ENV 50275-1:1998
(Main)Conductive charging for electric vehicles - Part 1: General considerations
- BACK
- 28-Oct-1998
- 43.120
- CLC/TC 69X
Conductive charging for electric vehicles - Part 1: General considerations
Withdrawn by CLC/TS 50457-1:2008 (PR=16661) and CLC/TS 50457-2:2008 (PR=16662) (2007-03-01)
Konduktive Ladung von Elektrofahrzeugen - Teil 1: Allgemeine Überlegungen
Charge conductive pour véhicules éléctriques - Partie 1: Généralités
Conductive charging for electric vehicles - Part 1: General considerations
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2002
Conductive charging for electric vehicles - Part 1: General considerations
Conductive charging for electric vehicles -- Part 1: General considerations
Konduktive Ladung von Elektrofahrzeugen -- Teil 1: Allgemeine Überlegungen
Charge conductive pour véhicules éléctriques -- Partie 1: Généralités
Ta slovenski standard je istoveten z: ENV 50275-1:1998
ICS:
43.120 (OHNWULþQDFHVWQDYR]LOD Electric road vehicles
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
...
This May Also Interest You
IEC 61851-24:2023, together with IEC 61851-23, applies to digital communication between a DC EV supply equipment and an electric road vehicle (EV) for control of conductive DC power transfer, with a rated supply voltage up to 1 000 V AC or up to 1 500 V DC and a rated output voltage up to 1 500 V DC. This document also applies to digital communication between the DC EV charging/discharging station and the EV for system A, as specified in Annex A. The EV charging mode is mode 4, according to IEC 61851-23. Annex A, Annex B, and Annex C give descriptions of digital communications for control of DC charging specific to DC EV charging systems A, B and C as defined in IEC 61851-23. This second edition cancels and replaces the first edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - Annex A and Annex B have been updated in line with IEC 61851-23:2023 and relevant standards.
- Standard55 pagesEnglish languagesale 10% offe-Library read for×1 day
- 05-Dec-2024
- 06-Mar-2022
- 43.120
- 2014/35/EU
- 2014/53/EU
- M/468
- M/511
- M/536
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC 61851-3, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle or a removable RESS or traction-battery of a light electric road vehicle, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. The basic application profile for energy management systems consists of the following parts: Part 3-4: General definitions for communication; Part 3-5: Pre-defined communication parameters and general application objects; Part 3-6: Voltage converter unit communication; Part 3-7: Battery system communication.
- Technical specification106 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC61851-3, applies to the d.c. power supply equipment (e.g. VCU) for the conductive transfer of electric power between the supply network and an light electric road vehicle when connected to the supply network , with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c. The supply systems described in the IEC 61851-3 series are primarily intended for the use by EVs of category L hereinafter referred to as light electric vehicles (light EVs). NOTE 1 Light EV includes all electrically propelled two and three wheeled vehicles of Category L1 up to Category L7 according to the definition of ECE-TRANS-WP29-78r2e and all electrically propelled or assisted cycles. The electrical protection of the complete light EV supply system from the connection to the supply network up to the light EV or removed RESS complies with protective separation and with galvanic separation between a.c. input and d.c. output or class III.
- Technical specification38 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series as a technical specification together with part 3-1 and with part 1 of IEC61851, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle to a removable RESS or traction-battery of a light EV when connected to the supply network, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. Such energy control applications may be implemented in e.g. light electric vehicles, robots, offshore parks, isolated farms, etc. This part of IEC 61851-3 series provides application objects provided by the AC-DC voltage converter unit or DC/DC voltage converter unit
- Technical specification165 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series as a technical specification together with part 3-1 and with part 1 of IEC61851, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle to a removable RESS or traction-battery of a light EV when connected to the supply network, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. Such energy control applications may be implemented in e.g. light electric vehicles, robots, offshore parks, isolated farms, etc. This part of IEC 61851-3 series specifies application objects provided by the battery system.
- Technical specification109 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC 61851, applies to the equipment for the conductive transfer of electric power between the supply network and an electric road vehicle when connected to the supply network, supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated output voltage up to 480 V a.c. or up to 200 V d.c..The supply systems described in the IEC 61851-3 series are primarily intended for the use by electric road vehicles of category L hereinafter referred to as light electric vehicles (light Evs). NOTE 1 Light EV includes all electrically propelled two and three wheeled vehicles of Category L1 up to Category L7 according to the definition of ECE-TRANS-WP29-78r2e and all electrically propelled or assisted cycles.Light electric road vehicles (light EVs) imply all road vehicles, including plug-in hybrid road vehicles (PHEV), that derive all or part of their energy from on-board rechargeable energy storage systems, (RESS), including traction batteries.The electrical protection of the complete light EV supply system from the connection to the supply network up to the light EV or removed RESS complies with protective separation between mains and d.c. and with galvanic separation between mains and d.c. or class III.Supplementary requirements for output voltages over 60 V d.c. are given in this document.Supplementary requirements for Class III equipment with output voltages over 15 V d.c. and over 6 V a.c. are given in this document.Requirements for bidirectional energy transfer d.c. to a.c. are under consideration and are not part of this edition. NOTE 2 This standard is not mandatory for proprietary EV supply system configurations Type B or D according to IEC 61851-3 series provided they have equivalent or higher safety levels.
- Technical specification57 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC61851-3, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle or a removable RESS or traction-battery of a light electric road vehicle, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. Such energy control applications may be implemented in e.g. light electric vehicles, robots, offshore parks, isolated farms, etc. This part of IEC 61851-3 series provides specifications with regard to the pre-defined communication parameters and general application objects.
- Technical specification176 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
- Corrigendum5 pagesEnglish languagesale 10% offe-Library read for×1 day
- 07-Dec-2023
- 43.120
- 2014/35/EU
- M/468
- M/511
- CLC/TC 69X
This Part of IEC 61980 addresses communication and activities of magnetic field wireless power transfer (MF-WPT) systems. The requirements in this document are intended to be applied for MF-WPT systems accordin to IEC 61980-3 and ISO 19363. The aspects covered in this document include: - operational and functional characteristics of the MF-WPT communication system and related activities - operational and functional characteristics of the positioning system The following aspects are under consideration for future documents: - requirements for two- and three-wheel vehicles, - requirements for MF-WPT systems supplying power to EVs in motion, and - requirements for bidirectional power transfer Note: Any internal communication at Supply device or EV device is not in the scope of this document
- Standard97 pagesEnglish languagesale 10% offe-Library read for×1 day
This part of IEC 61980 applies to the off-board supply equipment for wireless power transfer via magnetic field (MF-WPT) to electric road vehicles for purposes of supplying electric energy to the RESS (rechargeable energy storage system) and/or other on-board electrical systems. The MF-WPT system operates at standard supply voltage ratings per IEC 60038 up to 1 000 V AC and up to 1 500 V DC from the supply network. The power transfer takes place while the electric vehicle (EV) is stationary. Off-board supply equipment fulfilling the requirements in this document are intended to operate with EV devices fulfilling the requirements described in ISO 19363. The aspects covered in this document include - the characteristics and operating conditions, - the required level of electrical safety, - requirements for basic communication for safety and process matters if required by a MF111 WPT system, - requirements for positioning to assure efficient and safe MF-WPT power transfer, and - specific EMC requirements for MF-WPT systems. The following aspects are under consideration for future documents: - requirements for MF-WPT systems for two- and three-wheel vehicles, - requirements for MF-WPT systems supplying power to EVs in motion, and - requirements for bidirectional power transfer. - requirements for flush mounted primary devices - requirements for MF-WPT systems for heavy duty vehicles - requirements for MF-WPT systems with inputs greater than 11,1 kVA This standard does not apply to - safety aspects related to maintenance, and - trolley buses, rail vehicles and vehicles designed primarily for use off-road. NOTE The terms used in this document are specifically for MF-WPT.
- Standard121 pagesEnglish languagesale 10% offe-Library read for×1 day
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.