ASTM E691-05
(Practice)Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
SCOPE
1.1 This practice describes the techniques for planning, conducting, analyzing, and treating the results of an interlaboratory study (ILS) of a test method. The statistical techniques described in this practice provide adequate information for formulating the precision statement of a test method.
1.1.1 A computer software package for performing the calculations and producing the tables and graphs associated with Practice E 691. This software can be run on PC compatible computers, and hard copy tables and graphs can be printed on dot-matrix printers.
1.2 This practice does not concern itself with the development of test methods but rather with gathering the information needed for a test method precision statement after the development stage has been successfully completed. The data obtained in the interlaboratory study may indicate, however, that further effort is needed to improve the test method.
1.3 Since the primary purpose of this practice is the development of the information needed for a precision statement, the experimental design in this practice may not be optimum for evaluating materials, apparatus, or individual laboratories.
1.4 Field of Application—This practice is concerned exclusively with test methods which yield a single numerical figure as the test result, although the single figure may be the outcome of a calculation from a set of measurements.
1.4.1 This practice does not cover methods in which the measurement is a categorization, such as a go-no-go allocation (two categories) or a sorting scheme into two or more categories. For practical purposes, the discontinuous nature of measurements of these types may be ignored when a test result is defined as an average of several individual measurements. Then, this practice may be applicable, but caution is required and a statistician should be consulted.
1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
General Information
Relations
Standards Content (Sample)
NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
An American National Standard
Designation: E 691 – 05
Standard Practice for
Conducting an Interlaboratory Study to Determine the
1
Precision of a Test Method
This standard is issued under the fixed designation E691; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision.Anumber in parentheses indicates the year of last reapproval.A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
INTRODUCTION
Testsperformedonpresumablyidenticalmaterialsinpresumablyidenticalcircumstancesdonot,in
general, yield identical results. This is attributed to unavoidable random errors inherent in every test
procedure;thefactorsthatmayinfluencetheoutcomeofatestcannotallbecompletelycontrolled.In
the practical interpretation of test data, this inherent variability has to be taken into account. For
instance, the difference between a test result and some specified value may be within that which can
beexpectedduetounavoidablerandomerrors,inwhichcasearealdeviationfromthespecifiedvalue
hasnotbeendemonstrated.Similarly,thedifferencebetweentestresultsfromtwobatchesofmaterial
will not indicate a fundamental quality difference if the difference is no more than can be attributed
to inherent variability in the test procedure. Many different factors (apart from random variations
between supposedly identical specimens) may contribute to the variability in application of a test
method, including: a the operator, b equipment used, c calibration of the equipment, and d
environment (temperature, humidity, air pollution, etc.). It is considered that changing laboratories
changes each of the above factors.The variability between test results obtained by different operators
or with different equipment will usually be greater than between test results obtained by a single
operator using the same equipment. The variability between test results taken over a long period of
time even by the same operator will usually be greater than that obtained over a short period of time
because of the greater possibility of changes in each of the above factors, especially the environment.
The general term for expressing the closeness of test results to the“ true” value or the accepted
referencevalueisaccuracy.Tobeofpracticalvalue,standardproceduresarerequiredfordetermining
the accuracy of a test method, both in terms of its bias and in terms of its precision. This practice
provides a standard procedure for determining the precision of a test method. Precision, when
evaluating test methods, is expressed in terms of two measurement concepts, repeatability and
reproducibility. Under repeatability conditions the factors listed above are kept or remain reasonably
constantandusuallycontributeonlyminimallytothevariability.Underreproducibilityconditionsthe
factors are generally different (that is, they change from laboratory to laboratory) and usually
contribute appreciably to the variability of test results.Thus, repeatability and reproducibility are two
practical extremes of precision.
The repeatability measure, by excluding the factors a through d as contributing variables, is not
intended as a mechanism for verifying the ability of a laboratory to maintain“ in-control” conditions
for routine operational factors such as operator-to-operator and equipment differences or any effects
of longer time intervals between test results. Such a control study is a separate issue for each
laboratory to consider for itself, and is not a recommended part of an interlaboratory study.
The reproducibility measure (including the factors a through d as sources of variability) reflects
whatprecisionmightbeexpectedwhenrandomportionsofahomogeneoussamplearesenttorandom
“in-control” laboratories.
To obtain reasonable estimates of repeatability and reproducibility precision, it is necessary in an
interlaboratory study to guard against excessively sanitized data in the sense that only the uniquely
best operators are involved or that a laboratory takes unusual steps to get“ good” results. It is also
importanttorecognizeandconsiderhowtotreat“poor”resultsthatmayhaveunacceptableassignable
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
1
---------------------- Page: 1 ----------------------
E691–05
causes (for example, departures from the prescribed procedure). The inclusion of such results in the
final precision estimates might be questioned.
Anessentialaspectofcollectingusefulconsistentdataiscarefulplanningandconductofthestudy.
Questionsconcerningthenumberoflaboratoriesrequiredforasuccessfulstudyaswellasthenumber
oftestresultsperlaboratoryaffecttheconfidenceintheprecision
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.