Microbiology of the food chain - Horizontal method for determination of hepatitis A virus and norovirus using real-time RT-PCR - Part 2: Method for detection (ISO 15216-2:2019)

EN-ISO 15216-2 specifies a method for detection of hepatitis A virus (HAV) and norovirus genogroups I (GI) and II (GII), from test samples of foodstuffs [(soft fruit, leaf, stem and bulb vegetables, bottled water, bivalve molluscan shellfish (BMS)] or surfaces using real-time RT-PCR.This method is not validated for detection of the target viruses in other foodstuffs (including multi-component foodstuffs), or any other matrices, nor for the detection of other viruses in foodstuffs, surfaces or other matrices.

Mikrobiologie der Lebensmittelkette - Horizontales Verfahren zur Bestimmung von Hepatitis A-Virus und Norovirus in Lebensmitteln mittels Real-time-RT-PCR - Teil 2: Nachweisverfahren (ISO 15216-2:2019)

Dieses Dokument legt ein Verfahren für den Nachweis von Hepatitis-A-Viren (HAV) und Noroviren der Genogruppen I (GI) und II (GII) in Untersuchungsproben von Lebensmitteln [weiches Obst, Blatt-, Stängel- und Zwiebelgemüse, in Flaschen abgefülltes Trinkwasser, zweischalige Weichtiere (BMS, en: bivalve molluscan shellfish)] oder auf Oberflächen mittels Real-time-RT-PCR fest.
Dieses Verfahren ist weder für den Nachweis der Zielviren in anderen Lebensmitteln (einschließlich zusammengesetzter Lebensmittel) oder anderen Matrices noch für den Nachweis anderer Viren in Lebensmitteln, auf Oberflächen oder anderen Matrices validiert.

Microbiologie dans la chaine alimentaire - Méthode horizontale pour la recherche des virus de l'hépatite A et norovirus par la technique RT-PCR en temps réel - Partie 2: Méthode de détection (ISO 15216-2:2019)

Le présent document spécifie une méthode de détection du virus de l'hépatite A (VHA) et des norovirus des génogroupes I (GI) et II (GII) dans des échantillons pour essai d'aliments (baies, légumes feuilles, tiges et bulbes, eau embouteillée, mollusques bivalves) ou sur des surfaces par RT-PCR en temps réel.
Cette méthode n'est pas validée pour la détection des virus cibles dans d'autres aliments (y compris les aliments à plusieurs composants) ou d'autres matrices, ni pour la détection d'autres virus dans les aliments, sur les surfaces ou dans d'autres matrices.

Mikrobiologija v prehranski verigi - Horizontalna metoda za ugotavljanje virusa hepatitisa A in norovirusov z RT-PCR v realnem času - 2. del: Metoda za ugotavljanje (ISO 15216-2:2019)

Standard EN-ISO 15216-2 določa metodo za ugotavljanje virusa hepatitisa A (HAV) in norovirusov I (GI) in II (GII) iz preskusnih vzorcev živil (mehko sadje, listna, stebelna in gomoljna zelenjava, ustekleničena voda, mehkužci-školjke (BMS)) ali površin z uporabo RT-PCR v realnem času. Ta metoda ni potrjena za odkrivanje ciljnih virusov v drugih živilih (vključno s sestavljenimi živili) ali kateri koli drugih zmeseh, niti za odkrivanje drugih virusov v živilih, površinah ali drugih zmeseh.

General Information

Status
Published
Public Enquiry End Date
19-Jul-2018
Publication Date
28-Oct-2019
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
30-Sep-2019
Due Date
05-Dec-2019
Completion Date
29-Oct-2019

Relations

Buy Standard

Standard
EN ISO 15216-2:2019
English language
49 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN ISO 15216-2:2019
01-december-2019
Nadomešča:
SIST-TS CEN ISO/TS 15216-2:2013
Mikrobiologija v prehranski verigi - Horizontalna metoda za ugotavljanje virusa
hepatitisa A in norovirusov z RT-PCR v realnem času - 2. del: Metoda za
ugotavljanje (ISO 15216-2:2019)
Microbiology of the food chain - Horizontal method for determination of hepatitis A virus
and norovirus using real-time RT-PCR - Part 2: Method for detection (ISO 15216-2:2019)
Mikrobiologie der Lebensmittelkette - Horizontales Verfahren zur Bestimmung von
Hepatitis A-Virus und Norovirus in Lebensmitteln mittels Real-time-RT-PCR - Teil 2:
Nachweisverfahren (ISO 15216-2:2019)
Microbiologie dans la chaine alimentaire - Méthode horizontale pour la recherche des
virus de l'hépatite A et norovirus par la technique RT-PCR en temps réel - Partie 2:
Méthode de détection (ISO 15216-2:2019)
Ta slovenski standard je istoveten z: EN ISO 15216-2:2019
ICS:
07.100.30 Mikrobiologija živil Food microbiology
SIST EN ISO 15216-2:2019 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN ISO 15216-2:2019

---------------------- Page: 2 ----------------------
SIST EN ISO 15216-2:2019


EN ISO 15216-2
EUROPEAN STANDARD

NORME EUROPÉENNE

September 2019
EUROPÄISCHE NORM
ICS 07.100.30 Supersedes CEN ISO/TS 15216-2:2013
English Version

Microbiology of the food chain - Horizontal method for
determination of hepatitis A virus and norovirus using
real-time RT-PCR - Part 2: Method for detection (ISO
15216-2:2019)
Microbiologie dans la chaine alimentaire - Méthode Mikrobiologie der Lebensmittelkette - Horizontales
horizontale pour la recherche des virus de l'hépatite A Verfahren zur Bestimmung von Hepatitis A-Virus und
et norovirus par la technique RT-PCR en temps réel - Norovirus in Lebensmitteln mittels Real-time-RT-PCR -
Partie 2: Méthode de détection (ISO 15216-2:2019) Teil 2: Nachweisverfahren (ISO 15216-2:2019)
This European Standard was approved by CEN on 27 July 2019.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 15216-2:2019 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
SIST EN ISO 15216-2:2019
EN ISO 15216-2:2019 (E)
Contents Page
European foreword . 3

2

---------------------- Page: 4 ----------------------
SIST EN ISO 15216-2:2019
EN ISO 15216-2:2019 (E)
European foreword
This document (EN ISO 15216-2:2019) has been prepared by Technical Committee ISO/TC 34 "Food
products" in collaboration with Technical Committee CEN/TC 275 “Food analysis - Horizontal methods”
the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by March 2020, and conflicting national standards shall
be withdrawn at the latest by March 2020.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes CEN ISO/TS 15216-2:2013.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 15216-2:2019 has been approved by CEN as EN ISO 15216-2:2019 without any
modification.


3

---------------------- Page: 5 ----------------------
SIST EN ISO 15216-2:2019

---------------------- Page: 6 ----------------------
SIST EN ISO 15216-2:2019
INTERNATIONAL ISO
STANDARD 15216-2
First edition
2019-07
Microbiology of the food chain —
Horizontal method for determination
of hepatitis A virus and norovirus
using real-time RT-PCR —
Part 2:
Method for detection
Microbiologie dans la chaine alimentaire — Méthode horizontale
pour la recherche des virus de l'hépatite A et norovirus par la
technique RT-PCR en temps réel —
Partie 2: Méthode de détection
Reference number
ISO 15216-2:2019(E)
©
ISO 2019

---------------------- Page: 7 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved

---------------------- Page: 8 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 3
4.1 Virus extraction . 3
4.2 RNA extraction . 3
4.3 Real-time RT-PCR . 3
4.4 Control materials . 4
4.4.1 Process control virus . 4
4.4.2 EC RNA control . 4
4.5 Test results. 4
5 Reagents . 4
5.1 General . 4
5.2 Reagents used as supplied . 4
5.3 Reagents requiring preparation . 6
6 Equipment and consumables . 7
7 Sampling . 8
8 Procedure. 8
8.1 General laboratory requirements . 8
8.2 Virus extraction . 8
8.2.1 General. 8
8.2.2 Process control virus material . 9
8.2.3 Negative process control . 9
8.2.4 Surfaces . 9
8.2.5 Soft fruit and leaf, stem and bulb vegetables. 9
8.2.6 Bottled water .10
8.2.7 Bivalve molluscan shellfish (BMS) .10
8.3 RNA extraction .11
8.4 Real-time RT-PCR .11
8.4.1 General requirements .11
8.4.2 Real-time RT-PCR analysis .12
9 Interpretation of results .14
9.1 General .14
9.2 Construction of process control virus RNA standard curve.14
9.3 Control for RT-PCR inhibition.14
9.4 Calculation of extraction efficiency .15
10 Expression of results .15
11 Performance characteristics of the method .16
11.1 Validation study.16
11.2 Sensitivity .16
11.3 Specificity .16
11.4 LOD .16
50
12 Test report .16
Annex A (normative) Diagram of procedure .17
Annex B (normative) Composition and preparation of reagents and buffers .18
Annex C (informative) Real-time RT-PCR mastermixes and cycling parameters .21
© ISO 2019 – All rights reserved iii

---------------------- Page: 9 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

Annex D (informative) Real-time RT-PCR primers and hydrolysis probes for the detection of
HAV, norovirus GI and GII and mengo virus (process control) .22
Annex E (informative) Growth of mengo virus strain MC for use as a process control .25
0
®
Annex F (informative) RNA extraction using the BioMerieux NucliSens system .26
Annex G (informative) Generation of external control RNA (EC RNA) stocks .28
Annex H (informative) Typical optical plate layout .31
Annex I (informative) Method validation studies and performance characteristics .32
Bibliography .40
iv © ISO 2019 – All rights reserved

---------------------- Page: 10 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso
.org/iso/foreword .html.
This document was prepared by the European Committee for Standardization (CEN) Technical
Committee CEN/TC 275, Food analysis — Horizontal methods, in collaboration with ISO Technical
Committee TC 34, Food products, Subcommittee SC 9, Microbiology, in accordance with the agreement
on technical cooperation between ISO and CEN (Vienna Agreement).
This first edition cancels and replaces ISO/TS 15216-2:2013, which has been technically revised with
the following changes:
— a requirement to use a suitable buffer for the dilution of control materials has been added;
— the method for generating process control virus RNA for the standard curve has been changed;
— breakpoints with a defined temperature and time parameters in the extraction methods have
been added;
— the terminology has been changed from amplification efficiency to RT-PCR inhibition;
— extra real-time RT-PCR reactions for sample RNA and negative controls have been added;
— method characteristics and the results of method validation studies have been added.
A list of all parts in the ISO 15216 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/members .html.
© ISO 2019 – All rights reserved v

---------------------- Page: 11 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

Introduction
Hepatitis A virus (HAV) and norovirus are important agents of food-borne human viral illness. No
routine methods exist for culture of norovirus, and HAV culture methods are not appropriate for routine
application to food matrices. Detection is therefore reliant on molecular methods using the reverse-
transcriptase polymerase chain reaction (RT-PCR). As many food matrices contain substances that
are inhibitory to RT-PCR, it is necessary to use an extraction method that produces highly clean RNA
preparations that are fit for purpose. For surfaces, viruses are removed by swabbing. For soft fruit and
leaf, stem and bulb vegetables, virus extraction is by elution with agitation followed by precipitation
with PEG/NaCl. For bottled water, adsorption and elution using positively charged membranes followed
by concentration by ultrafiltration is used. For bivalve molluscan shellfish (BMS), viruses are extracted
from the tissues of the digestive glands using treatment with a proteinase K solution. For all matrices
that are not covered by this document, it is necessary to validate this method. All matrices share a
common RNA extraction method based on virus capsid disruption with chaotropic reagents followed
by adsorption of RNA to silica particles. Real-time RT-PCR monitors amplification throughout the real-
time RT-PCR cycle by measuring the excitation of fluorescently labelled molecules. In real-time RT-PCR
with hydrolysis probes, the fluorescent label is attached to a sequence-specific nucleotide probe that
also enables simultaneous confirmation of target template. These modifications increase the sensitivity
and specificity of the real-time RT-PCR method, and obviate the need for additional amplification
product confirmation steps post real-time RT-PCR. Due to the complexity of the method, it is necessary
to include a comprehensive suite of controls. The method described in this document enables detection
of virus RNA in the test sample. A schematic diagram of the testing procedure is shown in Annex A.
The main changes, listed in the Foreword, introduced in this document compared to ISO/TS 15216-2:2013,
are considered as minor (see ISO 17468).
vi © ISO 2019 – All rights reserved

---------------------- Page: 12 ----------------------
SIST EN ISO 15216-2:2019
INTERNATIONAL STANDARD ISO 15216-2:2019(E)
Microbiology of the food chain — Horizontal method for
determination of hepatitis A virus and norovirus using
real-time RT-PCR —
Part 2:
Method for detection
1 Scope
This document specifies a method for detection of hepatitis A virus (HAV) and norovirus genogroups
I (GI) and II (GII), from test samples of foodstuffs [(soft fruit, leaf, stem and bulb vegetables, bottled
water, bivalve molluscan shellfish (BMS)] or surfaces using real-time RT-PCR.
This method is not validated for detection of the target viruses in other foodstuffs (including multi-
component foodstuffs), or any other matrices, nor for the detection of other viruses in foodstuffs,
surfaces or other matrices.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 20838, Microbiology of food and animal feeding stuffs — Polymerase chain reaction (PCR) for the
detection of food-borne pathogens — Requirements for amplification and detection for qualitative methods
ISO 22119, Microbiology of food and animal feeding stuffs — Real-time polymerase chain reaction (PCR) for
the detection of food-borne pathogens — General requirements and definitions
ISO 22174, Microbiology of food and animal feeding stuffs — Polymerase chain reaction (PCR) for the
detection of food-borne pathogens — General requirements and definitions
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 20838, ISO 22119, ISO 22174
and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:/ /www. iso. org/obp
— IEC Electropedia: available at http:/ /www.e lectropedia. org/
3.1
foodstuff
substance used or prepared for use as food
Note 1 to entry: For the purposes of this document, this definition includes bottled water.
3.2
surface
surface of food, food preparation surface or food contact surface
© ISO 2019 – All rights reserved 1

---------------------- Page: 13 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

3.3
soft fruit
small edible stoneless fruit
EXAMPLE Strawberries, raspberries, currants.
3.4
leaf, stem and bulb vegetables
leaves, stems and bulbs of plants, eaten as a vegetable
EXAMPLE Lettuce, green onions.
3.5
hepatitis A virus
HAV
member of the Picornaviridae family responsible for infectious hepatitis
Note 1 to entry: Genetically, HAV can be subdivided into six genotypes on the basis of the VP1/2A region
(genotypes 1, 2 and 3 have been found in humans, while genotypes 4, 5, and 6 are of simian origin). There is only
one serotype.
Note 2 to entry: Transmission occurs via the faecal-oral route by person-to-person contact, through the
consumption of contaminated foodstuffs (3.1), contact with contaminated water or surfaces (3.2), or contact with
contaminated fomites. HAV is classified as a group 2 biological agent by the European Union and as a risk group 2
human aetiological agent by the United States National Institutes of Health.
3.6
norovirus
member of the Caliciviridae family responsible for sporadic cases and outbreaks of acute gastroenteritis
Note 1 to entry: Genetically, norovirus can be subdivided into seven separate genogroups. Three of these
genogroups, GI, GII and GIV have been implicated in human gastrointestinal disease. GI and GII are responsible
for the vast majority of clinical cases.
Note 2 to entry: Transmission occurs via the faecal-oral route by person-to-person contact, through the
consumption of contaminated foodstuffs (3.1), through contact with contaminated water or surfaces (3.2), or
contact with contaminated fomites. GI and GII noroviruses are classified as group 2 biological agents by the
European Union and as risk group 2 human aetiological agents by the United States National Institutes of Health.
3.7
detection of HAV
detection of HAV (3.5) RNA in a predetermined mass or volume of foodstuff (3.1), or on the area of a
surface (3.2)
3.8
detection of norovirus
detection of norovirus (3.6) RNA in a predetermined mass or volume of foodstuff (3.1), or on the area of
a surface (3.2)
3.9
process control virus
virus added to the sample portion at the earliest opportunity prior to virus extraction to control for
extraction efficiency
3.10
process control virus RNA
RNA extracted from the process control virus (3.9) in order to produce standard curve data for the
estimation of extraction efficiency
3.11
negative RNA extraction control
control free of target RNA carried through all steps of the RNA extraction and detection procedure to
monitor any contamination events
2 © ISO 2019 – All rights reserved

---------------------- Page: 14 ----------------------
SIST EN ISO 15216-2:2019
ISO 15216-2:2019(E)

3.12
negative process control
target pathogen-free sample of the food matrix, or target pathogen-free non-matrix sample, that is run
through all stages of the analytical process
3.13
hydrolysis probe
fluorescent probe coupled with a fluorescent reporter molecule and a quencher molecule, which are
sterically separated by the 5′-3′-exonuclease activity of the enzyme during the amplification process
3.14
negative real-time RT-PCR control
aliquot of highly pure water used in a real-time RT-PCR reaction to assess contamination in the real-
time RT-PCR reagents
3.15
external control RNA
EC RNA
reference RNA that can be used to assess inhibition of amplification for the real-time RT-PCR assay of
relevance by being added in a defined amount to an aliquot of sample RNA in a separate reaction
EXAMPLE RNA synthesized by in vitro transcription from a plasmid carrying a copy of the target gene.
3.16
C value
q
quantification cycle, which is the cycle at which the target is quantified in a given real-time RT-PCR
reaction
Note 1 to entry: This corresponds to the cycle at which reaction fluorescence rises above a threshold level.
4 Principle
4.1 Virus extraction
The foodstuffs and surfaces covered by this document are often highly complex matrices and the target
viruses can be present at low concentrations. It is therefore necessary to carry out matrix-specific virus
extraction and/or concentration in order to provide a substrate for subsequent common parts of the
process. The choice of method depends upon the matrix.
4.2 RNA extraction
It is necessary
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.