ASTM D5871-98
(Specification)Standard Specification for Benzene for Cyclohexane Feedstock
Standard Specification for Benzene for Cyclohexane Feedstock
SCOPE
1.1 This specification covers benzene for cyclohexane feedstock.
1.2 Consult current OSHA regulations supplier's Material Safety Data Sheets for all materials used in this specification.
1.3 The following applies to all specified limits in this standard: for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.
General Information
Relations
Standards Content (Sample)
NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
Designation: D 5871 – 98
Standard Specification for
Benzene for Cyclohexane Feedstock
This standard is issued under the fixed designation D 5871; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
1. Scope D 4735 Test Method for Determination of Trace Thiophene
in Refined Benzene by Gas Chromatograph
1.1 This specification covers benzene for cyclohexane feed-
D 5386 Test Method for Color of Liquids UsingTristimulus
stock.
Colorimetry
1.2 The following applies to all specified limits in this
D 5713 Test Method for Analysis of High Purity Benzene
standard: for purposes of determining conformance with this
for Cyclohexane Feedstock by Capillary Gas Chromatog-
standard, an observed value or a calculated value shall be
raphy
rounded off “to the nearest unit” in the last right-hand digit
E29 Practice for Using Significant Digits in Test Data to
used in expressing the specification limit, in accordance with
Determine Conformance with Specification
the rounding-off method of PracticeE29.
2.2 Other Document:
1.3 Consult current OSHA regulations supplier’s Material
OSHA Regulations, 29 CFR, paragraphs 1910.1000 and
Safety Data Sheets for all materials used in this specification.
1910.1200
2. Referenced Documents
3. Properties
2.1 ASTM Standards:
3.1 Benzene for Cyclohexane Feedstock shall conform to
D 848 Test Method for Acid Wash Color of Industrial
the following requirements:
Aromatic Hydrocarbons
Property Specification ASTM Test Method
D 852 Test Method for Solidification Point of Benzene
D 1209 Test Method for Color of Clear Liquids (Platinum-
Benzene, min, weight % 99.90 D 5713 or D 4492
Cobalt Scale)
Sulfur, max, mg/kg 1.0 D 4045
Thiophene, max, mg/kg 0.6 D 1685 or D 4735
D 1685 Test Method forTraces ofThiophene in Benzene by
Toluene plus methylcyclohexane max, 150 D 5713
Spectrophotometry
mg/kg
D 3437 Practice for Sampling and Handling Liquid Cyclic
Methylcyclopentane, max mg/kg 100 D 5713
N-hexane, max, mg/kg 80 D 5713
Products
Acid wash color, max pass with 1 D 848
D 3505 Test Method for Density or Relative Density of
A
Appearance .
Pure Liquid Chemicals Color, max, Pt-Co scale 10 D 1209 or D 5386
Relative Density, 15.56/15.56°C 0.882 to 0.886 D 3505 or D 4052
D 4017 Test Method for Water in Paints and paint Materials
Water (if needed) D 4017
by Karl Fisher Method
Solidificat
...
This May Also Interest You
ABSTRACT
This specification covers benzene for cyclohexane feedstock. Different tests shall be performed in order to determine the following properties of cyclohexane feedstock: benzene content, sulfur content, thiophene content, toluene plus methylcyclohexane content, methylcyclopentane content, N-hexane content, acid wash color, appearance, color, water content, and solidification point with anhydrous basis.
SCOPE
1.1 This specification covers benzene for cyclohexane feedstock.
1.2 The following applies to all specified limits in this standard: for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.
1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.4 Consult current OSHA regulations supplier’s Safety Data Sheets for all materials used in this specification.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
- Technical specification2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a family of more than 4700 synthetic organic chemicals. PFAS can withstand high temperatures and survive highly corrosive environments. They are used in the manufacture of coatings, surface treatments, and specialty chemicals in cookware, carpets, food packaging, clothing, cosmetics, and other common consumer products. PFAS also have many industrial applications and are an active ingredient in certain types of fire-fighting foams (aqueous film-forming foams, or AFFF). PFAS coatings resist oil, grease, and water. PFAS are persistent compounds. Therefore, PFAS should be considered for purposes of managing investigation-derived waste where PFAS is known or suspected to be present in environmental media.
4.1.1 PFAS are emerging contaminants for which environmental regulations and guidance are dynamic and are being developed simultaneously at federal, state, local, and international levels as more is learned about their characteristics, environmental fate, and management/treatment. Therefore, site-specific rules, regulations, and guidance should be evaluated for options and restrictions on management of PFAS investigation-derived waste. For example, the Massachusetts Department of Environmental Protection has determined that PFAS wastes are “hazardous materials” subject to the Massachusetts Oil and Hazardous Material Release Prevention and Response Act (M.G.L. Chapter 21E) and the Massachusetts Contingency Plan. Other states and jurisdictions may have or will develop and implement similar determinations that affect the on-site management, storage, and labeling and off-site transportation requirements for PFAS investigation-derived waste.
4.1.2 Given the characteristics and persistence of PFAS compounds, PFAS investigation-derived waste presents special handling and treatment/disposal considerations. EPA recently issued Interim Guidance on the Destruction and Disposal of Perfluoralkyl and Polyfluoralky...
SCOPE
1.1 Existing guidance on the management of investigation-derived waste is focused upon cuttings, purge water, personal protective equipment, and other miscellaneous solid waste generated at property that may be impacted by the release of hazardous materials and hazardous substances. These hazardous substances include, but are not limited to, heavy metals, petroleum, petroleum byproducts, solvents, polycyclic aromatic hydrocarbons, organic and inorganic corrosives, radioactive material, and explosives. Guidance on the management of investigation derived waste generated at sites that may be impacted by releases of perfluoroalkyl and polyfluoroalkyl substances (PFAS) is limited. This standard guide addresses this deficiency
1.2 This guide describes best practices for managing investigation-derived waste associated with PFAS that are consistent with federal and state policies and regulations at the date of issuance. The user is advised to determine if new regulations or rules have been promulgated by the state, federal, or tribal regulatory agency having jurisdiction over the property.
1.3 This guide describes considerations to prevent the unintended and unauthorized disposal of liquid investigation-derived waste that may contain PFAS into wastewater treatment plants or systems that are not permitted to receive these waste streams.
1.4 This guide describes considerations to prevent the unintended and unauthorized disposal of solid investigation-derived waste that may contain PFAS into landfills or other solid waste disposal facilities that are not permitted to receive these waste streams.
1.5 This guide describes several stormwater pollution prevention best management practices applicable to investigation-derived waste.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety,...
- Guide6 pagesEnglish languagesale 15% off
- Guide6 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers benzene for cyclohexane feedstock. Different tests shall be performed in order to determine the following properties of cyclohexane feedstock: benzene content, sulfur content, thiophene content, toluene plus methylcyclohexane content, methylcyclopentane content, N-hexane content, acid wash color, appearance, color, water content, and solidification point with anhydrous basis.
SCOPE
1.1 This specification covers benzene for cyclohexane feedstock.
1.2 The following applies to all specified limits in this standard: for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.
1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.4 Consult current OSHA regulations supplier’s Safety Data Sheets for all materials used in this specification.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
- Technical specification2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This practice is useful as a screening basis for acceptance or rejection of transparencies during manufacturing so that units with identifiable flaws will not be carried to final inspection for rejection at that time.
4.2 This practice may also be employed as a go-no go technique for acceptance or rejection of the finished product.
4.3 This practice is simple, inexpensive, and effective. Flaws identified by this practice, as with other optical methods, are limited to those that produce temperature gradients when electrically powered. Any other type of flaw, such as minor scratches parallel to the direction of electrical flow, are not detectable.
SCOPE
1.1 This practice covers a standard procedure for detecting flaws in the conductive coating (heater element) by the observation of polarized light patterns.
1.2 This practice applies to coatings on surfaces of monolithic transparencies as well as to coatings imbedded in laminated structures.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades include the following: Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 for use in domestic and small industrial burners; Grades No. 1 S5000 and No. 1 S500 adapted to vaporizing type burners or where storage conditions require low pour point fuel; Grades No. 4 (Light) and No. 4 (Heavy) for use in commercial/industrial burners; and Grades No. 5 (Light), No. 5 (Heavy), and No. 6 for use in industrial burners. Preheating is usually required for handling and proper atomization. The grades of fuel oil shall be homogeneous hydrocarbon oils, free from inorganic acid, and free from excessive amounts of solid or fibrous foreign matter. Grades containing residual components shall remain uniform in normal storage and not separate by gravity into light and heavy oil components outside the viscosity limits for the grade. The grades of fuel oil shall conform to the limiting requirements prescribed for: (1) flash point, (2) water and sediment, (3) physical distillation or simulated distillation, (4) kinematic viscosity, (5) Ramsbottom carbon residue, (6) ash, (7) sulfur, (8) copper strip corrosion, (9) density, and (10) pour point. The test methods for determining conformance to the specified properties are given.
SCOPE
1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows:
1.1.1 Grades No. 1 S5000, No. 1 S500, No. 1 S15, No. 2 S5000, No. 2 S500, and No. 2 S15 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000, No. 1 S500, and No. 1 S15 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel.
1.1.2 Grades B6–B20 S5000, B6–B20 S500, and B6–B20 S15 are middle distillate fuel/biodiesel blends for use in domestic and small industrial burners.
1.1.3 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range.
1.1.4 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization.
Note 1: For information on the significance of the terminology and test methods used in this specification, see Appendix X1.
Note 2: A more detailed description of the grades of fuel oils is given in X1.3.
1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs.
1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive.
1.4 The values stated in SI units are to be regarded as standard.
1.4.1 Non-SI units are provided in Table 1 and Table 2 and in 7.1.2.1/7.1.2.2 because these are common units used in the industry.
Note 3: The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification13 pagesEnglish languagesale 15% off
- Technical specification13 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the properties and requirements for two types of asbestos-free asphalt roof coatings consisting of an asphalt base, volatile petroleum solvents, and mineral or other stabilizers, or both, mixed to a smooth, uniform consistency suitable for application by squeegee, three-knot brush, paint brush, roller, or by spraying. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalts characterized by high softening point and relatively low ductility. The coatings shall conform to specified composition limits for water, nonvolatile matter, minerals and/or other stabilizers, and bitumen (asphalt). They shall also meet physical requirements as to uniformity, consistency, and pliability and behavior at given temperatures.
SCOPE
1.1 This specification covers asbestos-free asphalt roof coatings of brushing or spraying consistency.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers emulsified asphalt suitable for use as a protective coating for built-up roofs and other exposed surfaces with specified inclines. The emulsified asphalts are grouped into three types, as follows: Type I, which contains fillers or fibers including asbestos; Type II, which contains fillers or fibers other than asbestos; and Type III, which do not contain any form of fibrous reinforcement. These types are further subdivided into two classes, as follows: Class 1, which is prepared with mineral colloid emulsifying agents; and Class 2, which is prepared with chemical emulsifying agents. Other than consistency and homogeneity of the final products, they shall also conform to specified physical property requirements such as weight, residue by evaporation, ash content of residue, water content flammability, firm set, flexibility, resistance to water, and behavior during heat and direct flame tests.
SCOPE
1.1 This specification covers emulsified asphalt suitable for use as a protective coating for built-up roofs and other exposed surfaces with inclines of not less than 4 % or 42 mm/m [1/2 in./ft].
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The kinematic viscosity characterizes flow behavior. The method is used to determine the consistency of liquid asphalt as one element in establishing the uniformity of shipments or sources of supply. The specifications are usually at temperatures of 60 and 135 °C.
Note 3: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.
SCOPE
1.1 This test method covers procedures for the determination of kinematic viscosity of liquid asphalts, road oils, and distillation residues of liquid asphalts all at 60 °C [140 °F] and of liquid asphalt binders at 135 °C [275 °F] (see table notes, 11.1) in the range from 6 to 100 000 mm2/s [cSt].
1.2 Results of this test method can be used to calculate viscosity when the density of the test material at the test temperature is known or can be determined. See Annex A1 for the method of calculation.
Note 1: This test method is suitable for use at other temperatures and at lower kinematic viscosities, but the precision is based on determinations on liquid asphalts and road oils at 60 °C [140 °F] and on asphalt binders at 135 °C [275 °F] only in the viscosity range from 30 to 6000 mm2/s [cSt].
Note 2: Modified asphalt binders or asphalt binders that have been conditioned or recovered are typically non-Newtonian under the conditions of this test. The viscosity determined from this method is under the assumption that asphalt binders behave as Newtonian fluids under the conditions of this test. When the flow is non-Newtonian in a capillary tube, the shear rate determined by this method may be invalid. The presence of non-Newtonian behavior for the test conditions can be verified by measuring the viscosity with viscometers having different-sized capillary tubes. The defined precision limits in 11.1 may not be applicable to non-Newtonian asphalt binders.
1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) or Safety Data Sheet (SDS) for details and the EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.5 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior ...
- Standard11 pagesEnglish languagesale 15% off
- Standard11 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers coal tar roof cement suitable for trowel application in coal tar roofing and flashing systems. The chemical composition of coal tar roof cement shall conform to the requirements prescribed. The water, non-volatile matter, insoluble matter, behaviour at 60 deg. C, adhesion to wet surfaces, and flash point shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers coal tar roof cement suitable for trowel application in coal tar roofing and flashing systems.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.