EN 61203:1994
(Main)Synthetic organic esters for electrical purposes - Guide for maintenance of transformer esters in equipment
Synthetic organic esters for electrical purposes - Guide for maintenance of transformer esters in equipment
Guide to the maintenance of synthetic organic esters, originally complying with the requirements of EN 61099, in transformers with rated voltages up to 35 kV.
Synthetische organische Ester für elektrotechnische Zwecke - Leitlinie zur Wartung von Transformator-Estern in Betriebsmitteln
Esters organiques de synthèse à usages électriques - Guide de maintenance des esters pour transformateurs dans les matériels
Guide de maintenance des esters organiques de synthèse, satisfaisant à l'origine aux exigences de la EN 61099 et utilisés dans les transformateurs de tension de service inférieure ou égale à 35 kV.
Synthetic organic for electrical purposes - Guide for maintenance of transformer esters in equipment (IEC 1203:1992)
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-avgust-1997
Synthetic organic for electrical purposes - Guide for maintenance of transformer
esters in equipment (IEC 1203:1992)
Synthetic organic esters for electrical purposes - Guide for maintenance of transformer
esters in equipment
Synthetische organische Ester für elektrotechnische Zwecke - Leitlinie zur Wartung von
Transformator-Estern in Betriebsmitteln
Esters organiques de synthèse à usages électriques - Guide de maintenance des esters
pour transformateurs dans les matériels
Ta slovenski standard je istoveten z: EN 61203:1994
ICS:
29.035.20 3ODVWLþQLLQJXPHQLL]RODFLMVNL Plastics and rubber insulating
PDWHULDOL materials
29.180 Transformatorji. Dušilke Transformers. Reactors
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
...
This May Also Interest You
This European Standard deals with the safety of sealed (hermetic and semi-hermetic type) motor-compressors, their protection and control systems, if any, which are intended for use in equipment for household and similar purposes and which conform with the standards applicable to such equipment. It applies to motor-compressors tested separately, under the most severe conditions that may be expected to occur in normal use, their rated voltage being not more than 250 V for single-phase motor-compressors and 480 V for other motor-compressors
- Draft11 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 60730-2-8:2025 applies to electrically operated water valves • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "control" means "electrically operated water valve". EXAMPLE 1 Electrically operated water valves for appliances within the scope of IEC 60335. • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); EXAMPLE 2 Independently mounted water valves, controls in smart grid systems and controls for building automation systems within the scope of ISO 16484-2. • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 3 Electrically operated water valves for commercial catering, heating and air-conditioning equipment. • that are smart enabled electrically operated water valves; EXAMPLE 4 Smart grid control, remote interfaces and controls of energy-consuming equipment including computer or smart phone. • that are AC or DC powered electrically operated water valves with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that uses electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J of Part 1; • responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; • in which actuators and valve bodies are designed to be fitted to each other. • as well as manual controls when such are electrically or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to - the inherent safety of electrically operated water valves, and - functional safety of electrically operated water valves and safety related systems, - controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, - the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of electrically operated water valves used in, on, or in association with an equipment. This document contains requirements for electrical features of water valves and requirements for mechanical features of valves that affect their intended operation. This document does not • apply to electrically operated water valves intended exclusively for industrial process applications unless explicitly mentioned in the relevant Part 2 or the equipment standard. However, this document can be applied to evaluate automatic electrical controls intended specifically for industrial applications in cases where no relevant safety standard exists. • apply to - electrically operated water valves of nomi
- Draft48 pagesEnglish languagesale 10% offe-Library read for×1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 60364-8-82:2022 provides requirements and recommendations that apply to low-voltage electrical installations connected or not to a distribution network able to operate: – with local power supplies, and/or – with local storage units, and that monitors and controls the energy from the locally connected sources delivering it to: – current-using equipment, and/or – local storage units, and/or – distribution networks. Such electrical installations are designated as prosumer's electrical installations (PEIs). These requirements and recommendations apply to new installations and modifications of existing installations. This document also provides requirements and recommendations for the safe, efficient and correct behaviour of these installations when integrated into a smart grid. Information related to grid interaction to ensure the stability of the electrical system for grid connected PEIs is given in Annex B. This document covers the requirements related to stability of islanded and stand-alone PEIs. This first edition cancels and replaces IEC 60364-8-2 published in 2018. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 6036482:2018: a) the vocabulary and concepts have been aligned as much as possible with those used by TC 8 and SC 8B, taking notably into account the IEC 62898 and IEC 62786 series, still respecting the installers mindset (installers being the first users of the IEC 60364 series and being used to only refer to the IEC 60364 series); b) the type of system earthing and the change of type of system earthing (sequencing) when there is a change of mode of the prosuming installation, have been clarified; c) the conditions of connection and disconnection from the DSO network have also been described, both from the safety point of view and the proper functioning point of view; d) additional requirements have been introduced; e) the figures have been updated; f) a new normative Annex D on single dwelling or similar application islandable PEIs has been added; g) the numbering has also been reviewed to follow the updated numbering system of the IEC 60364 series, in line with the IEC Directives and compatible with Parts 7.
- Standardization document72 pagesEnglish languagesale 10% offe-Library read for×1 day
This document covers internal arc-fault control devices, hereinafter referred to as IACD, which are intended to: - detect internal arc-faults in low-voltage switchgear and controlgear assemblies, by processing (at a minimum) the optical effect of an internal arc-fault, and - operate mitigation device (either external or combined) in order to minimize the effects of the internal arc-fault (see Figure 1). For the purpose of this document the terms "light" or "optical" covers more than visible spectra. They may cover also, for example, infrared or ultraviolet electromagnetic radiations (see Annex D). For combined-type IACD, this document is considered in addition to the relevant product standard for internal arc-fault mitigation devices (IARD per IEC TS 63107:2020). Compliance to the relevant product standard is mandatory and cannot be claimed by testing to this document alone. NOTE 1 Low-voltage switchgear and controlgear assemblies are usually described by IEC 61439 series. [Figure 1] Therefore, this document covers the following: - internal arc-fault control device (stand-alone, multifunction or combined); - one or more associated sensor(s) used to detect optical effect of the internal arc-fault; - sensor(s), sensing another physical effect, to confirm the fault; - associated or combined mitigation device. An IACD is not intended to trigger under normal operation of low-voltage switchgear and controlgear (i.e. absence of internal arc-fault), including normal arcing associated with operation of disconnecting and switching devices. This document only covers the following methods: - optical detection of the light caused by an internal arc-fault; - optional confirmation of internal arc-fault by line current measurement. Many different conductive materials could be used in LV assemblies (e.g. steel, copper, aluminium). Nevertheless, tests specified in this document are deemed to represent the most critical and challenging conditions for arc-detection and cover all combinations of conductive materials. NOTE 2 Compared to other materials (e.g. steel, aluminium), copper leads to a lower optical radiation energy. The rated voltage of the assembly in which an IACD is installed does not exceed 1 000 V AC. Such devices are designed to be operated and maintained by skilled persons only. This document does not cover: - DC internal arc-fault detection and control; - overcurrent relays; - AFDD (arc-fault detection devices) as defined by IEC 62606; - guidance on installation within assemblies; NOTE 3 The integration of an IACD into an assembly is described in IEC TS 63107. - use with additional measures needed for installation and operation within explosive atmospheres. These are given in IEC 60079 series documents; - requirements for embedded software and firmware design rules; for this subject, the manufacturer is responsible for taking additional safety measures; NOTE 4 IEC TR 63201 describes rules for firmware and embedded software development preventing errors in software. - cybersecurity aspects; for this subject, the manufacturer is responsible for taking additional safety measures; NOTE 5 See IEC TS 63208. - mobile applications. NOTE 6 Even when addressing internal arc-fault mitigation devices, this document does not supersede any other relevant product standard (e.g. IEC 60947-2 or IEC 60947-9-1). NOTE 7 DC arcing fault phenomena are under consideration. Further investigation is needed to comprehend DC arcing phenomena and required sensing.
- Standard90 pagesEnglish languagesale 10% offe-Library read for×1 day
- 10-Jul-2025
- 01-Feb-2022
- 29.120.40
- 29.130.20
- 2014/30/EU
- 2014/35/EU
- M/511
- M/552
- CLC/TC 121A
IEC 82474-1:2025 specifies the requirements and guidance for the content, format and exchange relating to material declarations for products. The main intended use of this document is to provide data up and down the supply chain that: - allows organizations to assess products against material and substance requirements, - allows organizations to assess process chemical substances used in manufacturing and other stages of the product life, - allows organizations to use this information in their activities related to environmentally conscious design process and across all product life cycle stages, - allows organisations to obtain information about material efficiency and circularity of their products. This document specifies mandatory declaration requirements and also provides optional declaration requirements. This document does not suggest any specific software solution to capture material declaration data in the supply chain. However, it provides a data format used to transfer information within the supply chain. Organizations can determine the most appropriate method to capture material declaration data without compromising data utility and quality. This document is intended to allow declaration based on engineering judgement, responder (supplier) material declarations, and/or sampling and testing. This document has the status of a horizontal publication in accordance with IEC Guide 123. This edition includes the following technical changes with respect to IEC 62474:2018 (edition 2): a) Definitions were sharpened to fulfil needs from sectors other than electrical and electronic products and systems and new terms have been added that support new topics introduced such as webservice methods, material efficiency and circularity, and new reference list types. b) A new subclause (4.6) covering process chemical declaration was included. This subclause covers requirements related to the information required about process chemical substances, the applicable processes where they are used, and the respective product life cycle phase(s). c) A new clause (8) covering web services on material declaration was included. This clause covers requirements related to topics such as machine-machine communication, authentication service, and data representation. d) Requirements and guidance for the development of reference lists such as query list (QL), and application/exemption lists (AL/EL) were included. This document has been given the status of a horizontal document in accordance with ISO/IEC Directives, Part 1. It is published as a double logo standard,
- Draft56 pagesEnglish languagesale 10% offe-Library read for×1 day
- 03-Jul-2025
- 01.110
- 13.020.01
- CLC/TC 111X
IEC 61203:2025 This document provides procedures and supervision for the use and maintenance of synthetic esters in transformers and other electrical equipment. This document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary
- Draft31 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 61300-3-46:2025 provides a standard for the measurement of guide pin bore and fibre bore diameters for rectangular ferrules used in connectors specified in the IEC 61754 series. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of fibre bore measurement; b) addition of force gauge method; c) addition of Annex A on temperature dependence.
- Standard12 pagesEnglish languagesale 10% offe-Library read for×1 day
- 03-Jul-2025
- 33.180.20
- CLC/TC 86BXA
IEC 63522-5:2025 This part of IEC 63522 is used for testing all kinds of electrical relays and for evaluating their ability to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method for insulation resistance.
- Draft10 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 61847:2025 specifies: – the essential non-thermal output characteristics of ultrasonic surgical units; – methods of measurement of these output characteristics; – those characteristics to be declared by the manufacturers of such equipment. This document is applicable to equipment which meets the criteria of a), b) and c) below: a) ultrasonic surgical systems operating in the frequency range 20 kHz to 120 kHz; and b) ultrasonic surgical systems whose use is the fragmentation, emulsification, debridement, or cutting of human tissue, whether or not those effects are delivered in conjunction with tissue removal or coagulation; and c) ultrasonic surgical systems in which an acoustic wave is conducted by means of a specifically designed wave guide to deliver energy to the surgical site. This document is not applicable to: – lithotripsy equipment which uses extracorporeally induced pressure pulses, focused through liquid conducting media and the soft tissues of the body; – surgical systems used as part of the therapeutic process (hyperthermia systems); – surgical systems whose mechanism of action is through frictional heat generated by tissue in contact with the wave guide, e.g. clamp coagulators or clamping vibrational cutters; – surgical systems whose mechanism of action is through focused ultrasound for either thermal degradation (high intensity focused ultrasound – HIFU or HITU) or cavitation erosion (Histotripsy) of tissue remote from the ultrasound transducer; – surgical systems whose mechanism of action is through erosion of hard tissues in contact with the applicator tip, e.g. bone cutting or drilling. This document does not deal with the effectiveness or safety of ultrasonic surgical systems. This document does not deal with airborne noise from the systems, which can affect operators and patients. IEC 61847:2025 cancels and replaces the first edition published in 1998. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The upper frequency covered by this document has been raised from 60 kHz to 120 kHz. b) The hydrophone method of measuring ultrasound power is now normative. Because of difficulties in using the calorimetry method of measuring ultrasound power, it is no longer the primary approach. c) It is recognised that some systems can have more than one mode of vibration under user control, and the measurement techniques and declarations have been updated to address this. d) The high-frequency component, which relates to cavitation developed at the applicator tip and the vibration amplitude at which cavitation occurs is addressed. e) Specific requirements for measurement at excursion levels where no cavitation is present, and extrapolation to maximum excursion level(s) are described. f) Guidance is provided to adapt the methodology described to more complex designs and vibration patterns, excursion directions, and their output characteristics. g) Guidance is provided with respect to measurement tank arrangements for different types of systems. h) The list of ultrasound methods and systems not covered by this document was extended to incorporate recent developments. i) Definitions for cavitation related terms were added. j) Requirements for the measurement of directivity characteristics of the applicator tip were changed. k) Annex A was modified and Figure A.1 wa
- Standard38 pagesEnglish languagesale 10% offe-Library read for×1 day
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.