Water quality — Gross beta activity — Test method using thick source

This document specifies a test method for the determination of gross beta activity concentration in non-saline waters. The method covers non-volatile radionuclides with maximum beta energies of approximately 0,3 MeV or higher. Measurement of low energy beta emitters (e.g. 3H, 228Ra, 210Pb, 14C, 35S and 241Pu) and some gaseous or volatile radionuclides (e.g. radon and radioiodine) might not be included in the gross beta quantification using the test method described in this document. This test method is applicable to the analysis of raw and drinking waters. The range of application depends on the amount of total soluble salts in the water and on the performance characteristics (background count rate and counting efficiency) of the counter used. It is the laboratory's responsibility to ensure the suitability of this method for the water samples tested.

Qualité de l'eau — Activité bêta globale — Méthode d'essai par source épaisse

Le présent document spécifie une méthode d'essai permettant de déterminer l'activité volumique bêta globale des eaux non salines. La méthode couvre les radionucléides non volatils émetteurs bêta avec des énergies maximales d'environ 0,3 MeV ou plus élevées. Les mesurages des émetteurs bêta à faible énergie (par exemple, 3H, 228Ra, 210Pb, 14C, 35S et 241Pu) et de certains radionucléides gazeux ou volatils (par exemple, radon et iode radioactif) peuvent ne pas être inclus dans la quantification bêta globale en utilisant la méthode d'essai décrite dans le présent document. Cette méthode d'essai est applicable à l'analyse des eaux brutes et potables. La gamme d'application dépend de la quantité de sels solubles totaux dans l'eau et des caractéristiques de performance (taux de comptage du bruit de fond et efficacité de comptage) du compteur utilisé. Il incombe au laboratoire de s'assurer que cette méthode est adaptée aux échantillons d'eau soumis à essai.

Kakovost vode - Skupna beta aktivnost - Preskusna metoda robustnega vira

Ta dokument določa preskusno metodo za določevanje koncentracije skupne beta aktivnosti v neslanih vodah. Metoda zajema nehlapne radionuklide z največjo beta energijo približno 0,3 MeV ali višjo. Merjenje beta oddajnikov z nizko energijo (npr. 3H, 228Ra, 210Pb, 14C, 35S in 241Pu) in nekaterih radionuklidov v plinastem stanju oziroma hlapnih radionuklidov (npr. radon in radioaktivni jod) morda ne bo vključeno v kvantifikaciji skupne beta aktivnosti z uporabo metode, opisane v tem dokumentu.
Ta metoda se uporablja za analizo neobdelane in pitne vode. Območje uporabe je odvisno od količine skupnih vodotopnih soli v vodi in od lastnosti uporabljenega števca (stopnja štetja v ozadju in učinkovitost štetja).
Laboratorij mora zagotoviti primernost te metode za vzorce vode, ki se preskušajo.

General Information

Status
Published
Publication Date
01-Nov-2018
Current Stage
9092 - International Standard to be revised
Start Date
17-Jun-2024
Completion Date
08-Nov-2025

Relations

Standard
ISO 9697:2019
English language
18 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-maj-2019
Kakovost vode - Skupna beta aktivnost - Preskusna metoda robustnega vira
Water quality - Gross beta activity - Test method using thick source
Qualité de l'eau - Activité bêta globale - Méthode d'essai par source épaisse
Ta slovenski standard je istoveten z: ISO 9697:2018
ICS:
13.060.60 Preiskava fizikalnih lastnosti Examination of physical
vode properties of water
13.280 Varstvo pred sevanjem Radiation protection
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 9697
Fourth edition
2018-11
Water quality — Gross beta activity —
Test method using thick source
Qualité de l'eau — Activité bêta globale — Méthode d'essai par
source épaisse
Reference number
©
ISO 2018
© ISO 2018
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2018 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions, symbols and units . 2
4 Principle . 3
5 Reagents and equipment . 3
5.1 Reagents. 3
5.2 Equipment . 4
6 Procedure. 4
6.1 Sampling . 4
6.2 Pre-treatment . 4
6.3 Concentration stage . 5
6.4 Sulfation stage . 5
6.5 Ignition stage . 5
6.6 Source preparation . 5
6.7 Measurement . 6
6.8 Determination of counting background . 6
6.9 Preparation of calibration sources . 6
6.10 Sensitivity and bias. 7
6.11 Optimization of the determination . 7
7 Source control . 7
7.1 Contamination check . 7
7.2 Potential disequilibrilium of radionuclides . 7
8 Expression of results . 7
8.1 Calculation of activity concentration . 7
8.2 Standard uncertainty . 8
8.3 Decision threshold . 9
8.4 Detection limit . 9
8.5 Confidence limits. 9
9 Test report .10
Annex A (informative) Example of performance criteria .11
Bibliography .12
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso
.org/iso/foreword .html.
This document was prepared by Technical Committee ISO/TC 147, Water quality, Subcommittee SC 3,
Radioactivity measurements.
This fourth edition cancels and replaces the third edition (ISO 9697:2015), of which it constitutes a
minor revision. The changes compared to the previous edition are as follows:
— the title has been changed from “Gross beta activity in non-saline water” to “Gross beta activity”;
— the Introduction has been reworded;
— Formulae (10) and (11) have been corrected to replace ± by α in the index of r;
— the units have been corrected so that mm and mol/l are used throughout.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
iv © ISO 2018 – All rights reserved

Introduction
Radioactivity from several naturally-occurring and anthropogenic sources is present throughout
the environment. Thus, water bodies (e.g. surface waters, ground waters, sea waters) can contain
radionuclides of natural, human-made, or both origins.
40 3 14
— Natural radionuclides, including K, H, C, and those originating from the thorium and uranium
226 228 234 238 210 210
decay series, in particular Ra, Ra, U, U, Po and Pb can be found in water for
natural reasons (e.g. desorption from the soil and washoff by rain water) or can be released from
technological processes involving naturally occurring radioactive materials (e.g. the mining and
processing of mineral sands or phosphate fertilizers production and use).
— Human-made radionuclides such as transuranium elements (americium, plutonium, neptunium,
3 14 90
curium), H, C, Sr and gamma emitting radionuclides can also be found in natural waters.
Small quantities of these radionuclides are discharged from nuclear fuel cycle facilities into the
environment as a result of authorized routine releases. Some of these radionuclides used for
medical and industrial applications are also released into the environment after use. Anthropogenic
radionuclides are also found in waters as a result of past fallout contaminations resulting from
the explosion in the atmosphere of nuclear devices and accidents such as those that occurred in
Chernobyl and Fukushima.
Radionuclide activity concentration in water bodies can vary according to local geological
characteristics and climatic conditions and can be locally and temporally enhanced by releases from
[1]
nuclear installation during planned, existing and emergency exposure situations . Drinking-water
may thus contain radionuclides at activity concentrations which could present a risk to human health.
The radionuclides present in liquid effluents are usually controlled before being discharged into
[2]
the environment and water bodies. Drinking waters are monitored for their radioactivity as
[3]
recommended by the World Health Organization (WHO) so that proper actions can be taken to ensure
that there is no adverse health effect to the public. Following these international recommendations,
national regulations usually specify radionuclide authorized concentration limits for liquid effluent
discharged to the environment and radionuclide guidance levels for waterbodies and drinking waters
for planned, existing, and emergency exposure situations. Compliance with these limits can be assessed
using measurement results with their associated uncertainties as specified by ISO/IEC Guide 98-3 and
[4]
ISO 5667-20 .
Depending on the exposure situation, there are different limits and guidance levels that would result
in an action to reduce health risk. As an example, during a planned or existing situation, the WHO
guidelines for guidance level in drinking water is 0,5 Bq/l for gross alpha activity and 1 Bq/l for gross
beta activity.
NOTE The guidance level is the activity concentration with an intake of 2 l/d of drinking water for one year
that results in an effective dose of 0,1 mSv/a for members of the public. This is an effective dose that represents a
[3]
very low level of risk and which is not expected to give rise to any detectable adverse health effects .
Thus, the test method can be
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.