IEC 62059-31-1:2008/COR1:2008
(Corrigendum)Corrigendum 1 - Electricity metering equipment - Dependability - Part 31-1: Accelerated reliability testing - Elevated temperature and humidity
Corrigendum 1 - Electricity metering equipment - Dependability - Part 31-1: Accelerated reliability testing - Elevated temperature and humidity
Corrigendum 1 - Equipements de comptage de l'électricité - Sûreté de fonctionnement - Partie 31-1: Essais de fiabilité accélérés - Température et humidité élevées
General Information
Relations
Standards Content (Sample)
IEC 62059-31-1 CEI 62059-31-1
(1st edition – 2008) (1ère édition – 2008)
Electricity metering equipment – Dependability Equipements de comptage de l’électricité –
Sûreté de fonctionnement
Part 31-1: Accelerated reliability testing –
Elevated temperature and humidity Partie 31-1: Essais de fiabilité accélérés –
Température et humidité élevées
CORRIGENDUM 1
2 Normative references 2 Références normatives
Instead of: A la place de :
IEC 61649 E
...
This May Also Interest You
IEC 62057-1:2023 applies to stationary meter test units (MTUs) permanently installed in laboratories, used for testing and calibration of electricity meters, in particular for their type test, acceptance test and verification test. It covers the requirements for automatic MTUs for indoor laboratory application and applies to newly manufactured MTUs to test electricity meters on 50 Hz or 60 Hz networks with an AC voltage up to 600 V (phase to neutral).
If meters are intended for system voltages not specified in this document, special requirements are agreed between the manufacturer and the purchaser.
This document also defines the kind of tests to perform as type tests / routine tests / acceptance tests and commissioning tests for MTUs.
It does not apply to:
• portable reference meters and portable sources;
• electricity meters;
• data interfaces to the meter and test procedures of data interface;
• transformer operated MTUs;
• personal computers supplied together with the MTU.
- Standard156 pagesEnglish and French languagesale 15% off
IEC 62055-42:2022, specifies a token generation mechanism and token structure for smart prepayment functionality in markets where IEC 62055-41 compliant systems are not used, and where a different security mechanism is required by project-specific or national requirements. This document specifies token structure, authentication and an anti-replay mechanism, token operating model, and protocol.
This document is informed by the STS Association key management services, and by the key management mechanisms used within the DLMS/COSEM security model within IEC 62056‑6‑2. Reference is made to the international STS token standards (IEC 62055-41, IEC 62055-51 and IEC 62055-52) for payment metering systems, and interworking has been considered where appropriate in terms of token carrier ranges in the decimal domain. IEC 62055-41 tokens and those described in this document are not interoperable, however their domains are designed to be mutually exclusive to ensure the two kinds of tokens do not interfere with each other.
Metering application processing and functionality, HAN interface commands and attributes, WAN interface commands and attributes are outside the scope of this document; however, reference is made to other standards in this regard.
The mechanism for auditing and retrieving data from the meter relating to tariffication, meter readings, profile data and other legal metrology information is outside the scope of this document; however, this is defined as part of any overall metering solution. Such interfaces for retrieving data from a meter may be defined using suitable protocols such as DLMS/COSEM as defined in the IEC 62056 series.
- Standard163 pagesEnglish and French languagesale 15% off
IEC 62056-3-1:2021 is available as IEC 62056-3-1:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 62056-3-1:2021 describes two sets of profiles: the first set of profiles allows a bidirectional communication between a client and a server. This set of profiles is made of three profiles allowing local bus data exchange with stations either energized or not. For non-energized stations, the bus supplies energy for data exchange. Three different profiles are supported:
• base profile: this three-layer profile provides remote communication services;
NOTE 1 This first profile was published in IEC 61142:1993 and became known as the Euridis standard.
• profile with DLMS: this profile allows using DLMS services as specified in IEC 61334 4 41;
NOTE 2 This second profile was published in IEC 62056-31:1999.
• profile with DLMS/COSEM: this profile allows using the DLMS/COSEM Application layer and the COSEM object model as specified in IEC 62056 5 3 and in IEC 62056 6 2 respectively.
The three profiles use the same physical layer and they are fully compatible, meaning that devices implementing any of these profiles can be operated on the same bus. The transmission medium is twisted pair using carrier signalling and it is known as the Euridis Bus.
The second set of profiles allows unidirectional communication between a given Energy Metering device and a Customer Energy Management System. This second set is made up of three profiles.
Subclause 4.2.1 to Clause 8 included specify the bidirectional communication using twisted pair signalling and Clause 9 to 9.5 the unidirectional communication using twisted pair signalling.
This second edition cancels and replaces the first edition of IEC 62056-3-1, issued in 2013, and constitutes a technical revision.
The main technical changes with regard to the previous edition are as follows:
• addition of a profile which makes use of the IEC 62056 DLMS/COSEM Application layer and COSEM object model;
• review of the data link layer which is split into two parts:
– a pure Data Link layer;
– a "Support Manager" entity managing the communication media;
• ability to negotiate the communication speed, bringing baud rate up to 9 600 bauds.
- Standard385 pagesEnglish languagesale 15% off
- Standard258 pagesEnglish and French languagesale 15% off
IEC 62053-24:2020 applies only to static var-hour meters of accuracy classes 0,5S, 1S, 1, 2 and 3 for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only.
This document uses a conventional definition of reactive energy where the reactive power and energy is calculated from the fundamental frequency components of the currents and voltages only.
This document applies to electricity metering equipment designed to:
• measure and control electrical energy on electrical networks (mains) with voltage up to 1 000 V AC;
• have all functional elements, including add-on modules, enclosed in, or forming a single meter case with exception of indicating displays;
• operate with integrated or detached indicating displays, or without an indicating display;
• be installed in a specified matching socket or rack;
• optionally, provide additional functions other than those for measurement of electrical energy.
Meters designed for operation with low power instrument transformers (LPITs as defined in the IEC 61869 series) may be considered as compliant with this document only if such meters and their LPITs are tested together and meet the requirements for directly connected meters.
This document does not apply to:
• meters for which the voltage line-to-neutral derived from nominal voltages exceeds 1 000 V AC;
• meters intended for connection with low power instrument transformers (LPITs as defined in the IEC 61869 series) when tested without such transformers;
• metering systems comprising multiple devices (except LPITs) physically remote from one another;
• portable meters;
• meters used in rolling stock, vehicles, ships and airplanes;
• laboratory and meter test equipment;
• reference standard meters;
• data interfaces to the register of the meter;
• matching sockets or racks used for installation of electricity metering equipment;
• any additional functions provided in electrical energy meters.
This document does not cover measures for the detection and prevention of fraudulent attempts to compromise a meter’s performance (tampering).
This second edition cancels and replaces the first edition published in 2014 and its amendment 1:2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition: see Annex E
- Standard46 pagesEnglish and French languagesale 15% off
IEC 62056-8-4:2018 specifies DLMS/COSEM communication profiles for narrow-band OFDM power line carrier PRIME neighbourhood networks using the modulation as specified in Recommendation ITU-T G.9904:2012.
Three communication profiles are specified:
• a profile using the IEC 61334-4-32 LLC layer;
• a profile using TCP-UDP/IPv4;
• a profile using TCP-UDP/IPv6.
- Standard159 pagesEnglish and French languagesale 15% off
IEC 62055-41:2018 is also available as IEC 62055-41:2018 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. IEC 62055-41:2018 specifies the application layer protocol of the standard transfer specification (STS) used for transferring units of credit and other management information from a point of sale (POS) system to an STS-compliant payment meter in a one-way token carrier system. It is primarily intended for application with electricity payment meters without a tariff employing energy-based tokens, but may also have application with currency-based token systems and for services other than electricity. It is intended for use by manufacturers of payment meters that have to accept tokens that comply with the STS and also by manufacturers of POS systems that have to produce STS-compliant tokens and is to be read in conjunction with IEC 62055-5x series. This third edition cancels and replaces the second edition of IEC 62055-41, issued in 2014. It constitutes a technical revision. The main technical changes with regard to the previous edition are as follows:
- currency transfer tokens for electricity, water, gas and time metering;
- finer resolution for gas and time credit transfer;
- common code PAN for 2 and 4 digit manufacturer codes;
- reserved MfrCode values for certification and testing purposes;
- provision for DLMS/COSEM as a virtual token carrier type;
- addition of DKGA04, an advanced key derivation function from 160-bit VendingKey;
- withdrawal of DES for EA09 and TDES for DKGA03 cryptographic algorithms, but DES for DKGA02 remains in use;
- addition of MISTY1 cryptographic algorithm using a 128-bit DecoderKey with supporting key change tokens;
- transfer of SGC values to the meter via key change tokens;
- revision of the test/display token requirements;
- revision of the KMS to reflect current best practice;
- revision of the TID roll over management guidelines;
- definition of BaseDate is referenced to Coordinated Universal Time;
- some clarifications and additional examples have been added.
- Standard386 pagesEnglish languagesale 15% off
- Standard257 pagesEnglish and French languagesale 15% off
- Standard1 pageEnglish and French languagesale 15% off
IEC 62056-7-3:2017 specifies DLMS/COSEM wired and wireless M-Bus communication profiles for local and neighbourhood networks. It is restricted to aspects concerning the use of communication protocols in conjunction with the COSEM data model and the DLMS/COSEM application layer.
- Standard37 pagesEnglish languagesale 15% off
- Standard85 pagesEnglish and French languagesale 15% off
IEC 62053-24:2014 applies only to newly manufactured transformer operated static var-hour meters of accuracy classes 0,5 S, and 1 S as well as direct connected static var-hour meters of accuracy class 1, for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only. It uses a conventional definition of reactive energy where the reactive power and energy is calculated from the fundamental frequency components of the currents and voltages only.
- Standard54 pagesEnglish and French languagesale 15% off
- Standard109 pagesEnglish and French languagesale 15% off
The contents of the corrigendum of March 2018 have been included in this copy.
- Standard5 pagesEnglish and French languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.