to be coated by protective paint systems in order to avoid premature corrosion and degradation of the coating or the structure. It gives examples of appropriate and inappropriate design, indicating how problems of application, inspection and maintenance of paint systems can be avoided. Design measures which facilitate handling and transport of the steel structures are also considered.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 12944-4:2017 covers the following types of surfaces of steel structures consisting of carbon or low-alloy steel, and their preparation:
- uncoated surfaces;
- surfaces thermally sprayed with zinc, aluminium or their alloys;
- hot-dip-galvanized surfaces;
- zinc-electroplated surfaces;
- sherardized surfaces;
- surfaces painted with prefabrication primer;
- other painted surfaces.
ISO 12944-4:2017 defines a number of surface preparation grades but does not specify any requirements for the condition of the substrate prior to surface preparation.
Highly polished surfaces and work-hardened surfaces are not covered by ISO 12944-4:2017.
- Standard29 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 12944-8:2017 covers the development of specifications for corrosion protection of steel structures using protective paint systems. It relates to new work and maintenance in the workshop or on site and is also applicable to the corrosion protection of individual components. ISO 12944-8:2017 covers the corrosion protection of steel structures exposed to different corrosion stresses by environments such as indoors, open-air and immersion in water or burial in soil, as well as special stresses, due for example, to medium or high temperatures. The need for different durability ranges is considered.
Steel surfaces that have been hot-dip-galvanized, metal-sprayed, zinc-electroplated or sherardized, and previously painted steel surfaces, are also covered by ISO 12944-8:2017.
In ISO 12944-8:2017, reference areas for assessing the quality of the corrosion protection work and the performance of the protective paint systems used are dealt with. ISO 12944-8:2017 provides detailed flow charts for planning new work and maintenance, which are taken into account when writing a specification.
ISO 12944-8:2017 can also be used as a guide if extreme corrosion stresses or high temperatures occur, or if the protective paint systems are to be used on other substrates, such as non-ferrous metals or concrete, to define suitable specifications.
- Standard44 pagesEnglish languagesale 10% offe-Library read for1 day
DOP of 12 months! * 2017-03-22 FJD - No xml version as mother version was not originally published as xml.
- Amendment26 pagesEnglish languagesale 10% offe-Library read for1 day
DOP of 12 months!
2017-03-29 FJD - No xml version as the mother standard EN 1993-4-2:2007 was not edited as an xml deliverable.
- Amendment13 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 12944-2:2017 deals with the classification of the principal environments to which steel structures are exposed, and the corrosivity of these environments. ISO 12944-2:2017
- defines atmospheric-corrosivity categories, based on mass loss (or thickness loss) by standard specimens, and describes typical natural atmospheric environments to which steel structures are exposed, giving advice on the estimation of the corrosivity,
- describes different categories of environment for structures immersed in water or buried in soil, and
- gives information on some special corrosion stresses that can cause a significant increase in corrosion rate or place higher demands on the performance of the protective paint system.
The corrosion stresses associated with a particular environment or corrosivity category represent one essential parameter governing the selection of protective paint systems.
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
DOP of 12 months!
- Amendment26 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 14713-1:2017 provides guidelines and recommendations regarding the general principles of design which are appropriate for articles to be zinc coated for corrosion protection and the level of corrosion resistance provided by zinc coatings applied to iron or steel articles, exposed to a variety of environments. Initial protection is covered in relation to
- available standard processes,
- design considerations, and
- environments for use.
ISO 14713-1:2017 applies to zinc coatings applied by the following processes:
a) hot dip galvanized coatings (applied after fabrication);
b) hot dip galvanized coatings (applied onto continuous sheet);
c) sherardized coatings;
d) thermal sprayed coatings;
e) mechanically plated coatings;
f) electrodeposited coatings.
These guidelines and recommendations do not deal with the maintenance of corrosion protection in service for steel with zinc coatings. Guidance on this subject can be found in ISO 12944‑5 and ISO 12944‑8.
- Standard25 pagesEnglish languagesale 10% offe-Library read for1 day
ISO 14708-3:2017 provides guidelines and recommendations regarding the general principles of design that are appropriate for articles to be sherardized for corrosion protection.
The protection afforded by the sherardized coating to the article will depend upon the method of application of the coating, the design of the article and the specific environment to which the article is exposed. The sherardized article can be further protected by application of additional coatings (outside the scope of this document), such as organic coatings (wet paints or powder coatings). When applied to sherardized articles, this combination of coatings is often known as a "duplex system".
General guidance on this subject can be found in ISO 12944‑5 and EN 13438.
The maintenance of corrosion protection in service for steel with sherardized coatings is outside the scope of this document.
Specific product-related requirements (e.g. for sherardized coatings on fasteners or tubes, etc.) will take precedence over these general recommendations.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies requirements for the execution i.e. the manufacture and the installation of cold-formed structural aluminium components made from profiled sheeting for roof, ceiling, floor and wall applications under predominately static loading conditions or seismic loading conditions and their documentation. It does cover products of structural class I and II according to EN 1999-1-4 used in structures.
Structural elements are understood here to mean profiled sheeting, such as trapezoidal, sinusoidal, liner trays or cassette profiles (Figure 1), that are produced by cold forming. Perforated and micro profiled sheeting are also covered by this part.
Welded sections are excluded from this part and are covered by EN 1090-3 except seal welding in low-stress areas.
This standard also covers spacer constructions between the outer and inner or upper and lower skins as well as supporting members for roofs, walls and ceilings made from cold-formed profiled sheeting and the connections and attachments of the afore mentioned elements as long as they are involved in load transfer, it also covers connections and attachments of these elements.
A combination of steel and aluminium structural elements are permitted, e.g. liner trays made of steel, stiffened by profiles made of aluminium. In this case, EN 1090-4 and this document apply.
Composite structural elements where the interaction between dissimilar materials are an integral part of the structural behaviour such as sandwich panels and composite floors are not covered by this standard.
NOTE The structures covered in this standard can be for example
- single- or multi-skin roofs, whereby the load-bearing structure (lower skin) as well as the actual roof covering (upper skin) or both consist of structural elements;
- single- or multi-skin walls whereby the load-bearing structure (inner skin) as well as the actual cladding (outer skin) or both consist of structural elements; or
- suspended ceilings for interior fitting.
- Standard61 pagesEnglish languagesale 10% offe-Library read for1 day
This document provides guidelines and recommendations regarding the general principles of
design which are appropriate for articles to be zinc coated for corrosion protection and the level of
corrosion resistance provided by zinc coatings applied to iron or steel articles, exposed to a variety of
environments. Initial protection is covered in relation to
— available standard processes,
— design considerations, and
— environments for use.
This document applies to zinc coatings applied by the following processes:
a) hot dip galvanized coatings (applied after fabrication);
b) hot dip galvanized coatings (applied onto continuous sheet);
c) sherardized coatings;
d) thermal sprayed coatings;
e) mechanically plated coatings;
f) electrodeposited coatings.
These guidelines and recommendations do not deal with the maintenance of corrosion protection
in service for steel with zinc coatings. Guidance on this subject can be found in ISO 12944-5 and
ISO 12944-8.
NOTE There are a variety of product-related standards (e.g. for nails, fasteners, ductile iron pipes, etc.)
which provide specific requirements for the applied zinc coating systems which go beyond any general guidance
presented in this document. These specific product-related requirements will take precedence over these general
recommendations.
- Standard25 pagesEnglish languagesale 10% offe-Library read for1 day
This document provides guidelines and recommendations regarding the general principles of design
that are appropriate for articles to be sherardized for corrosion protection.
The protection afforded by the sherardized coating to the article will depend upon the method of
application of the coating, the design of the article and the specific environment to which the article is
exposed. The sherardized article can be further protected by application of additional coatings (outside
the scope of this document), such as organic coatings (wet paints or powder coatings). When applied to
sherardized articles, this combination of coatings is often known as a “duplex system”.
General guidance on this subject can be found in ISO 12944-5 and EN 13438.
The maintenance of corrosion protection in service for steel with sherardized coatings is outside the
scope of this document.
Specific product-related requirements (e.g. for sherardized coatings on fasteners or tubes, etc.) will
take precedence over these general recommendations.
- Standard16 pagesEnglish languagesale 10% offe-Library read for1 day
The scope of EN 1090-1:2009+A1:2011 states that the standard covers structural components and kits which are referred to as structural construction products in this document. This Technical Report gives information that clarifies when a structural construction product is covered by the scope of EN 1090-1:2009+A1:2011 and lists examples of products covered and not covered.
- Technical report17 pagesEnglish languagesale 10% offe-Library read for1 day
- Grades of stainless steel covered in EN 1993-1-4
- Section classification
- Shear buckling
- Cold worked grads (including undermatched welding)
- Grade selection and durability
- Amendment16 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies a test and assessment method for determining the contribution made by fire protection systems to the fire resistance of structural steel beam I and H members in the horizontal plane containing openings in the web which may affect the structural performance of the beam. This European Standard applies to beams subject to 3 or 4 sided fire exposure.
For any beam with a single web opening or where the web openings are considered to be of small diameter in relation to the web depth the applicability of this European Standard needs to be determined by a structural engineer.
This European Standard applies to fire protection materials that have already been tested and assessed in accordance with EN 13381 4 or EN 13381-8. i.e. this European Standard cannot be used in isolation. Use of this European Standard requires the multi-temperature analysis (MTA) derived from EN 13381 4 or EN 13381 8 as the basis for determining thickness for beams with web openings. This MTA needs to be carried out on the web and bottom flange separately generating an elemental multi-temperature analysis (EMTA). The bottom flange EMTA may be used as the top flange EMTA when a beam is subject to 4 sided exposure.
This European Standard contains the fire test methodology, which specifies the tests which need to be carried out to provide data on the thermal characteristics of the fire protection system, when exposed to the standard temperature/time curve specified in EN 1363 1.
This European standard also contains the assessment, which prescribes how the analysis of the test data should be made and gives guidance on the procedures which should be undertaken.
The assessment procedure is used to establish:
a) on the basis of the temperature data derived from testing unloaded steel sections, the thermal response of the fire protection system on cellular beams (the thermal performance);
b) the temperature ratio between the web post and the web reference temperature, which will vary depending on the web post width;
c) the temperature ratio between points around the web openings and the web reference area.
d) The elemental multi temperature analysis from either EN 13381 4 or EN 13381 8 needs to be reassessed and reported against elemental A/V for each fire resistance period.
e) A structural model needs to be used to derive limiting temperatures for cellular beams using the data from b), c) and d) above.
- Standard40 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies requirements and test methods for the characterisation of anaerobic adhesives intended for the general assembly of co-axial metallic elements in building and civil engineering structures including fasteners- threaded and otherwise, pipes and tubes. It is applicable to single adhesives and systems (kits) comprising adhesives, activators and/or primers for both internal and external construction elements.
This European Standard only applies to metallic substrates.
- Standard28 pagesEnglish languagesale 10% offe-Library read for1 day
Supplementary to Part 1-1. Additional and varied rules to be used for the design of composite structures which are required to avoid premature structural collapse and to limit the spread of fire in the accidental situation of exposure to fire.
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies a test method for determining the contribution made by applied passive fire protection systems to the fire resistance of structural steel members, which can be used as beams or columns. It considers only sections without openings in the web. It is not directly applicable to structural tension members without further evaluation. Results from analysis of I or H -sections are directly applicable to angles, channels and T-sections for the same section factor, whether used as individual elements or as bracing. This European Standard does not apply to solid bar or rod.
This European Standard covers fire protection systems that involve only passive materials and not to reactive fire protection materials as defined in this document.
The evaluation is designed to cover a range of thicknesses of the applied fire protection material, a range of steel sections, characterised by their section factors, a range of design temperatures and a range of valid fire protection classification periods.
This European Standard contains the fire test procedures, which specifies the tests which should be carried out to determine the ability of the fire protection system to remain coherent and attached to the steelwork, and to provide data on the thermal characteristics of the fire protection system, when exposed to the standard temperature/time curve specified in EN 1363-1.
The fire test methodology makes provision for the collection and presentation of data, which can be used as direct input to the calculation of fire resistance of steel structural members in accordance with the procedures given in EN 1993-1-2 and EN 1994-1-2.
This European Standard also contains the assessment, which prescribes how the analysis of the test data shall be made and gives guidance on the procedures by which interpolation should be undertaken.
The assessment procedure is used to establish:
a) on the basis of temperature data derived from testing loaded and unloaded sections, a correction factor and any practical constraints on the use of the fire protection system under fire test conditions, (the physical performance);
b) on the basis of the temperature data derived from testing short steel sections, the thermal properties of the fire protection system, (the thermal performance).
The limits of applicability of the results of the assessment arising from the fire test are defined, together with permitted direct application of the results, to different steel sections and grades and to the fire protection system.
The results of the test and assessment obtained according to this European Standard are directly applicable to steel sections of I and H cross sectional shape and hollow sections.
- Standard83 pagesEnglish languagesale 10% offe-Library read for1 day
This European Standard specifies requirements for conformity assessment of performance characteristics for structural steel and aluminium components as well as for kits placed on the market as construction products. The conformity assessment covers the manufacturing characteristics, and where appropriate the structural design characteristics.
This European Standard covers also the conformity assessment of steel components used in composite steel and concrete structures.
The components can be used directly or in construction works or as structural components in the form of kits.
This European Standard applies to series and non-series structural components including kits.
The components can be made of hot rolled or cold formed constituent products or constituent products produced with other technologies. They may be produced of sections/profiles with various shapes, flat products (plates, sheet, strip), bars, castings, forgings made of steel and aluminium materials, unprotected or protected against corrosion by coating or other surface treatment, e.g. anodising of aluminium.
This European Standard covers structural cold formed members and sheeting as defined in EN 1993-1-3 and EN 1999-1-4.
This European Standard does not cover conformity assessment of components for suspended ceilings, rails or sleepers for use in railway systems.
NOTE For certain steel and aluminium components, particular specifications for performance and other requirements have been developed. The particular specifications may be issued as an EN or as Clauses within an EN. An example is given in EN 13084-7 for single wall steel chimneys and steel liners. Such particular specifications will take precedence in case of non-compliance with the requirements of this European Standard.
- Standard43 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard – translation41 pagesSlovenian languagesale 10% offe-Library read for1 day
(1)P EN 1993-1-7 provides basic design rules for the structural design of unstiffened and stiffened plates which form part of plated structures such as silos, tanks or containers, that are loaded by out of plane actions. It is intended to be used in conjunction with EN 1993-1-1 and the relevant application standards.
(2) This document defines the design values of the resistances: the partial factor for resistances may be taken from National Annexes of the relevant application standards. Recommended values are given in the relevant application standards.
(3) This Standard is concerned with the requirements for design against the ultimate limit state of:
– plastic collapse;
– cyclic plasticity;
– buckling;
– fatigue.
(4) Overall equilibrium of the structure (sliding, uplifting, overturning) is not included in this Standard, but is treated in EN 1993-1-1. Special considerations for specific applications may be found in the relevant applications parts of EN 1993.
(5) The rules in this Standard refer to plate segments in plated structures which may be stiffened or unstiffened. These plate segments may be individual plates or parts of a plated structure. They are loaded by out of plane actions.
(6) For the verification of unstiffened and stiffened plated structures loaded only by in-plane effects see EN 1993-1-5. In EN 1993-1-7 rules for the interaction between the effects of inplane and out of plane loading are given.
(7) For the design rules for cold formed members and sheeting see EN 1993-1-3.
(8) The temperature range within which the rules of this Standard are allowed to be applied are defined in the relevant application parts of EN 1993.
(9) The rules in this Standard refer to structures constructed in compliance with the execution specification of EN 1090-2.
(10) (...)
- Standard36 pagesEnglish languagesale 10% offe-Library read for1 day
Complementary to Part 1. Varied general rules and additional detailed rules for the structural design of steel supporting structures including runway beams for overhead travelling cranes and underslung cranes and monorail runway beams for hoist blocks for locations inside and outside buildings.
- Standard37 pagesEnglish languagesale 10% offe-Library read for1 day
Complementary to Part 1. Varied general rules and additional detailed rules for the structural design of free standing or supported steel silos of circular or rectangular plan for storing bulk granular solids.
- Standard114 pagesEnglish languagesale 10% offe-Library read for1 day
Complementary to Part 1. Varied general rules and additional detailed rules for the structural design of steel bearing piles and sheet piles and concrete filled steel piles.
- Standard94 pagesEnglish languagesale 10% offe-Library read for1 day
Supplementary to Part 1-1. Supplementary provisions for the structural design o of plated steel shells in the form of cylinders, cones and spherical caps.
- Standard94 pagesEnglish languagesale 10% offe-Library read for1 day
(1) This EN 1993-1-12 gives rules that can be used in conjunction with parts
- EN1993-1-1
- EN 1993-1-2
- EN 1993-1-3
- EN 1993-1-4
- EN 1993-1-5
- EN 1993-1-6
- EN 1993-1-7
- EN 1993-1-8
- EN 1993-1-9
- EN 1993-1-10
- EN 1993-1-11
- EN 1993-2
- EN 1993-3-1
- EN 1993-3-2
- EN 1993-4-1
- EN 1993-4-2
- EN 1993-4-3
- EN 1993-5
- EN 1993-6
to enable steel structures to be designed with steel of grades greater than S460 up to S700.
(2) Where it is necessary to alter a rule in other parts to enable up to S700 to be used, it is stated what needs to be done, either by noting that a rule is not to be used with steel grades greater than S460, then giving the one that is required, or by giving an additional rule or rules.
- Standard9 pagesEnglish languagesale 10% offe-Library read for1 day
Complementary to Part 1. Varied general rules and additional detailed rules for the structural design of vertical above ground steel tanks for the storage of liquids.
- Standard55 pagesEnglish languagesale 10% offe-Library read for1 day
(1) This Part 3.1 of EN 1993 applies to the structural design of lattice towers and guyed masts and to the structural design of this type of structures supporting prismatic, cylindrical or other bluff elements. Provisions for self-supporting and guyed cylindrical towers and chimneys are given in Part 3.2 of EN 1993. Provisions for the guys of guyed structures, including guyed chimneys, are given in EN 1993-1-11 and supplemented in this Part.
(2) The provisions in this Part of EN 1993 supplement those given in Part 1.
(3) Where the applicability of a provision is limited, for practical reasons or due to simplifications, its use is explained and the limits of applicability are stated.
(4) This Part does not cover the design of polygonal and circular lighting columns, which is covered in EN 40. Lattice polygonal towers are not covered in this Part. Polygonal plated columns (monopoles) may be designed using this Part for their loading. Information on the strength of such columns may be obtained from EN 40.
(5) This Part does not cover special provisions for seismic design, which are given in EN 1998-3.
(6) Special measures that might be necessary to limit the consequences of accidents are not covered in this Part. For resistance to fire, reference should be made to EN 1993 1 2.
(7) For the execution of steel towers and masts, reference should be made to EN 1090.
NOTE: Execution is covered to the extent that is necessary to indicate the quality of the construction materials and products that should be used and the standard of workmanship on site needed to comply with the assumptions of the design rules.
- Standard79 pagesEnglish languagesale 10% offe-Library read for1 day
EN1993-1-11 gives design rules for structures with tension components made of steel, which, due to their connections with the structure, are adjustable and replaceable
- Standard34 pagesEnglish languagesale 10% offe-Library read for1 day
EN 1993-2 provides a general basis for the structural design of steel bridges and steel parts of composite bridges. It gives provisions that supplement, modify or supersede the equivalent provisions given in the various parts of EN 1993-1. (2) The design criteria for composite bridges are covered in EN 1994-2. (3) The design of high strength cables and related parts are included in EN 1993-1-11. (4) This European Standard is concerned only with the resistance, serviceability and durability of bridge structures. Other aspects of design are not considered. (5) For the execution of steel bridge structures, EN 1090 should be taken into account. NOTE: As long as EN 1090 is not yet available a provisional guidance is given in Annex C. (6) Execution is covered to the extent that is necessary to indicate the quality of the construction materials and products that should be used and the standard of workmanship needed to comply with the assumptions of the design rules. (7) Special requirements of seismic design are not covered. Reference should be made to the requirements given in EN 1998, which complements and modifies the rules of EN 1993-2 specifically for this purpose.
- Standard102 pagesEnglish languagesale 10% offe-Library read for1 day
This Part 1.4 of EN 1993 gives supplementary provisions for the design of buildings and civil engineering works that extend and modify the application of EN 1993 1 1, EN 1993 1 3, EN 1993-1-5 and EN 1993-1-8 to austenitic, austenitic-ferritic and ferritic stainless steels.
NOTE 1: Information on the durability of stainless steels is given in Annex A.
NOTE 2: The execution of stainless steel structures is covered in EN 1090.
NOTE 3: Guidelines for further treatment, including heat treatment, are given in EN 10088.
- Standard35 pagesEnglish languagesale 10% offe-Library read for1 day
This Part 3.2 of EN 1993 applies to the structural design of vertical steel chimneys of circular or conical section. It covers chimneys that are cantilevered, supported at intermediate levels or guyed.
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
(1) Part 2 of Eurocode 4 gives design rules for steel-concrete composite bridges or members of bridges, additional to the general rules in EN 1994-1-1. Cable stayed bridges are not fully covered by this part.
(2) The following subjects are dealt with in Part 2:
Section 1: General
Section 2: Basis of design
Section 3: Materials
Section 4: Durability
Section 5: Structural analysis
Section 6: Ultimate limit states
Section 7: Serviceability limit states
Section 8: Decks with precast concrete slabs
Section 9: Composite plates in bridges
(3) Provisions for shear connectors are given only for welded headed studs.
NOTE: Reference to guidance for other types as shear connectors may be given in the National Annex.
- Standard90 pagesEnglish languagesale 10% offe-Library read for1 day
Supplementary to Part 1-1. Additional and varied rules to be used for the design of composite structures which are required to avoid premature structural collapse and to limit the spread of fire in the accidental situation of exposure to fire.
- Standard109 pagesEnglish languagesale 10% offe-Library read for1 day
(1) Part 1-1 of Eurocode 4 gives a general basis for the design of composite structures together with specific rules for buildings.
(2) The following subjects are dealt with in Part 1-1:
Section 1: General
Section 2: Basis of design
Section 3: Materials
Section 4: Durability
Section 5: Structural analysis
Section 6: Ultimate limit states
Section 7: Serviceability limit states
Section 8: Composite joints in frames for buildings
Section 9: Composite slabs with profiled steel sheeting for buildings
- Standard118 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard – translation120 pagesSlovenian languagesale 10% offe-Library read for1 day
TC - Modifications in the E mother reference version in the Foreword, in Clauses 1, 2, 3, 4, 5, 7, 9 and 11, and in Annex A.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum5 pagesEnglish languagesale 10% offe-Library read for1 day
TC - Modifications to "National annex for EN 1993-2", Clauses 3, 5, 6, 7 and 8 and Annexes A, B, C, D and E in the English mother version.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum4 pagesEnglish languagesale 10% offe-Library read for1 day
TC - Editorial modifications to "National annex for EN 1993-3-1" and to Clauses 1, 2, 6, 8, 9, B.2, B.3, B.4, C.5, C.6, F.2, G.2, H.3 and H.4 in the E mother reference version.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum7 pagesEnglish languagesale 10% offe-Library read for1 day
TC - Modifications in Subclauses 1.3, 2.7, 2.8, 3.2.3, 3.6.2, 5.8, 6.5.1, 6.6, 8.3, 8.4.3, 9.3.2 and 9.3.3 and in Clause A.2.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum3 pagesEnglish languagesale 10% offe-Library read for1 day
TC - Modifications in the E mother reference version in Clauses 5 and 7.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum4 pagesEnglish languagesale 10% offe-Library read for1 day
TC - Modifications in Clauses 2, 3, 4, 6, 7 and 8 in the E mother reference version.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum3 pagesEnglish languagesale 10% offe-Library read for1 day
TC - Modifications to Clause 2 in the E mother reference version.
2013: Originator of XML version: first setup pilot of CCMC in 2012
- Corrigendum2 pagesEnglish languagesale 10% offe-Library read for1 day