EN ISO 13694:2000
(Main)Optics and optical instruments - Lasers and laser-related equipment - Test methods for laser beam power (energy) density distribution (ISO 13694:2000)
Optics and optical instruments - Lasers and laser-related equipment - Test methods for laser beam power (energy) density distribution (ISO 13694:2000)
This Standard specifies methods by which the measurement of power (energy) density distribution is made and defines parameters for the characterization of the spatial properties of laser power (energy) density distribution functions at a given plane. The test methods given in this standard are intended to be used for testing and characterization of both cw and pulsed laser beams.
Optik und optische Instrumente - Laser und Laseranlagen -Prüfverfahren für die Leistungs-(Energie-)dichteverteilung von Laserstrahlen (ISO 13694:2000)
Diese Internationale Norm legt Verfahren zur Messung der Leistungs-(Energie-) dichteverteilung fest und definiert Parameter zur Charakterisierung der räumlichen Eigenschaften von Leistungs-(Energie-) dichteverteilungsfunktionen in einer gegebenen Ebene. Die in dieser Norm beschriebenen Prüfverfahren sind zur Prüfung und Charakterisierung der Strahlen von Dauerstrichlasern wie auch von Pulslasern bestimmt.
Optique et instruments d'optique - Lasers et équipements associés aux lasers - Méthodes d'essai de distribution de puissance (d'énergie) du faisceau laser (ISO 13694:2000)
Optika in optični instrumenti - Laserji in laserska oprema - Preskusne metode za gostoto porazdelitve moči žarka (energije) (ISO 13694:2000)
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-november-2000
2SWLNDLQRSWLþQLLQVWUXPHQWL/DVHUMLLQODVHUVNDRSUHPD3UHVNXVQHPHWRGH]D
JRVWRWRSRUD]GHOLWYHPRþLåDUNDHQHUJLMH,62
Optics and optical instruments - Lasers and laser-related equipment - Test methods for
laser beam power (energy) density distribution (ISO 13694:2000)
Optik und optische Instrumente - Laser und Laseranlagen -Prüfverfahren für die
Leistungs-(Energie-)dichteverteilung von Laserstrahlen (ISO 13694:2000)
Optique et instruments d'optique - Lasers et équipements associés aux lasers -
Méthodes d'essai de distribution de puissance (d'énergie) du faisceau laser (ISO
13694:2000)
Ta slovenski standard je istoveten z: EN ISO 13694:2000
ICS:
31.260 Optoelektronika, laserska Optoelectronics. Laser
oprema equipment
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 13694
First edition
2000-04-01
Optics and optical instruments — Lasers
and laser-related equipment — Test
methods for laser beam power [energy]
density distribution
Optique et instruments d'optique — Lasers et équipements associés aux
lasers — Méthodes d'essai de distribution de la densité de puissance
[d'énergie] du faisceau laser
Reference number
ISO 13694:2000(E)
©
ISO 2000
ISO 13694:2000(E)
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2000 – All rights reserved
ISO 13694:2000(E)
Contents Page
Foreword.iv
Introduction.v
1 Scope .1
2 Normative references .1
3 Terms and definitions .1
3.1 Measured quantities .1
3.2 Characterizing parameters .3
3.3 Distribution fitting.6
4 Coordinate system.7
5 Characterizing parameters derived from the measured spatial distribution .7
6 Distribution fitting.7
6.1 General.7
6.2 Fitting procedures .8
7 Test principle.9
8 Measurement arrangement and test equipment.9
8.1 General.9
8.2 Preparation.9
8.3 Control of environment .10
8.4 Detector system.10
8.5 Beam-forming optics, optical attenuators and beam splitters .10
9 Test procedures.11
9.1 Equipment preparation .11
9.2 Detector calibration procedure .11
9.3 Data recording and noise correction.12
10 Evaluation.13
10.1 Choice and optimization of integration limits.13
10.2 Control and optimization of background corrections.13
11 Test report .14
ISO 13694:2000(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
International Standard ISO 13694 was prepared by Technical Committee ISO/TC 172, Optics and optical
instruments, Subcommittee SC 9, Electro-optical systems.
iv © ISO 2000 – All rights reserved
ISO 13694:2000(E)
Introduction
Many applications of lasers involve using the near-field as well as the far-field power [energy] density distribution of
1�
the beam . The power [energy] density distribution of a laser beam is characterized by the spatial distribution of
irradiant power [energy] density with lateral displacement in a particular plane perpendicular to the direction of
propagation. In general, the power [energy] density distribution of the beam changes along the direction of
propagation. Depending on the power [energy], size, wavelength, polarization and coherence of the beam, different
methods of measurement are applicable in different situations. Five methods are commonly used: camera arrays
(1D and 2D), apertures, pinholes, slits and knife edges.
This International Standard provides definitions of terms and symbols to be used in referring to power density
distribution, as well as requirements for its measurement. For pulsed lasers, the distribution of time-integrated
power density (i.e. energy density) is the quantity most often measured.
According to ISO 11145, it is possible to use two different definitions for describing and measuring the laser beam
diameter. One definition is based on the measurement of the encircled power [energy]; the other is based on
determining the spatial moments of the power [energy] density distribution of the laser beam.
The use of spatial moments is necessary for calculating the beam propagation factor K and the times-diffraction-
limit factor M from measurements of the beam widths at different distances along the propagation axis. ISO 11146
describes this measurement procedure. For other applications, other definitions for the beam diameter may be
used. For some quantities used in this International Standard, the first definition (encircled power [energy]) is more
appropriate and easier to use.
1� For the purposes of this International Standard, "near-field" is defined as the radiation field of a laser at a distance z from the
beam waist which is less than the Rayleigh-length z . "Far-field" is defined in ISO 11145.
R
INTERNATIONAL STANDARD ISO 13694:2000(E)
Optics and optical instruments — Lasers and laser-related
equipment — Test methods for laser beam power [energy] density
distribution
1 Scope
This International Standard specifies methods by which the measurement of power [energy] density distribution is
made and defines parameters for the characterization of the spatial properties of laser power [energy] density
distribution functions at a given plane.
The methods given in this International Standard are intended to be used for the testing and characterization of
both continuous wave (cw) and pulsed laser beams used in optics and optical instruments.
2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.
ISO 11145:1994, Optics and optical instruments — Laser and laser-related equipment — Vocabulary and symbols.
ISO 11146:1999, Lasers and laser-related equipment — Test methods for laser beam parameters — Beam widths,
divergence angle and beam propagation factor.
ISO 11554:1998, Optics and optical instruments — Lasers and laser-related equipment — Test methods for laser
beam power, energy and temporal characteristics.
IEC 61040:1990, Power and energy measuring detectors — Instruments and equipment for laser radiation.
3 Terms and definitions
For the purposes of this International Standard, the terms and definitions given in ISO 11145 and IEC 61040 and
the following apply.
3.1 Measured quantities
3.1.1
power density
E(x,y,z)
part of the beam power at location z which impinges on the area �A at the location (x,y) divided by the area �A
ISO 13694:2000(E)
3.1.2
energy density
H(x,y,z)
part of the beam energy (time-integrated power) at location z which impinges on the area �A
at the location (x,y)dividedbythearea �A
H(,x yz, ) � E(,x yz, )dt
z
3.1.3
power
P(z)
power in a continuous wave (cw) beam at location z
Pz() � E x,,y z dxdy
af
zz
3.1.4
pulse energy
Q(z)
energy in a pulsed beam at location z
Qz()� H(x,y,z)ddx y
zz
3.1.5
maximum power [energy] density
E (z)[H (z)]
max max
maximum of the spatial power [energy] density distribution function E(x,y,z)[H(x,y,z)] at location z
3.1.6
location of the maximum
(x , y , z)
max max
location of E (z)or H (z)inthe xy plane at location z
max max
NOTE (x , y , z) may not be uniquely defined when measuring with detectors having a high spatial resolution and a
max max
relatively small dynamic range.
3.1.7
threshold power [energy] density
E (z)[H (z)]
�T �T
afraction� of the maximum power [energy] density at location z
E (z)=�E (z) for cw-beams;
�T max
H (z)=�H (z) for pulsed beams;
�T max
0 � �<1
NOTE Usually the value of � chosen is such that E or H is just greater than detecto
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.