Information technology - Artificial intelligence - Data life cycle framework (ISO/IEC 8183:2023)

This document defines the stages and identifies associated actions for data processing throughout the
artificial intelligence (AI) system life cycle, including acquisition, creation, development, deployment,
maintenance and decommissioning. This document does not define specific services, platforms or tools.
This document is applicable to all organizations, regardless of type, size or nature, that use data in the
development and use of AI systems.

Informationstechnologie - Künstliche Intelligenz - Rahmenwerk für den Datenlebenszyklus (ISO/IEC 8183:2023)

Technologies de l'information - Intelligence artificielle - Cadre du cycle de vie des données (ISO/IEC 8183:2023)

This document provides an overarching data life cycle framework that is instantiable for any AI system from data ideation to decommission. This document is applicable to the data processing throughout the AI system life cycle including the acquisition, creation, development, deployment, maintenance and decommissioning. This document does not define specific services, platforms or tools. This document is applicable to all organizations, regardless of type, sizes and nature, that use data in the development and use of AI systems.
It underpins the 5259 series which is already been adopted by CEN-CENELEC, and 25024 (JTC1 SC7).

Informacijska tehnologija - Umetna inteligenca - Okvir za življenjski cikel podatkov (ISO/IEC 8183:2023)

Ta dokument določa faze in povezana dejanja obdelave podatkov v celotnem
življenjskem ciklu sistema umetne inteligence (UI), vključno s pridobivanjem, ustvarjanjem, razvojem, uvajanjem,
vzdrževanjem in izločitvijo iz uporabe. Ta dokument ne opredeljuje posebnih storitev, platform ali orodij.
Ta dokument se uporablja za vse organizacije, ne glede na vrsto, velikost ali področje dejavnosti, ki uporabljajo podatke
pri razvoju in uporabi sistemov umetne inteligence.

General Information

Status
Published
Public Enquiry End Date
29-Apr-2024
Publication Date
12-Nov-2024
Technical Committee
UMI - Artificial intelligence
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
21-Aug-2024
Due Date
26-Oct-2024
Completion Date
13-Nov-2024

Overview

EN ISO/IEC 8183:2024 / ISO/IEC 8183:2023 defines a standardized data life cycle framework for artificial intelligence (AI) systems. Adopted by CEN as EN ISO/IEC 8183:2024, the standard maps the stages data pass through from initial idea conception to final system and data decommissioning. It is technology‑agnostic and does not mandate specific tools, services or platforms. The framework is intended to improve AI data governance, data quality, security and system utility across organizations of all sizes.

Key topics and technical requirements

  • Ten life cycle stages are identified and described:
    • Idea conception, Business requirements, Data planning, Data acquisition, Data preparation, Building a model, System deployment, System operation, Data decommissioning, System decommissioning.
  • Life cycle processes: actions and processes appropriate to each stage (planning, acquisition, preparation, verification/validation, maintenance, decommissioning).
  • Verification vs validation: distinction between internal model verification/validation and whole‑system validation during operation.
  • Data decommissioning vs system decommissioning: Stage 9 focuses on data-specific actions (secure deletion, archiving, repurposing) while Stage 10 covers disposal of the system regardless of data outcome.
  • Terminology and references: aligns with ISO/IEC 22989 (AI concepts and terminology) and references other related work (e.g., ISO/IEC 23053, ISO/IEC 5212 under preparation).
  • Applicability and constraints: applicable to all organizations using data in AI development and operation; highlights patent considerations and national adoption rules under CEN/CENELEC.

Practical applications

  • Establishing repeatable AI data governance and lifecycle management processes.
  • Designing compliant workflows for data planning, acquisition and preparation to reduce bias and improve data quality.
  • Guiding teams on model building, verification/validation and safe system deployment/operation.
  • Defining secure data decommissioning and archival procedures for privacy and compliance (e.g., PII handling, DPIA considerations).
  • Informing procurement, auditing and risk management for AI projects.

Who should use this standard

  • AI/ML engineers, data engineers and data scientists
  • IT architects and system integrators
  • Compliance, privacy and security teams
  • Product managers and risk officers overseeing AI systems
  • Standards bodies and organizations implementing AI governance

Related standards

  • ISO/IEC 22989 - AI concepts and terminology
  • ISO/IEC 23053 - data sets (referenced for dataset lifecycle details)
  • ISO/IEC 5212 (under preparation) - data usage life cycle

Keywords: ISO/IEC 8183, data life cycle, AI data governance, artificial intelligence data framework, data decommissioning, model verification, AI system lifecycle.

Standard

SIST EN ISO/IEC 8183:2024

English language
18 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

SIST EN ISO/IEC 8183:2024 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Information technology - Artificial intelligence - Data life cycle framework (ISO/IEC 8183:2023)". This standard covers: This document defines the stages and identifies associated actions for data processing throughout the artificial intelligence (AI) system life cycle, including acquisition, creation, development, deployment, maintenance and decommissioning. This document does not define specific services, platforms or tools. This document is applicable to all organizations, regardless of type, size or nature, that use data in the development and use of AI systems.

This document defines the stages and identifies associated actions for data processing throughout the artificial intelligence (AI) system life cycle, including acquisition, creation, development, deployment, maintenance and decommissioning. This document does not define specific services, platforms or tools. This document is applicable to all organizations, regardless of type, size or nature, that use data in the development and use of AI systems.

SIST EN ISO/IEC 8183:2024 is classified under the following ICS (International Classification for Standards) categories: 35.020 - Information technology (IT) in general; 35.240.01 - Application of information technology in general. The ICS classification helps identify the subject area and facilitates finding related standards.

You can purchase SIST EN ISO/IEC 8183:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-december-2024
Informacijska tehnologija - Umetna inteligenca - Okvir za življenjski cikel podatkov
(ISO/IEC 8183:2023)
Information technology - Artificial intelligence - Data life cycle framework (ISO/IEC
8183:2023)
Informationstechnologie - Künstliche Intelligenz - Rahmenwerk für den
Datenlebenszyklus (ISO/IEC 8183:2023)
Technologies de l'information - Intelligence artificielle - Cadre du cycle de vie des
données (ISO/IEC 8183:2023)
Ta slovenski standard je istoveten z: EN ISO/IEC 8183:2024
ICS:
35.020 Informacijska tehnika in Information technology (IT) in
tehnologija na splošno general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN ISO/IEC 8183

NORME EUROPÉENNE
EUROPÄISCHE NORM
June 2024
ICS 35.020
English version
Information technology - Artificial intelligence - Data life
cycle framework (ISO/IEC 8183:2023)
Technologies de l'information - Intelligence artificielle Informationstechnologie - Künstliche Intelligenz -
- Cadre du cycle de vie des données (ISO/IEC Rahmenwerk für den Datenlebenszyklus (ISO/IEC
8183:2023) 8183:2023)
This European Standard was approved by CEN on 10 June 2024.

CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for
giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical
references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to
any CEN and CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium,
Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

CEN-CENELEC Management Centre:
Rue de la Science 23, B-1040 Brussels
© 2024 CEN/CENELEC All rights of exploitation in any form and by any means
Ref. No. EN ISO/IEC 8183:2024 E
reserved worldwide for CEN national Members and for
CENELEC Members.
Contents Page
European foreword . 3

European foreword
The text of ISO/IEC 8183:2023 has been prepared by Technical Committee ISO/IEC JTC 1 "Information
technology” of the International Organization for Standardization (ISO) and has been taken over as
secretariat of which is held by DS.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by December 2024, and conflicting national standards
shall be withdrawn at the latest by December 2024.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN-CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN and CENELEC websites.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the
United Kingdom.
Endorsement notice
The text of ISO/IEC 8183:2023 has been approved by CEN-CENELEC as EN ISO/IEC 8183:2024 without
any modification.
INTERNATIONAL ISO/IEC
STANDARD 8183
First edition
2023-07
Information technology — Artificial
intelligence — Data life cycle
framework
Reference number
ISO/IEC 8183:2023(E)
© ISO/IEC 2023
ISO/IEC 8183:2023(E)
© ISO/IEC 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
© ISO/IEC 2023 – All rights reserved

ISO/IEC 8183:2023(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols and abbreviated terms.1
5 Data life cycle overview . 1
6 Data life cycle framework .2
6.1 General . 2
6.2 Stage 1: Idea conception . 3
6.3 Stage 2: Business requirements . 4
6.4 Stage 3: Data planning . 4
6.5 Stage 4: Data acquisition. 5
6.6 Stage 5: Data preparation . 5
6.7 Stage 6: Building a model . 6
6.8 Stage 7: System deployment . 6
6.9 Stage 8: System operation . 7
6.10 Stage 9: Data decommissioning . 7
6.11 Stage 10: System decommissioning . 7
7 Stages and processes within the data life cycle . 7
Bibliography .10
iii
© ISO/IEC 2023 – All rights reserved

ISO/IEC 8183:2023(E)
Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.
The procedures used to develop this document and those intended for its further maintenance
are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria
needed for the different types of document should be noted. This document was drafted in
accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).
ISO and IEC draw attention to the possibility that the implementation of this document may involve the
use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of
any claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC
had not received notice of (a) patent(s) which may be required to implement this document. However,
implementers are cautioned that this may not represent the latest information, which may be obtained
from the patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall
not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.
This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 42, Artificial intelligence.
Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.
iv
© ISO/IEC 2023 – All rights reserved

ISO/IEC 8183:2023(E)
Introduction
Artificial intelligence (AI) systems are being adopted by organizations of all types, sizes and purposes.
Data are essential to the development and operation of AI systems.
In the field of AI systems, there are many data life cycles in use and under consideration for different
purposes (e.g. data quality, bias in data, data governance, development and use of AI systems). Without
an overarching framework, these different data life cycles can be challenging to correctly interpret by
those without previous knowledge, context and expertise. There is a risk that these multiple data life
cycles will not be applied as intended.
This document provides a data life cycle overview in Clause 5, describes a data life cycle framework in
Clause 6 and provides more information on the stages or processes of the data life cycle in Clause 7.
v
© ISO/IEC 2023 – All rights reserved

INTERNATIONAL STANDARD ISO/IEC 8183:2023(E)
Information technology — Artificial intelligence — Data
life cycle framework
1 Scope
This document defines the stages and identifies associated actions for data processing throughout the
artificial intelligence (AI) system life cycle, including acquisition, creation, development, deployment,
maintenance and decommissioning. This document does not define specific services, platforms or tools.
This document is applicable to all organizations, regardless of type, size or nature, that use data in the
development and use of AI systems.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 22989, Information technology — Artificial intelligence — Artificial intelligence concepts and
terminology
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 22989 apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
4 Symbols and abbreviated terms
AI artificial intelligence
DPIA data protection impact assessment
JSON JavaScript object notation
ML machine learning
OWL web ontology language
PII personally identifiable information
XML extensible markup language
5 Data life cycle overview
The data life cycle for AI systems encompasses the processing of data from the earliest conception of
a new AI system to the eventual decommissioning of the system and is separated into a number of
distinct stages. Each stage will often, but not always, be part of a data life cycle for an AI system.
© ISO/IEC 2023 – All rights reserved

ISO/IEC 8183:2023(E)
A data life cycle represents all the stages through which data can pass within any system that uses data
of any kind. It is designed to support the achievement of objectives related to system governance, system
utility, data quality and data security, by ensuring that data processing is given due consideration
during the planning, development, use and decommissioning of the system.
The detailed purpose and timing of use of these stages throughout the life cycle are influenced by
multiple factors, including societal, commercial, organizational and technical considerations, each of
which can vary or at times be combined with other stages during the life of a system. This document
describes the following 10 stages:
— stage 1 – idea conception;
— stage 2 – business requirements;
— stage 3 – data planning;
— stage 4 – data acquisition;
— stage 5 – data preparation;
— stage 6 – building model;
— stage 7 – system deployment;
— stage 8 – system operation;
— stage 9 – data decommissioning;
— stage 10 – system decommissioning.
1)
For information about a data life cycle for data usage, see ISO/IEC 5212: — .
6 Data life cycle framework
6.1 General
The data life cycle framework, shown in Figure 1, identifies a set of conceptually distinct stages that
data used in an AI system go through from data planning to data decommissioning. Figure 1 also
includes idea conception, business requirements and system decommissioning, which are system-
level life cycle stages. For information regarding data sets, refer to ISO/IEC 23053:2022, 6.5. Life cycle
processes appropriate to a defined task can be assigned to each stage. Life cycle processes describe the
actions taken on the data within the life cycle stage.
Stage 9 (data decommissioning) and stage 10 (system decommissioning) both pertain to
decommissioning but stage 9 specifically covers what happens to the data (e.g. secure deletion,
archiving, repurposing) while stage 10 covers what happens to the system irrespective of what happens
to the data that is being processed.
1) Under preparation. Stage at the time of publication: ISO/IEC DIS 5212:2023.
© ISO/IEC 2023 – All rights reserved
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

SIST EN ISO/IEC 8183:2024 표준은 인공지능(AI) 시스템 생애 주기 전반에 걸쳐 데이터 처리의 단계와 관련된 행동을 식별하는 데 중점을 두고 있습니다. 이 문서는 데이터의 수집, 생성, 개발, 배포, 유지보수 및 서비스 종료 등 다양한 단계를 포괄하는 데이터 생애 주기를 정의하고 있습니다. 이 표준의 강점은 모든 조직에 적용 가능하다는 점입니다. 이는 유형, 규모 또는 성격에 관계없이 AI 시스템의 개발과 사용에 데이터를 활용하는 모든 조직에게 유용합니다. 이러한 포괄적인 접근 방식은 다양한 산업 분야와 조직의 필요를 충족시키는 데 도움을 줍니다. 또한, SIST EN ISO/IEC 8183:2024는 특정 서비스나 플랫폼 또는 도구를 정의하지 않기 때문에 다양한 기술 환경에서도 유연하게 적용될 수 있습니다. 표준의 관련성은 인공지능 기술이 점점 더 많은 데이터에 의존하고 있다는 점에서 더욱 강조됩니다. 데이터 생애 주기의 명확한 구분과 관련 행동의 식별은 조직이 AI 시스템을 보다 효과적으로 관리하고, 데이터 품질을 유지하며, 법적 규제를 준수하는 데 필수적인 역할을 합니다. 이는 궁극적으로 조직의 신뢰성 및 효율성을 높이는 데 기여합니다. 종합적으로 볼 때, SIST EN ISO/IEC 8183:2024는 인공지능과 데이터 관리 분야에서 필수적인 기준을 제공하며, 사용자와 개발자가 데이터를 통해 AI 기술을 더욱 효과적으로 활용할 수 있도록 지원합니다.

Die SIST EN ISO/IEC 8183:2024, die sich mit dem Lebenszyklusmanagement von Daten im Kontext der künstlichen Intelligenz (KI) befasst, stellt einen bedeutenden Standard für Organisationen dar, die Daten im Rahmen der Entwicklung und Nutzung von KI-Systemen einsetzen. Der Standard deckt alle wesentlichen Phasen des Datenlebenszyklus ab, einschließlich Akquisition, Erstellung, Entwicklung, Bereitstellung, Wartung und Stilllegung von Daten. Ein herausragendes Merkmal dieses Standards ist seine umfassende Anwendbarkeit. Unabhängig von der Größe, dem Typ oder der Natur der Organisation bietet die SIST EN ISO/IEC 8183:2024 eine klare Struktur, um sicherzustellen, dass die Datenverarbeitung innerhalb der KI-Systeme effizient und verantwortungsvoll erfolgt. Diese Standardisierung fördert nicht nur die Konsistenz in der Datenverarbeitung, sondern unterstützt auch die Einhaltung von Best Practices und ethischen Richtlinien. Die Wichtigkeit dieses Dokuments liegt ebenfalls in der Identifikation von relevanten Maßnahmen, die für jede Phase des Datenlebenszyklus implementiert werden müssen. Dies ermöglicht es Organisationen, mögliche Risiken frühzeitig zu erkennen und entsprechend zu handeln, um die Datensicherheit und Integrität zu gewährleisten. Ein weiterer Pluspunkt der SIST EN ISO/IEC 8183:2024 ist die Fokussierung auf eine generische Rahmenstruktur, die keine spezifischen Dienste, Plattformen oder Tools vorschreibt. Dies erlaubt den Organisationen eine größere Flexibilität und Anpassungsfähigkeit, während sie moderne Technologien und Verfahren integrieren, um ihre KI-Systeme weiterzuentwickeln. Insgesamt repräsentiert die SIST EN ISO/IEC 8183:2024 einen essenziellen Rahmen zur Standardisierung von Datenverarbeitungsprozessen in KI-Systemen. Sie ist nicht nur eine wichtige Ressource für Organisationen, die ihre Datenverwaltung optimieren möchten, sondern trägt auch zur Förderung der verantwortungsvollen Nutzung von KI insgesamt bei.

SIST EN ISO/IEC 8183:2024は、人工知能(AI)システムのデータ処理のライフサイクルを定義した重要な標準文書です。この標準は、データの取得、作成、開発、展開、維持、廃止といった各段階における行動を明確に特定しており、AIシステムの効率的かつ倫理的なデータ管理を促進します。特に、すべての組織が適用対象となるため、企業の規模や種類に関係なく、AIシステムの開発と使用に対する包括的な枠組みを提供しています。 この標準の強みは、データライフサイクル全体にわたって必要なプロセスを体系的に整理している点です。これにより、AIの導入における透明性と信頼性を高め、組織がデータ管理のベストプラクティスを遵守するための基盤を築きます。また、特定のサービスやプラットフォームに依存せず、汎用性の高いフレームワークを提供することで、さまざまな業種においても広く活用される可能性があります。 したがって、SIST EN ISO/IEC 8183:2024は、AI技術の進展に伴うデータ処理の複雑性に対処するために不可欠な標準であり、データライフサイクルの各段階での行動指針を提供することで、組織が責任をもってAIを活用できるよう支援します。

The SIST EN ISO/IEC 8183:2024 standard plays a crucial role in the realm of information technology, particularly concerning artificial intelligence (AI) and its data life cycle framework. Its primary focus is to provide a comprehensive guide that delineates the stages involved in data processing throughout the life cycle of AI systems, making it highly relevant to organizations engaged in AI development and deployment. One of the notable strengths of this standard is its clear definition of the various stages of the data life cycle, which include acquisition, creation, development, deployment, maintenance, and decommissioning. By identifying these stages, the standard ensures that organizations can effectively navigate the complexities of data processing in AI systems, fostering better practices and facilitating compliance with best practices in data management. Additionally, the delineation of associated actions for each stage enhances the usability of the standard. It empowers organizations-regardless of their type, size, or nature-to implement best practices tailored to their specific needs when utilizing data in AI systems. This aspect underscores the standard’s inclusivity and broad applicability, addressing the needs of a diverse array of organizations looking to harness the potential of AI responsibly. However, it is important to note that while the SIST EN ISO/IEC 8183:2024 standard encompasses a comprehensive framework for the data life cycle, it does not specify particular services, platforms, or tools. This autonomy allows organizations the flexibility to adapt the framework to their distinct environments and technological landscapes, potentially spurring innovation in how they approach AI data processing. Overall, SIST EN ISO/IEC 8183:2024 stands out as a pivotal standard that not only contributes to the establishment of responsible AI practices but also enhances the understanding and management of data throughout its life cycle. Its strengths in defining stages and outlining actions make it an indispensable resource for any organization leveraging AI technologies.

Le document SIST EN ISO/IEC 8183:2024 présente une norme essentielle dans le domaine de la technologie de l'information et de l'intelligence artificielle. Son champ d'application est clairement défini, englobant l'ensemble des étapes du cycle de vie des données dans les systèmes d'IA. Ces étapes incluent l'acquisition, la création, le développement, le déploiement, la maintenance et la mise hors service des données, ce qui en fait un cadre complet pour le traitement des données. L'un des principaux atouts de cette norme est sa flexibilité. En effet, elle est applicable à toutes les organisations, indépendamment de leur type, taille ou secteur. Cela garantit que les meilleures pratiques en matière de gestion des données soient accessibles à tous, favorisant une adoption généralisée de l'IA tout en respectant les exigences éthiques et légales. De plus, la norme ne se limite pas à prédéfinir des services, des plateformes ou des outils spécifiques. Cette approche permet aux différentes entités d’adapter le cadre à leurs besoins particuliers, tout en maintenant une cohérence dans la gestion de leurs données à travers le cycle de vie des systèmes d'IA. La SIST EN ISO/IEC 8183:2024 est donc d'une grande pertinence dans le contexte actuel, où l'utilisation des données dans l'intelligence artificielle est en constante augmentation. En établissant un cadre structuré, cette norme contribue à la sécurité, à la transparence et à l'efficacité dans la gestion des données, solidifiant ainsi la confiance dans les systèmes d'IA au sein des organisations.