Gaseous fire-extinguishing systems — Physical properties and system design — Part 8: HFC 125 extinguishant

This document contains specific requirements for gaseous fire-extinguishing systems, with respect to the HFC 125 extinguishant. It includes details of physical properties, specifications, usage and safety aspects. This document is applicable to systems operating at nominal pressures of 25 bar and 42 bar, superpressurized with nitrogen. This does not preclude the use of other systems.

Systèmes d'extinction d'incendie utilisant des agents gazeux — Propriétés physiques et conception des systèmes — Partie 8: Agent extincteur HCFC 125

General Information

Status
Published
Publication Date
01-Jul-2019
Current Stage
6060 - International Standard published
Due Date
12-Sep-2020
Completion Date
02-Jul-2019
Ref Project

Relations

Buy Standard

Standard
REDLINE ISO 14520-8:2019 - Gaseous fire-extinguishing systems — Physical properties and system design — Part 8: HFC 125 extinguishant Released:7/2/2019
English language
9 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 14520-8:2019 - Gaseous fire-extinguishing systems -- Physical properties and system design
English language
9 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

© ISO 2019 – All rights reserved
ISO TC 21/SC 8
Date: 2019.10.0106
ISO/PRF 14520-8:2019(E)
Secretariat: SA
Gaseous fire-extinguishing systems — Physical properties and system design —
Part 8: HFC 125 extinguishant
Systèmes d'extinction d'incendie utilisant des agents gazeux — Propriétés
physiques et conception des systèmes — Partie 8: Agent extincteur HFC 125
Document type:  International Standard
Document subtype:
Document stage:  (30) Committee
Document language:  E
O:\Documents\TC021\SC008\055344 - ISO_NP 14520-8 (Ed
3)\60.00\320\C055344e_converted.doc STD Version 2.1c

---------------------- Page: 1 ----------------------
ISO 14520-8:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is normally
carried out through ISO technical committees. Each member body interested in a subject for which a
technical committee has been established has the right to be represented on that committee.
International organizations, governmental and non-governmental, in liaison with ISO, also take part in
the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 21, Equipment for fire protection and fire
fighting, Subcommittee SC 8, Gaseous media and firefighting systems using gas.
This fourth edition cancels and replaces the third edition (ISO 14520-8:2016), which has been
technically revised. The main changes compared to the previous edition are as follows:
— a new subclause 6.4 on fill density and superpressurization levels has been added.
A list of all parts in the ISO 14520 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
ii
© ISO 2019 – All rights reserved

---------------------- Page: 2 ----------------------
INTERNATIONAL STANDARD ISO 14520-8:2019(E)

Gaseous fire-extinguishing systems — Physical properties and
system design — Part 8: HFC 125 extinguishant
1 Scope
This document contains specific requirements for gaseous fire-extinguishing systems, with respect to
the HFC 125 extinguishant. It includes details of physical properties, specifications, usage and safety
aspects.
This document is applicable to systems operating at nominal pressures of 25 bar and 42 bar,
superpressurized with nitrogen. This does not preclude the use of other systems.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 14520-1:2015, Gaseous fire-extinguishing systems — Physical properties and system design — Part 1:
General requirements
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 14520-1 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at http://www.iso.org/obp
4 Characteristics and uses
4.1 General
Extinguishant HFC 125 shall comply with the specification shown in Table 1.
HFC 125 is a colourless, almost odourless, electrically non-conductive gas, with a density approximately
four times that of air.
The physical properties are shown in Table 2.
HFC 125 extinguishes fires mainly by physical means, but also by some chemical means.
Table 1 — Specification for HFC 125
Property Requirement
© ISO 2019 – All rights reserved 1

---------------------- Page: 3 ----------------------
ISO 14520-8:2019(E)
Purity 99,6 % by mass, min.
–4
Acidity 3 × 10 % by mass (3 parts per
million), max.
–4
Water content 10 × 10 % by mass (10 parts per
million), max.
Non-volatile residue 0,01 % by mass, max.
Suspended matter or sediment None visible
Table 2 — Physical properties of HFC 125
Property Units Value
Molecular mass — 120,02
Boiling point at 1,013 bar (absolute) °C −48,09
Freezing point °C −101
Critical temperature °C 66,02
Critical pressure bar abs 36,18
3
Critical volume cm /mol 210
3
Critical density kg/m 573,6
Vapour pressure 20 °C bar abs 12,05
3
Liquid density 20 °C kg/m 1 218,0
3
Saturated vapour density 20 °C kg/m 77,97
3
Specific volume of superheated m /kg 0,197 2
vapour at 1,013 bar and 20 °C
Chemical formula CF CHF
3 2
Pentafluoroethane
Chemical name
4.2 Use of HFC 125 systems
HFC 125 total flooding systems may be used for extinguishing fires of all classes within the limits
specified in ISO 14520-1:2015, Clause 4.
The extinguishant requirements per volume of protected space are shown in Table 3 for various levels
of concentration. These are based on methods shown in ISO 14520-1:2015, 7.6.
The extinguishing concentrations and design concentrations for n-heptane and surface class A hazards
are shown in Table 4. Concentrations for other fuels are shown in Table 5
Table 3 — HFC 125 total flooding quantity
3
Temperatur Specific HFC 125 mass requirements per unit volume of protected space, m/V (kg/m )
vapour
e
Design concentration (by volume)
volume
T
S
°C
3
m /kg 7 % 8 % 9 % 10 % 11 % 12 % 13 % 14 % 15 % 16 %
–45 0,149 7 0,502 8 0,580 9 0,660 7 0,742 2 0,825 6 0,910 9 0,998 2 1,087 4 1,178 8 1,272 4
–40 0,153 4 0,490 7 0,566 9 0,644 7 0,724 3 0,805 7 0,888 9 0,974 1 1,061 2 1,150 4 1,241 7
–35 0,157 2 0,478 8 0,553 2 0,629 1 0,706 8 0,786 2 0,867 5 0,950 5 1,035 6 1,122 6 1,211 7
2 © ISO 2019 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/PRF 14520-8:2019(E)
–30 0,160 8 0,468 1 0,540 8 0,615 1 0,691 0 0,768 6 0,848 0 0,929 3 1,012 4 1,097 5 1,184 6
–25 0,164 5 0,457 6 0,528 6 0,601 2 0,675 4 0,751 3 0,829 0 0,908 4 0,989 6 1,072 8 1,157 9
–20 0,168 2 0,447 5 0,517 0 0,588 0 0,660 6 0,734 8 0,810 7 0,888 4 0,967 8 1,049 2 1,132 4
–15 0,171 9 0,437 9 0,505 9 0,575 3 0,646 4 0,719 0 0,793 3 0,869 3 0,947 0 1,026 6 1,108 1
–10 0,175 5 0,428 9 0,495 5 0,563 5 0,633 1 0,704 2 0,777 0 0,851 4 0,927 6 1,005 5 1,085 3
–5 0,179 1 0,420 3 0,485 5 0,552 2 0,620 4 0,690 1 0,761 4 0,834 3 0,908 9 0,985 3 1,063 5
0 0,182 8 0,411 8 0,475 7 0,541 0 0,607 8 0,676 1 0,746 0 0,817 4 0,890 5 0,965 4 1,042 0
5 0,186 4 0,403 8 0,466 5 0,530 6 0,596 1 0,663 1 0,731 6 0,801 6 0,873 3 0,946 7 1,021 9
10 0,190 0 0,396 2 0,457 7 0,520 5 0,584 8 0,650 5 0,717 7 0,786 4 0,856 8 0,928 8 1,002 5
15 0,193 5 0,389 0 0,449 4 0,511 1 0,574 2 0,638 7 0,704 7 0,772 2 0,841 3 0,912 0 0,984 4
20 0,197 1 0,381 9 0,441 2 0,501 8 0,563 7 0,627 1 0,691 9 0,758 1 0,825 9 0,895 3 0,966 4
25 0,200 7 0,375 0 0,433 3 0,492 8 0,553 6 0,615 8 0,679 4 0,744 5 0,811 1 0,879 3 0,949 1
30 0,204 2 0,368 6 0,425 8 0,484 3 0,544 1 0,605 3 0,667 8 0,731 8 0,797 2 0,864 2 0,932 8
35 0,207 8 0,362 2 0,418 5 0,475 9 0,534 7 0,594 8 0,656 2 0,719 1 0,783 4 0,849 2 0,916 6
40 0,211 3 0,356 2 0,411 5 0,468 1 0,525 8 0,584 9 0,645 4 0,707 2 0,770 4 0,835 2 0,901 4
45 0,214 9 0,350 3 0,404 6 0,460 2 0,517 0 0,575 1 0,634 5 0,695 3 0,757 5 0,821 2 0,886 3
50 0,218 4 0,344 6 0,398 2 0,452 8 0,508 8 0,565 9 0,624 4 0,684 2 0,745 4 0,808 0 0,872 1
55 0,221 9 0,339 2 0,391 9 0,445 7 0,500 7 0,557 0 0,614 5 0,673 4 0,733 6 0,795 3 0,858 4
60 0,225 4 0,333 9 0,385 8 0,438 8 0,493 0 0,548 3 0,605 0 0,662 9 0,722 2 0,782 9 0,845 1
65 0,228 9 0,328 8 0,379 9 0,432 1 0,485 4 0,540 0 0,595 7 0,652 8 0,711 2 0,771 0 0,832 1
70 0,232 4 0,323 9 0,374 2 0,425 6 0,478 1 0,531 8 0,586 8 0,643 0 0,700 5 0,759 3 0,819 6
75 0,235 8 0,319 2 0,368 8 0,419 4 0,471 2 0,524 2 0,578 3 0,633 7 0,690 4 0,748 4 0,807 8
80 0,239 3 0,314 5 0,363 4 0,413 3 0,464 3 0,516 5 0,569 8 0,624 4 0,680 3 0,737 4 0,796 0
85 0,242 8 0,310 0 0,358 1 0,407 3 0,457 6 0,509 0 0,561 6 0,615 4 0,670 5 0,726 8 0,784 5
90 0,246 3 0,305 6 0,353 1 0,401 5 0,451 1 0,501 8 0,553 6 0,606 7 0,660 9 0,716 5 0,773 4
95 0,249 8 0,301 3 0,348 1 0,395 9 0,444 8 0,494 8 0,545 9 0,598 2 0,651 7 0,706 4 0,762 5
NOTE  This information refers only to the product HFC-125 and does not represent any other products
containing pentafluoroethane as a component.
Symbols:
3
m/V is the agent mass requirements (kg/m ); i.e. mass, m, in kilograms of agent required per cubi
...

INTERNATIONAL ISO
STANDARD 14520-8
Fourth edition
2019-07
Gaseous fire-extinguishing systems —
Physical properties and system
design —
Part 8:
HFC 125 extinguishant
Systèmes d'extinction d'incendie utilisant des agents gazeux —
Propriétés physiques et conception des systèmes —
Partie 8: Agent extincteur HCFC 125
Reference number
ISO 14520-8:2019(E)
©
ISO 2019

---------------------- Page: 1 ----------------------
ISO 14520-8:2019(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 14520-8:2019(E)

Contents Page
Foreword .iv
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Characteristics and uses . 1
4.1 General . 1
4.2 Use of HFC 125 systems . 2
5 Safety of personnel . 4
6 System design . 5
6.1 Fill density. 5
6.2 Superpressurization . 5
6.3 Extinguishant quantity . 6
6.4 Other fill density and superpressurization levels . 7
7 Environmental properties . 7
Bibliography . 9
© ISO 2019 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 14520-8:2019(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso
.org/iso/foreword .html.
This document was prepared by Technical Committee ISO/TC 21, Equipment for fire protection and fire
fighting, Subcommittee SC 8, Gaseous media and firefighting systems using gas.
This fourth edition cancels and replaces the third edition (ISO 14520-8:2016), which has been
technically revised. The main changes compared to the previous edition are as follows:
— a new subclause 6.4 on fill density and superpressurization levels has been added.
A list of all parts in the ISO 14520 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2019 – All rights reserved

---------------------- Page: 4 ----------------------
INTERNATIONAL STANDARD ISO 14520-8:2019(E)
Gaseous fire-extinguishing systems — Physical properties
and system design —
Part 8:
HFC 125 extinguishant
1 Scope
This document contains specific requirements for gaseous fire-extinguishing systems, with respect to
the HFC 125 extinguishant. It includes details of physical properties, specifications, usage and safety
aspects.
This document is applicable to systems operating at nominal pressures of 25 bar and 42 bar,
superpressurized with nitrogen. This does not preclude the use of other systems.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 14520-1:2015, Gaseous fire-extinguishing systems — Physical properties and system design — Part 1:
General requirements
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 14520-1 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http: //www .electropedia .org/
— ISO Online browsing platform: available at http: //www .iso .org/obp
4 Characteristics and uses
4.1 General
Extinguishant HFC 125 shall comply with the specification shown in Table 1.
HFC 125 is a colourless, almost odourless, electrically non-conductive gas, with a density approximately
four times that of air.
The physical properties are shown in Table 2.
HFC 125 extinguishes fires mainly by physical means, but also by some chemical means.
Table 1 — Specification for HFC 125
Property Requirement
Purity 99,6 % by mass, min.
© ISO 2019 – All rights reserved 1

---------------------- Page: 5 ----------------------
ISO 14520-8:2019(E)

Table 1 (continued)
Property Requirement
–4
Acidity 3 × 10 % by mass (3 parts per
million), max.
–4
Water content 10 × 10 % by mass (10 parts per
million), max.
Non-volatile residue 0,01 % by mass, max.
Suspended matter or sediment None visible
Table 2 — Physical properties of HFC 125
Property Units Value
Molecular mass — 120,02
Boiling point at 1,013 bar (absolute) °C −48,09
Freezing point °C −101
Critical temperature °C 66,02
Critical pressure bar abs 36,18
3
Critical volume cm /mol 210
3
Critical density kg/m 573,6
Vapour pressure 20 °C bar abs 12,05
3
Liquid density 20 °C kg/m 1 218,0
3
Saturated vapour density 20 °C kg/m 77,97
3
Specific volume of superheated m /kg 0,197 2
vapour at 1,013 bar and 20 °C
Chemical formula CF CHF
3 2
Chemical name
Pentafluoroethane
4.2 Use of HFC 125 systems
HFC 125 total flooding systems may be used for extinguishing fires of all classes within the limits
specified in ISO 14520-1:2015, Clause 4.
The extinguishant requirements per volume of protected space are shown in Table 3 for various levels
of concentration. These are based on methods shown in ISO 14520-1:2015, 7.6.
The extinguishing concentrations and design concentrations for n-heptane and surface class A hazards
are shown in Table 4. Concentrations for other fuels are shown in Table 5
Table 3 — HFC 125 total flooding quantity
3
Tempera- Specific HFC 125 mass requirements per unit volume of protected space, m/V (kg/m )
ture vapour
Design concentration (by volume)
volume
T
S
°C
3
m /kg 7 % 8 % 9 % 10 % 11 % 12 % 13 % 14 % 15 % 16 %
–45 0,149 7 0,502 8 0,580 9 0,660 7 0,742 2 0,825 6 0,910 9 0,998 2 1,087 4 1,178 8 1,272 4
–40 0,153 4 0,490 7 0,566 9 0,644 7 0,724 3 0,805 7 0,888 9 0,974 1 1,061 2 1,150 4 1,241 7
–35 0,157 2 0,478 8 0,553 2 0,629 1 0,706 8 0,786 2 0,867 5 0,950 5 1,035 6 1,122 6 1,211 7
–30 0,160 8 0,468 1 0,540 8 0,615 1 0,691 0 0,768 6 0,848 0 0,929 3 1,012 4 1,097 5 1,184 6
2 © ISO 2019 – All rights reserved

---------------------- Page: 6 ----------------------
ISO 14520-8:2019(E)

Table 3 (continued)
3
Tempera- Specific HFC 125 mass requirements per unit volume of protected space, m/V (kg/m )
ture vapour
Design concentration (by volume)
volume
T
S
°C
3
m /kg 7 % 8 % 9 % 10 % 11 % 12 % 13 % 14 % 15 % 16 %
–25 0,164 5 0,457 6 0,528 6 0,601 2 0,675 4 0,751 3 0,829 0 0,908 4 0,989 6 1,072 8 1,157 9
–20 0,168 2 0,447 5 0,517 0 0,588 0 0,660 6 0,734 8 0,810 7 0,888 4 0,967 8 1,049 2 1,132 4
–15 0,171 9 0,437 9 0,505 9 0,575 3 0,646 4 0,719 0 0,793 3 0,869 3 0,947 0 1,026 6 1,108 1
–10 0,175 5 0,428 9 0,495 5 0,563 5 0,633 1 0,704 2 0,777 0 0,851 4 0,927 6 1,005 5 1,085 3
–5 0,179 1 0,420 3 0,485 5 0,552 2 0,620 4 0,690 1 0,761 4 0,834 3 0,908 9 0,985 3 1,063 5
0 0,182 8 0,411 8 0,475 7 0,541 0 0,607 8 0,676 1 0,746 0 0,817 4 0,890 5 0,965
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.