EN ISO 16000-19:2014
(Main)Indoor air - Part 19: Sampling strategy for moulds (ISO 16000-19:2012)
Indoor air - Part 19: Sampling strategy for moulds (ISO 16000-19:2012)
ISO 16000-19:2012 describes the measurement strategy for the detection of fungi in indoor environments.
ISO 16000-19:2012 describes suitable sampling and analysis methods together with a description of the applicability and the interpretation of the measurement results to maximize the comparability of the measured data obtained for a given measurement objective. It does not include details on recording building characteristics or field inspections by qualified professionals which have to take place prior to any microbiological measurement.
ISO 16000-19:2012 is not applicable to a detailed description of the building physics- and building-engineering-related procedures applicable to field inspections. The methods and procedures presented do not allow quantitative exposure assessment with regard to the room occupants.
The application of ISO 16000-19:2012 presupposes the knowledge of ISO 16000-1.
Innenraumluftverunreinigungen - Teil 19: Probenahmestrategie für Schimmelpilze (ISO 16000-19:2012)
Air intérieur - Partie 19: Stratégie d'échantillonnage des moisissures (ISO 16000-19:2012)
L'ISO 16000-19:2012 décrit la stratégie de mesurage pour détecter les champignons dans les environnements intérieurs.
L'ISO 16000-19:2012 décrit des méthodes d'échantillonnage et d'analyse appropriées ainsi que l'applicabilité et l'interprétation des résultats de mesurage pour maximiser la comparabilité des données mesurées obtenues pour un objectif de mesurage donné. Elle ne contient pas d'indications détaillées concernant l'enregistrement des caractéristiques du bâtiment ou les inspections sur le terrain menées par des professionnels qualifiés qui doivent être effectués préalablement à tout mesurage microbiologique.
L'ISO 16000-19:2012 ne s'applique pas à une description détaillée des modes opératoires relatifs à la physique et au génie du bâtiment applicables aux inspections sur le terrain. Les méthodes et les modes opératoires présentés ne permettent pas d'évaluer l'exposition quantitative des occupants de la pièce.
L'application de l'ISO 16000-19:2012 présuppose que l'on ait pris connaissance de l'ISO 16000‑1.
Notranji zrak - 19. del: Strategija vzorčenja gliv (ISO 16000-19:2012)
Ta del ISO 16000 opisuje strategijo merjenja za zaznavanje gliv v zaprtih prostorih. Opisuje primerno metodo vzorčenja in analize skupaj z opisom uporabnosti in interpretacije rezultatov meritev za povečanje primerljivosti pridobljenih podatkov meritev za dani cilj meritev. Ne vključuje podrobnosti o beleženju lastnosti stavb ali strokovnem pregledu območja, ki se morata izvesti pred mikrobiološkimi merjenji. Ta del standarda ISO 16000 ne velja za podroben opis postopkov, povezanih z gradbeno fiziko ali gradbeno tehniko, ki se uporabljajo pri pregledu območja. Predstavljene metode in postopki ne omogočajo kvantitativnega ocenjevanja izpostavljenosti oseb v prostoru. Uporaba tega dela ISO 16000 predpostavlja poznavanje ISO 16000-1.
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-december-2014
1RWUDQML]UDNGHO6WUDWHJLMDY]RUþHQMDJOLY,62
Indoor air - Part 19: Sampling strategy for moulds (ISO 16000-19:2012)
Innenraumluftverunreinigungen - Teil 19: Probenahmestrategie für Schimmelpilze (ISO
16000-19:2012)
Air intérieur - Partie 19: Stratégie d'échantillonnage des moisissures (ISO 16000-
19:2012)
Ta slovenski standard je istoveten z: EN ISO 16000-19:2014
ICS:
13.040.20 Kakovost okoljskega zraka Ambient atmospheres
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD
EN ISO 16000-19
NORME EUROPÉENNE
EUROPÄISCHE NORM
October 2014
ICS 13.040.20
English Version
Indoor air - Part 19: Sampling strategy for moulds (ISO 16000-
19:2012)
Air intérieur - Partie 19: Stratégie d'échantillonnage des Innenraumluftverunreinigungen - Teil 19:
moisissures (ISO 16000-19:2012) Probenahmestrategie für Schimmelpilze (ISO 16000-
19:2012)
This European Standard was approved by CEN on 9 February 2014.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national
standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same
status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2014 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 16000-19:2014 E
worldwide for CEN national Members.
Contents
Page
Foreword .3
Foreword
The text of ISO 16000-19:2012 has been prepared by Technical Committee ISO/TC 146 “Air quality” of the
International Organization for Standardization (ISO) and has been taken over as EN ISO 16000-19:2014 by
Technical Committee CEN/TC 264 “Air quality” the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an identical
text or by endorsement, at the latest by April 2015, and conflicting national standards shall be withdrawn at the
latest by April 2015.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Endorsement notice
The text of ISO 16000-19:2012 has been approved by CEN as EN ISO 16000-19:2014 without any
modification.
INTERNATIONAL ISO
STANDARD 16000-19
First edition
2012-06-01
Indoor air —
Part 19:
Sampling strategy for moulds
Air intérieur —
Partie 19: Stratégie d'échantillonnage des moisissures
Reference number
ISO 16000-19:2012(E)
©
ISO 2012
ISO 16000-19:2012(E)
© ISO 2012
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2012 – All rights reserved
ISO 16000-19:2012(E)
Contents Page
Foreword . iv
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Properties, origin and occurrence of moulds in indoor environments . 4
5 Sampling and detection methods . 5
6 Measurement strategy . 6
6.1 General aspects . 6
6.2 Selection of appropriate procedure . 9
7 Quality requirements and uncertainty considerations . 17
Annex A (informative) Moisture damage indicators . 18
Annex B (informative) Devices for total spore count and detection of culturable fungi . 19
Annex C (informative) Field inspection report to describe sampling procedure and to document
potential mould damage . 21
Bibliography . 27
ISO 16000-19:2012(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16000-19 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.
ISO 16000 consists of the following parts, under the general title Indoor air:
Part 1: General aspects of sampling strategy
Part 2: Sampling strategy for formaldehyde
Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber
air — Active sampling method
Part 4: Determination of formaldehyde — Diffusive sampling method
Part 5: Sampling strategy for volatile organic compounds (VOCs)
Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on ®
Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS–FID
Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
Part 9: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test chamber method
Part 10: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test cell method
Part 11: Determination of the emission of volatile organic compounds from building products and
furnishing — Sampling, storage of samples and preparation of test specimens
Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
(PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbent-backed filters
iv © ISO 2012 – All rights reserved
ISO 16000-19:2012(E)
Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by
high-resolution gas chromatography and mass spectrometry
Part 15: Sampling strategy for nitrogen dioxide (NO )
Part 16: Detection and enumeration of moulds — Sampling by filtration
Part 17: Detection and enumeration of moulds — Culture-based method
Part 18: Detection and enumeration of moulds — Sampling by impaction
Part 19: Sampling strategy for moulds
Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive
building materials
Part 24: Performance test for evaluating the reduction of volatile organic compound (except
formaldehyde) concentrations by sorptive building materials
Part 25: Determination of the emission of semi-volatile organic compounds by building products —
Micro-chamber method
Part 26: Sampling strategy for carbon dioxide (CO )
Part 28: Determination of odour emissions from building products using test chambers
The following parts are under preparation:
Part 21: Detection and enumeration of moulds — Sampling from materials
Part 27: Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy) (direct
method)
Part 29: Test methods for VOC detectors
Part 30: Sensory testing of indoor air
Part 31: Measurement of flame retardants and plasticizers based on organophosphorus compounds —
Phosphoric acid ester
Part 32: Investigation of constructions on pollutants and other injurious factors — Inspections
ISO 16000-19:2012(E)
Introduction
Mould spores and metabolites can be inhaled via the air and cause allergic and irritating reactions and/or
complex symptoms in humans. Moreover, mould growth can be associated with severe odour nuisances. In
[14][18][19]
rare cases, some mould species can cause infections (so-called mycoses) in certain risk groups.
There is sufficient epidemiological evidence that damp and mouldy buildings increase the risk of respiratory
[8]
symptoms, respiratory infections and enhances asthma symptoms of the occupants. In addition, there is
some evidence for increased risk of development of allergic rhinitis and asthma. Furthermore, there is clinical
evidence for rare symptoms like allergic alveolitis, chronic rhinosinusitis and allergic sinusitis. Toxicological
studies in vivo and in vitro show irritating and toxic reactions of microorganisms (including spores, cell
[8]
components and metabolites) from damp buildings.
Growth of microorganisms in damp buildings can lead to increased concentrations of spores, cell fragments,
allergens, mycotoxins, endotoxins, -glucanes and MVOC (microbial volatile organic compounds). From the
studies conducted so far it is not clear which compounds are the causative agents of the health effects
observed. Nevertheless, increased concentrations of each of these compounds are considered a potential
[8][18]
health risk and growth of mould in buildings should, therefore, be avoided.
The prime objective of this part of ISO 16000 is to provide assistance in identifying mould sources in indoor
environments.
vi © ISO 2012 – All rights reserved
INTERNATIONAL STANDARD ISO 16000-19:2012(E)
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.