Standard Test Method for Determining Water Separation Characteristics of Kerosine-Type Aviation Turbine Fuels Containing Additives by Portable Separometer

SIGNIFICANCE AND USE
5.1 This test method provides a measurement of the presence of surfactants in aviation turbine fuels. Like previous obsolete Test Methods D2550 and D3602 and current Test Methods D3948 and D8073, this test method can detect trace amounts of refinery treating chemicals in fuel. The test methods can also detect surface active substances added to fuel in the form of additives or picked up by the fuel during handling from point of production to point of use. Some of these substances degrade the ability of filter separators to separate free water from the fuel.  
5.2 This test method yields approximately the same (low) MSEP ratings as Test Method D3948 for fuels that contain strong surfactants.  
5.2.1 This test method will give approximately the same MSEP ratings for Jet A, Jet A-1, JP-5, JP-7, and JP-8 fuels as Test Method D3948 when testing reference fluids.  
5.3 The MSEP ratings obtained by this test method are less affected by weak surfactants than Test Method D3948. Somewhat higher MSEP ratings for Jet A, Jet A-1, JP-5, JP-7, and JP-8 fuels are obtained by this test method than those obtained by Test Method D3948 when additives such as static dissipater additives (SDA) and corrosion inhibitors are present in the fuel. This correlates with the satisfactory performance of filter separators for such fuels, when wet. However, these same additives adversely affect the MSEP ratings obtained by Test Method D3948 by erroneously indicating that such additized fuels would significantly degrade the ability of filter separators to separate free water from the fuel in actual service.  
5.4 The Micro-Separometer instrument has an effective measurement range from 50 to 100. Values obtained outside of those limits are undefined and invalid.
Note 1: In the event a value greater than 100 is obtained, there is a good probability that light transmittance was reduced by material, typically water, contained in the fuel that was used to set the 100 reference level. During the coal...
SCOPE
1.1 This test method covers a rapid portable means for field and laboratory use to rate the ability of kerosine-type aviation turbine fuels, both neat and those containing additives, to release entrained or emulsified water when passed through coalescing material.  
1.1.1 This test method is applicable to kerosine-type aviation turbine fuels including: Jet A and Jet A-1 (as described in Specification D1655); JP-5, JP-7, JP-8, and JP-8+100. (See Section 6.)  
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 8.2 – 8.5.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

General Information

Status
Published
Publication Date
14-Jan-2023
Current Stage
Ref Project

Buy Standard

Standard
ASTM D7224-23 - Standard Test Method for Determining Water Separation Characteristics of Kerosine-Type Aviation Turbine Fuels Containing Additives by Portable Separometer
English language
15 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
REDLINE ASTM D7224-23 - Standard Test Method for Determining Water Separation Characteristics of Kerosine-Type Aviation Turbine Fuels Containing Additives by Portable Separometer
English language
15 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Designation: D7224 − 23
Standard Test Method for
Determining Water Separation Characteristics of Kerosine-
Type Aviation Turbine Fuels Containing Additives by
1
Portable Separometer
This standard is issued under the fixed designation D7224; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
INTRODUCTION
This test method was developed to satisfy three objectives: (1) Develop a test method that would
respond in the same manner as Test Method D3948 to strong surfactants, but not give low
micro-separometer(MSEP)ratingstofuelscontainingweaksurfactants(additives)thatdonotdegrade
the performance of commercial filter separator elements; (2) Use filter media in the coalescer test that
would be representative of the filtration media in commercial filter separator elements; and (3)
Improve the precision of the test method compared to Test Method D3948.
This test method was developed using material that is representative of coalescing materials
currently used in commercial filter separator elements. The fiberglass coalescing material used in Test
Method D3948 was suitable for coalescing filters in use when that test method was developed, but
developments in coalescing elements in the intervening years have resulted in improved materials that
are not affected by weak surfactants. Test Method D3948 yields low results on some additized fuels
that do not affect the performance of filter separators (coalescing filters) in actual service. Since this
test method was developed with material that is representative of the media used in current filter
separators, the results by this test method are more relevant to performance in current filter separators.
1. Scope* mine the applicability of regulatory limitations prior to use.
For specific warning statements, see 8.2 – 8.5.
1.1 This test method covers a rapid portable means for field
1.4 This international standard was developed in accor-
and laboratory use to rate the ability of kerosine-type aviation
dance with internationally recognized principles on standard-
turbine fuels, both neat and those containing additives, to
release entrained or emulsified water when passed through ization established in the Decision on Principles for the
coalescing material. Development of International Standards, Guides and Recom-
1.1.1 This test method is applicable to kerosine-type avia-
mendations issued by the World Trade Organization Technical
tion turbine fuels including: Jet A and Jet A-1 (as described in
Barriers to Trade (TBT) Committee.
Specification D1655); JP-5, JP-7, JP-8, and JP-8+100. (See
Section 6.)
2. Referenced Documents
1.2 The values stated in SI units are to be regarded as
2
2.1 ASTM Standards:
standard. The values given in parentheses after SI units are
D1655 Specification for Aviation Turbine Fuels
provided for information only and are not considered standard.
D2550 Method of Test for Water Separation Characteristics
3
1.3 This standard does not purport to address all of the
of Aviation Turbine Fuels (Withdrawn 1989)
safety concerns, if any, associated with its use. It is the
D3602 Test Method for Water Separation Characteristics of
responsibility of the user of this standard to establish appro- 3
Aviation Turbine Fuels (Withdrawn 1994)
priate safety, health, and environmental practices and deter-
1 2
This test method is under the jurisdiction of ASTM Committee D02 on For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Subcommittee D02.J0.05 on Fuel Cleanliness. Standards volume information, refer to the standard’s Document Summary page on
Current edition approved Jan. 15, 2023. Published January 2023. Originally the ASTM website.
3
approved in 2005. Last previous edition approved in 2020 as D7224 – 20. DOI: The last approved version of this historical standard is referenced on
10.1520/D7224-23. www.astm.org.
*A Summary of Changes section appears at the end of this standard
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
1

---------------------- Page: 1 ----------------------
D7224 − 23
D3948 TestMethodforDeterminingWaterSeparationChar- 3.2.4.1 Discussion—Strong surfactants can be refinery pro-
acteristicsofAviationTurbineFuelsbyPortableSeparom- cess chemicals left in the fuel or co
...

This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because
it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version
of the standard as published by ASTM is to be considered the official document.
Designation: D7224 − 20 D7224 − 23
Standard Test Method for
Determining Water Separation Characteristics of Kerosine-
Type Aviation Turbine Fuels Containing Additives by
1
Portable Separometer
This standard is issued under the fixed designation D7224; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
INTRODUCTION
This test method was developed to satisfy three objectives: (1) Develop a test method that would
respond in the same manner as Test Method D3948 to strong surfactants, but not give low
micro-separometer (MSEP) ratings to fuels containing weak surfactants (additives) that do not degrade
the performance of commercial filter separator elements; (2) Use filter media in the coalescer test that
would be representative of the filtration media in commercial filter separator elements; and (3)
Improve the precision of the test method compared to Test Method D3948.
This test method was developed using material that is representative of coalescing materials
currently used in commercial filter separator elements. The fiberglass coalescing material used in Test
Method D3948 was suitable for coalescing filters in use when that test method was developed, but
developments in coalescing elements in the intervening years have resulted in improved materials that
are not affected by weak surfactants. Test Method D3948 yields low results on some additized fuels
that do not affect the performance of filter separators (coalescing filters) in actual service. Since this
test method was developed with material that is representative of the media used in current filter
separators, the results by this test method are more relevant to performance in current filter separators.
1. Scope*
1.1 This test method covers a rapid portable means for field and laboratory use to rate the ability of kerosine-type aviation turbine
fuels, both neat and those containing additives, to release entrained or emulsified water when passed through fiberglass coalescing
material.
1.1.1 This test method is applicable to kerosine-type aviation turbine fuels including: Jet A and Jet A-1 (as described in
Specification D1655); JP-5, JP-7, JP-8, and JP-8+100. (See Section 6.)
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for
information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility
of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of
regulatory limitations prior to use. For specific warning statements, see 8.2 – 8.5.
1
This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee
D02.J0.05 on Fuel Cleanliness.
Current edition approved May 1, 2020Jan. 15, 2023. Published June 2020January 2023. Originally approved in 2005. Last previous edition approved in 20182020 as
D7224 – 14 (2018).D7224 – 20. DOI: 10.1520/D7224-20.10.1520/D7224-23.
*A Summary of Changes section appears at the end of this standard
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
1

---------------------- Page: 1 ----------------------
D7224 − 23
1.4 This international standard was developed in accordance with internationally recognized principles on standardization
established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued
by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
2. Referenced Documents
2
2.1 ASTM Standards:
D1655 Specification for Aviation Turbine Fuels
3
D2550 Method of Test for Water Separation Characteristics of Aviation Turbine Fuels (Withdrawn 1989)
3
D3602 Test Method for Water Separation Characteristics of Aviation Turbine Fuels (Withdrawn 1994)
D3948 Test Method for Determining Water Separation Characteristics of Aviation Turbine Fuels by Portable Separometer
D4175 Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants
D4306 Practice for Aviation Fuel Sample Containers for Tests Affected by Trace Contamination
D6615 Specification for Jet B Wide-Cut Av
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.