SIST EN ISO 21920-3:2022
(Main)Geometrical product specifications (GPS) - Surface texture: Profile - Part 3: Specification operators (ISO 21920-3:2021)
Geometrical product specifications (GPS) - Surface texture: Profile - Part 3: Specification operators (ISO 21920-3:2021)
This document specifies the complete specification operator for surface texture by profile methods.
Geometrische Produktspezifikation (GPS) - Oberflächenbeschaffenheit: Profile - Teil 3: Spezifikationsoperatoren (ISO 21920-3:2021)
Dieses Dokument legt den vollständigen Spezifikationsoperator für die Oberflächenbeschaffenheit nach dem Tastschnittverfahren fest.
Spécification géométrique des produits (GPS) - État de surface: Méthode du profil - Partie 3: Opérateurs de spécification (ISO 21920-3:2021)
Le présent document spécifie l’opérateur de spécification complet pour l’état de surface par les méthodes de profil.
Specifikacija geometrijskih veličin izdelka (GPS) - Tekstura površine: profil - 3. del: Operatorji specifikacij (ISO 21920-3:2021)
Ta dokument določa popolni operator specifikacij za teksturo površine s profilnimi metodami.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
SIST EN ISO 21920-3:2022
01-marec-2022
Nadomešča:
SIST EN ISO 4288:2000
Specifikacija geometrijskih veličin izdelka (GPS) - Tekstura površine: profil - 3. del:
Operatorji specifikacij (ISO 21920-3:2021)
Geometrical product specifications (GPS) - Surface texture: Profile - Part 3: Specification
operators (ISO 21920-3:2021)
Geometrische Produktspezifikation (GPS) - Oberflächenbeschaffenheit: Profile - Teil 3:
Spezifikationsoperatoren (ISO 21920-3:2021)
Spécification géométrique des produits (GPS) - État de surface: Méthode du profil -
Partie 3: Opérateurs de spécification (ISO 21920-3:2021)
Ta slovenski standard je istoveten z: EN ISO 21920-3:2022
ICS:
17.040.20 Lastnosti površin Properties of surfaces
17.040.40 Specifikacija geometrijskih Geometrical Product
veličin izdelka (GPS) Specification (GPS)
SIST EN ISO 21920-3:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST EN ISO 21920-3:2022
---------------------- Page: 2 ----------------------
SIST EN ISO 21920-3:2022
EN ISO 21920-3
EUROPEAN STANDARD
NORME EUROPÉENNE
January 2022
EUROPÄISCHE NORM
ICS 17.040.40 Supersedes EN ISO 4288:1997
English Version
Geometrical product specifications (GPS) - Surface texture:
Profile - Part 3: Specification operators (ISO 21920-
3:2021)
Spécification géométrique des produits (GPS) - État de Geometrische Produktspezifikation (GPS) -
surface: Méthode du profil - Partie 3: Opérateurs de Oberflächenbeschaffenheit: Profile - Teil 3:
spécification (ISO 21920-3:2021) Spezifikationsoperatoren (ISO 21920-3:2021)
This European Standard was approved by CEN on 27 November 2021.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 21920-3:2022 E
worldwide for CEN national Members.
---------------------- Page: 3 ----------------------
SIST EN ISO 21920-3:2022
EN ISO 21920-3:2022 (E)
Contents Page
European foreword . 3
2
---------------------- Page: 4 ----------------------
SIST EN ISO 21920-3:2022
EN ISO 21920-3:2022 (E)
European foreword
This document (EN ISO 21920-3:2022) has been prepared by Technical Committee ISO/TC 213
"Dimensional and geometrical product specifications and verification" in collaboration with Technical
Committee CEN/TC 290 “Dimensional and geometrical product specification and verification” the
secretariat of which is held by AFNOR.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by July 2022, and conflicting national standards shall be
withdrawn at the latest by July 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN ISO 4288:1997.
Any feedback and questions on this document should be directed to the users’ national standards
body/national committee. A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 21920-3:2021 has been approved by CEN as EN ISO 21920-3:2022 without any
modification.
3
---------------------- Page: 5 ----------------------
SIST EN ISO 21920-3:2022
---------------------- Page: 6 ----------------------
SIST EN ISO 21920-3:2022
INTERNATIONAL ISO
STANDARD 21920-3
First edition
2021-12
Geometrical product specifications
(GPS) — Surface texture: Profile —
Part 3:
Specification operators
Spécification géométrique des produits (GPS) — État de surface:
Méthode du profil —
Partie 3: Opérateurs de spécification
Reference number
ISO 21920-3:2021(E)
© ISO 2021
---------------------- Page: 7 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
© ISO 2021 – All rights reserved
---------------------- Page: 8 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Complete specification operator . 2
4.1 Introduction . 2
4.2 General . 2
4.3 General default settings . 2
4.4 Default settings based on the specification . 3
4.4.1 General rules . 3
4.4.2 Default settings based on N or Scn . 4
ic
4.4.3 Default settings for Ra, Rq, Rz, Rp, Rv, Rzx and Rt based on the upper
tolerance limit . 5
4.4.4 Default settings for Ra, Rq, Rz, Rp, Rv, Rzx and Rt based on bilateral
tolerance limits . 6
4.4.5 Default settings for Ra, Rq, Rz, Rp, Rv, Rzx and Rt based on the lower
tolerance limit . 7
4.4.6 Default settings for Pt . 7
5 Default attribute values for parameters from ISO 21920-2 . 8
5.1 General . 8
5.2 Default attribute values for height parameters and spatial parameters . 8
5.3 Default attribute values for material ratio functions and related parameters . 8
5.4 Default attribute values for volume parameters . 9
5.5 Default attribute values for feature parameters . 9
6 Default units for parameters from ISO 21920-2 . 9
6.1 General . 9
6.2 Height parameters. 10
6.3 Spatial parameters . 10
6.4 Hybrid parameters . . . 10
6.5 Material ratio functions and related parameters . 10
6.6 Volume parameters . 11
6.7 Feature parameters . 11
Annex A (informative) How to determine specification operators .13
Annex B (informative) Examples of the determination of default settings .15
Annex C (informative) Major changes from ISO 4288 .23
Annex D (informative) Settings for profile surface texture evaluation in the absence of a
specification .24
Annex E (informative) Overview of profile and areal standards in the GPS matrix model .27
Annex F (informative) Relation with the GPS matrix .28
Bibliography .29
iii
© ISO 2021 – All rights reserved
---------------------- Page: 9 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 213, Dimensional and geometrical product
specifications and verification, in collaboration with the European Committee for Standardization (CEN)
Technical Committee CEN/TC 290, Dimensional and geometrical product specification and verification, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This first edition of ISO 21920-3 cancels and replaces ISO 4288:1996, which has been technically
revised. It also incorporates the Technical Corrigendum ISO 4288:1996/Cor. 1:1998.
The main changes to ISO 4288:1996 are as follows:
— no distinction between periodic and non-periodic profiles;
— the basis for defaults is the drawing indication;
— the maximum tolerance acceptance rule is the default tolerance acceptance rule;
— for the determination of the profile position, surface defects are considered as part of the specified
surface in the default case.
A list of all parts in the ISO 21920 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
© ISO 2021 – All rights reserved
---------------------- Page: 10 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
Introduction
This document is a geometrical product specification (GPS) standard and is to be regarded as a general
GPS standard (see ISO 14638). It influences chain link C of the chains of standards on profile surface
texture.
The ISO GPS matrix model given in ISO 14638 gives an overview of the ISO GPS system of which this
document is a part. The fundamental rules of ISO GPS given in ISO 8015 apply to this document and
the default decision rules given in ISO 14253-1 apply to the specifications made in accordance with this
document, unless otherwise indicated.
For more detailed information of the relation of this document to other standards and the GPS matrix
model, see Annex F.
This document specifies the specification operators according to ISO 17450-2.
Throughout this document, parameters are written as abbreviated terms with lower-case suffixes (as
in Rq) which are used in product documentation, drawings and data sheets.
v
© ISO 2021 – All rights reserved
---------------------- Page: 11 ----------------------
SIST EN ISO 21920-3:2022
---------------------- Page: 12 ----------------------
SIST EN ISO 21920-3:2022
INTERNATIONAL STANDARD ISO 21920-3:2021(E)
Geometrical product specifications (GPS) — Surface
texture: Profile —
Part 3:
Specification operators
1 Scope
This document specifies the complete specification operator for surface texture by profile methods.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 21920-1, Geometrical product specifications (GPS) — Surface texture: Profile — Part 1: Indication of
surface texture
ISO 21920-2, Geometrical product specifications (GPS) — Surface texture: Profile — Part 2: Terms,
definitions and surface texture parameters
ISO 16610-21, Geometrical product specifications (GPS) — Filtration — Part 21: Linear profile filters:
Gaussian filters
ISO 16610-31, Geometrical product specifications (GPS) — Filtration — Part 31: Robust profile filters:
Gaussian regression filters
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 21920-1 and ISO 21920-2 and
the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
setting class
Scn
identifier to label default settings
Note 1 to entry: Specific setting classes are Sc1, Sc2, Sc3, Sc4 and Sc5.
Note 2 to entry: The setting class specifies the relevant column of Tables 2 to 6.
1
© ISO 2021 – All rights reserved
---------------------- Page: 13 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
4 Complete specification operator
4.1 Introduction
For non-explicitly specified specification elements (see ISO 21920-1) and often-used specification
operators, default settings are used. Default settings should not be expected to ensure correlation with
any particular workpiece function.
The advantage of the default specification operators given in 4.3 and 4.4 is to simplify the drawing
indications.
4.2 General
The complete specification operator (see ISO 17450-2) consists of all the operators required for an
unambiguous specification. It consists of an ordered full set of unambiguous specification operations
in an unambiguous order. For profile surface texture, the complete specification operator defines all
setting elements.
The basis for the default settings is the drawing indication according to ISO 21920-1. For R-parameters
either the setting class or the profile L-filter nesting index shall be specified. For W-parameters either
the setting class or the profile S-filter nesting index shall be specified.
For the R-parameters Ra, Rq, Rz, Rp, Rv, Rzx and Rt, and for Pt, all default settings can be specified by
the specification of the tolerance limit, see 4.4.3 to 4.4.6.
A flowchart illustrating the general way to determine the specification operators is given in Annex A.
Examples for the determination of default settings are given in Annex B. Annex C provides an overview
of the most important changes in the determination of the default settings according to this document
in relation to ISO 4288. A recommendation for the selection of settings in the absence of a specification
is given in Annex D. Annex E provides an overview of the profile and areal standards in the GPS matrix
model.
NOTE 1 There is no distinction between periodic and non-periodic profiles.
NOTE 2 This document describes specification operators. For the verification, the following applies: “the
verification operator is the physical implementation of the specification operator. It may have exactly the same
operations in the same order, in which case the method uncertainty is zero, or it may have different operations
or perform the operations in a different order, in which case the method uncertainty is not zero.” [SOURCE:
ISO 8015:2011, 5.10.1]
NOTE 3 There are no defaults for electromagnetic profiles.
4.3 General default settings
When specifying surface texture by the profile method, the surface is the toleranced feature.
Therefore, the profile direction and the profile position are an integral part of the specification. Surface
imperfections and surface defects are part of the specified surface and shall be taken into account when
determining profile locations, if not otherwise stated.
The general default settings given in Table 1, independent of the specified parameter type, shall be
implemented.
NOTE Considering surface imperfections and surface defects as part of the specified surface is a change
from ISO 4288.
2
© ISO 2021 – All rights reserved
---------------------- Page: 14 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
Table 1 — General default settings
Criterion Default setting
Procedure of profile
Mechanical profile
extraction
The direction yielding the maximum values of roughness height parameters (perpen-
Profile direction
dicular to the dominant lay direction)
The profile position depends on the tolerance acceptance rule according to ISO 21920-
1.
For the maximum tolerance acceptance rule: location on that part of the surface on
which critical values can be expected. If this location cannot be clearly identified sep-
Profile position
arate traces shall be distributed equally over this part of the surface.
For the 16 % tolerance acceptance rule and for the median tolerance acceptance
rule: uniformly distributed traces shall be taken to represent the entire surface, see
NOTE 1.
Tolerance type Upper tolerance limit
Tolerance acceptance
The maximum tolerance acceptance rule according to ISO 21920-1
rule
Profile S-filter type Gaussian filter according to ISO 16610-21
Gaussian filter according to ISO 16610-21
Profile L-filter type
(for R-parameters)
Exception: The default L-filter for Rk, Rpk, Rvk, Rpkx, Rvkx, Rmrk1, Rmrk2, Rak1,
Profile S-filter type
Rak2, Rpq, Rmq and Rvq is the robust Gaussian filter, second order according to ISO
(for W-parameters)
16610-31, see NOTE 2.
Profile F-operator
Association and removal of the specified form element with total least square, see
association method and
NOTES 3 and 4.
element
NOTE 1 For the verification, this part of the surface can be identified, for example, by visual inspection.
NOTE 2 The change of the default filter type for Rk, Rpk, Rvk, Rpkx, Rvkx, Rmrk1, Rmrk2, Rak1, Rak2, Rpq, Rmq and Rvq
leads to a better elimination of large-scale components and can generate slightly differing values of these parameters from
the values obtained on the basis of ISO 13565-1.
NOTE 3 For the definition of “Association” see ISO 17450-1.
NOTE 4 For a circle, the radius shall also be included in the least square optimization and not held fixed to the nominal
value. The F-operator is applied to the evaluation length.
4.4 Default settings based on the specification
4.4.1 General rules
This subclause defines rules for the default settings based on the specification in addition to the general
default settings.
If several parameters are specified within one graphical symbol, the parameter in the first line shall be
used to select the default settings.
If more than one specification element is specified, the topmost specification element shall be used to
define the column for all non-explicitly specified default settings in Tables 2 to 6.
If a nesting index N not listed in Tables 2 to 6 is specified, a second specification element shall be
ic
specified, for example the setting class Scn, to define the column for all other non-explicitly specified
settings.
If a nesting index N not listed in Tables 2 to 6 is specified, the maximum sampling distance d shall be
is x
N /5, for example if N = 5 µm then the maximum sampling distance d = 1 µm.
is is x
3
© ISO 2021 – All rights reserved
---------------------- Page: 15 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
If there is a contradiction between the default profile direction and the default measuring length, the
profile direction shall be respected first.
NOTE See examples in B.1 to B.8.
4.4.2 Default settings based on N or Scn
ic
For all R-parameters, except for Ra, Rq, Rz, Rp, Rv, Rzx and Rt, one of the following specifications shall
be given in the drawing indication:
— the profile L-filter nesting index N ; or
ic
— the setting class Scn.
For all W-parameters one of the following specifications shall be given in the drawing indication:
— the profile S-filter nesting index N ; or
ic
— the setting class Scn.
For all P-parameters, except for Pt, one of the following specifications shall be given in the drawing
indication:
— the profile S-filter nesting index N ; or
is
— the setting class Scn.
This defines the default settings according to the corresponding column in Table 2, which defines the
non-explicitly specified settings.
4
© ISO 2021 – All rights reserved
---------------------- Page: 16 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
Table 2 — Default settings based on N or Scn
ic
Setting class
Sc1 Sc2 Sc3 Sc4 Sc5
Profile L-filter nesting index
N (cut-off λ , for
ic c
R-parameters)
0,08 0,25 0,8 2,5 8
or profile S-filter nesting
index N (cut-off λ , for
ic c
W-parameters)
mm
0,4 1,25 4 12,5 40
Evaluation length l
e
Exception: the default evaluation length l for P-parameters is the length of the
e
mm
specified feature
Profile S-filter nesting index
N (cut-off λ ) 2,5 2,5 2,5 8 25
is s
µm
Maximum sampling
distance d 0,5 0,5 0,5 1,5 5
x
µm
Maximum nominal tip
radius r 2 2 2 5 10
tip
µm
Only for section length parameters
0,08 0,25 0,8 2,5 8
Section length l
sc
Exception: the default section length lsc for section length P-parameters is
mm
l /5
e
Number of sections n 5 5 5 5 5
sc
NOTE For P-parameters, there is no difference between Sc1, Sc2 and Sc3 but these columns are retained to keep the
same structure as in Tables 2 to 6.
4.4.3 Default settings for Ra, Rq, Rz, Rp, Rv, Rzx and Rt based on the upper tolerance limit
The default settings for Ra, Rq, Rz, Rp, Rv, Rzx and Rt based on the specified upper tolerance limit U or
the specified setting class, Scn, are given in Table 3.
If the setting class is specified, it defines the default settings for all non-specified specification elements
even if other specification elements are specified.
Table 3 — Default settings for Ra, Rq, Rz, Rp, Rv, Rzx and Rt based on the upper tolerance limit
Setting class
Sc1 Sc2 Sc3 Sc4 Sc5
Specified parameter Upper tolerance limit (U) of the specified parameter
Rz, µm U ≤ 0,16 0,16 < U ≤ 0,8 0,8 < U ≤ 16 16 < U ≤ 80 U > 80
Ra, µm U ≤ 0,02 0,02 < U ≤ 0,1 0,1 < U ≤ 2 2 < U ≤ 10 U > 10
Rp, µm U ≤ 0,06 0,06 < U ≤ 0,3 0,3 < U ≤ 6 6 < U ≤ 30 U > 30
Rv, µm U ≤ 0,10 0,10 < U ≤ 0,5 0,5 < U ≤ 10 10 < U ≤ 50 U > 50
Rq, µm U ≤ 0,032 0,032 < U ≤ 0,16 0,16 < U ≤ 3,2 3,2 < U ≤ 16 U > 16
Rzx, µm U ≤ 0,23 0,23 < U ≤ 1,15 1,15 < U ≤ 23 23 < U ≤ 115 U > 115
Rt, µm U ≤ 0,26 0,26 < U ≤ 1,3 1,3 < U ≤ 26 26 < U ≤ 130 U > 130
Profile L-filter nesting
index N (cut-off λ ) 0,08 0,25 0,8 2,5 8
ic c
mm
5
© ISO 2021 – All rights reserved
---------------------- Page: 17 ----------------------
SIST EN ISO 21920-3:2022
ISO 21920-3:2021(E)
Table 3 (continued)
Setting class
Sc1 Sc2 Sc3 Sc4 Sc5
Evaluation length l ,
e
0,4 1,25 4 12,5 40
mm
Profile S-filter nesting
index N (cut-off λ ) 2,5 2,5 2,5 8 25
is s
µm
Maximum sampling
distance d 0,5 0,5 0,5 1,5 5
x
µm
Maximum nomin
...
SLOVENSKI STANDARD
oSIST prEN ISO 21920-3:2020
01-april-2020
Specifikacija geometrijskih veličin izdelka (GPS) - Tekstura površine: profil - 3. del:
Operatorji specifikacij (ISO/DIS 21920-3:2020)
Geometrical product specifications (GPS) - Surface texture: Profile - Part 3: Specification
operators (ISO/DIS 21920-3:2020)
Geometrische Produktspezifikation (GPS) - Oberflächenbeschaffenheit - Teil3:
Spezifikationsoperatoren (ISO/DIS 21920-3:2020)
Spécification géométrique des produits (GPS) - État de surface: Méthode du profil -
Partie 3: Opérateurs de spécification (ISO/DIS 21920-3:2020)
Ta slovenski standard je istoveten z: prEN ISO 21920-3
ICS:
17.040.20 Lastnosti površin Properties of surfaces
17.040.40 Specifikacija geometrijskih Geometrical Product
veličin izdelka (GPS) Specification (GPS)
oSIST prEN ISO 21920-3:2020 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
oSIST prEN ISO 21920-3:2020
---------------------- Page: 2 ----------------------
oSIST prEN ISO 21920-3:2020
DRAFT INTERNATIONAL STANDARD
ISO/DIS 21920-3
ISO/TC 213 Secretariat: BSI
Voting begins on: Voting terminates on:
2020-02-19 2020-05-13
Geometrical product specifications (GPS) — Surface
texture: Profile —
Part 3:
Specification operators
Spécification géométrique des produits (GPS) — État de surface: Méthode du profil —
Partie 3: Opérateurs de spécification
ICS: 17.040.40
THIS DOCUMENT IS A DRAFT CIRCULATED
This document is circulated as received from the committee secretariat.
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
ISO/CEN PARALLEL PROCESSING
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 21920-3:2020(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2020
---------------------- Page: 3 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved
---------------------- Page: 4 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 Setting class . 1
4 Complete specification operation . 1
4.1 General . 2
4.2 General default settings . 2
4.3 Default settings based on the specification . 3
4.3.1 General. 3
4.3.2 Default settings for functional parameters (Rk, Rpk, Rvk etc.) and R- and
W-parameters without defined defaults . 3
4.3.3 Default settings for R-parameters with specified upper tolerance limit . 4
4.3.4 Default settings for R-parameters with specified bilateral tolerance limits . 4
4.3.5 Default settings for R-parameters with specified lower tolerance limit . 5
4.3.6 Default settings for P-parameters . 6
5 Default attribute values for parameters from ISO 21920-2 . 6
5.1 General . 6
5.2 Spatial parameters . 7
5.3 Functions and related parameters . 7
5.4 Volume parameters . 7
5.5 Feature parameters . 7
6 Default units for parameters from ISO 21920-2 . 7
6.1 General . 7
6.2 Height parameters . 7
6.3 Spatial parameters . 8
6.4 Hybrid parameters . 8
6.5 Functions and related parameters . 8
6.6 Volume parameters . 8
6.7 Feature parameters . 9
Annex A (informative) Flowchart: How to get specification operators? .10
Annex B (informative) Examples for the determination of default settings .11
Annex C (informative) Motivation for the defined way of determination of the specification
operator and major changes to ISO 4288 .15
Annex D (informative) Settings for examination in case of a missing specification .16
Annex E (informative) Relation with the GPS matrix .18
Bibliography .20
© ISO 2020 – All rights reserved iii
---------------------- Page: 5 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www .iso .org/ iso/ foreword .html.
This edition cancels and replaces the edition of ISO 4288:1996, which has been technically revised.
The main changes compared to the edition of ISO 4288:1996 are as follows:
— no distinction between periodic and non-periodic profiles
— the basic for defaults is the drawing indication
— Tmax rule is the default tolerance acceptance rule
The committee responsible for this document is Technical Committee ISO/TC 213, Dimensional and
geometrical product specifications and verification.
A list of all parts in the ISO 21920 series can be found on the ISO website.
iv © ISO 2020 – All rights reserved
---------------------- Page: 6 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
Introduction
This part of ISO 21920 is a geometrical product specification (GPS) standard and is to be regarded as a
general GPS standard (see ISO 14638). It influences the chain link C of the chains of standards on profile
and areal surface texture.
The ISO/GPS matrix model given in ISO 14638 gives an overview of the ISO/GPS system of which this
part of ISO 21920is a part. The fundamental rules of ISO/GPS given in ISO 8015 apply to this part
of ISO 21920 and the default decision rules given in ISO 14253-1 apply to the specifications made in
accordance with this part of ISO 21920, unless otherwise indicated.
For more detailed information of the relation of this part of ISO 21920 to other standards and the GPS
matrix model, see Annex E.
This part of ISO 21920 specifies the specification operators according to ISO 17450-2.
© ISO 2020 – All rights reserved v
---------------------- Page: 7 ----------------------
oSIST prEN ISO 21920-3:2020
---------------------- Page: 8 ----------------------
oSIST prEN ISO 21920-3:2020
DRAFT INTERNATIONAL STANDARD ISO/DIS 21920-3:2020(E)
Geometrical product specifications (GPS) — Surface
texture: Profile —
Part 3:
Specification operators
1 Scope
This part of ISO 21920 specifies the complete specification operator for surface texture (scale limited
surfaces) by profile methods.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 21920-1:2019, Geometrical product specifications (GPS) — Surface texture: Profile — Part 1: Indication
of surface texture
ISO 21920-2:2019, Geometrical product specifications (GPS) — Surface texture: Profile — Part 2: Terms,
definitions and surface texture parameters
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 21920-2 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1 Setting class
Sc
identifier Sc1, Sc2 … to Sc5 to label the relevant column of table 2 to table 6
Note 1 to entry The setting class is defined by the indication: Either by the specified limit or by an explicitly
given setting criterion or by an explicit indication of the setting class, see 4.3.1 to 4.3.6.
4 Complete specification operation
For not explicitly specified criteria (see 21920-1) and often used specification operators default settings
are used. Default settings do not control the function of a workpiece in a general way.
The advantage of the default specification operators given in 4.2 and 4.3 is to simplify the drawing
indications.
© ISO 2020 – All rights reserved 1
---------------------- Page: 9 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
4.1 General
The complete specification operation (see ISO/TS 17450-2) consists of all the operators required for an
unambiguous specification. It consists of an ordered full set of unambiguous specification operations
in an unambiguous order. For profile surface texture the complete specification operation defines all
setting criteria.
Basis for the default settings is the drawing indication, either the specified setting class number (Scn)
or the specified profile L-filter nesting index for R- parameters and the specified profile S-filter nesting
index for W- parameter respectively. If no specification exists, the parameter of interest is the basis for
the default settings.
NOTE 1 There is no distinction between periodic and aperiodic profiles.
NOTE 2 This standard specifies specification operators; “the verification operator is the physical
implementation of the specification operator. It may have exactly the same operations in the same order, in which
case the method uncertainty is zero, or it may have different operations or perform the operations in a different
order, in which case the method uncertainty is not zero. ” [ISO 8015]
There is a flowchart in Annex A to show the general way to get the specification operators.
4.2 General default settings
Table 1 gives the general default settings independent of the specified parameter type.
Table 1 — General default settings
Criterion Default setting
Procedure of profile
Mechanical profile
extraction
The direction corresponding to the maximum values of height parameters (perpen-
Profile direction
dicular to the dominant lay direction).
Location on that part of the surface on which the maximum values of the specified pa-
Profile position rameter can be expected (default), or the minimum values of the specified parameter
if the lower tolerance limit is specified, see note 1
Tolerance type Upper tolerance limit
Tolerance acceptance
Tmax; all measured values shall be within the specified limit
rule
Profile S-filter type Gaussian filter according to ISO 16610-21
Profile L-filter type (for
Gaussian filter according to ISO 16610-21
R-parameters) Profile
Exceptionally, the default L-filter for Rk, Rpk, Rvk, RMrk1, RMrk2, Rpq, Rmq, Rvq is
S-filter type (for W-pa-
the Robust Gaussian filter, second order according to ISO 16610-31, see note 2
rameters)
F-operator Removal of the nominal form
F-operator type Total least square
Only for section based section length = length of cut off λc; Profile L-filter cut off λc (for R-parameters) or
R- and W- parameters: Profile S-filter cut off λc (for W-parameters)
NOTE 1 For the verification this part of the surface can be assessed e.g. by visual inspection. For the
verification surface imperfections or surface defects are to be taken into account if not otherwise stated.
NOTE 2 The change of the default filter type of the Rk, Rpk, Rvk, RMrk1, RMrk2, Rpq, Rmq, Rvq parameters
leads to a better elimination of large scale components and can generate slightly differing values of these
parameters.
2 © ISO 2020 – All rights reserved
---------------------- Page: 10 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
4.3 Default settings based on the specification
4.3.1 General
This defines default settings based on the specification in addition to the general default settings.
For parameters not listed in tables 3 to 6 the profile L-filter nesting index Nic for R-parameters or the
profile S-filter nesting index Nic for W-parameters respectively or the setting class number Sc shall be
specified and this defines the default settings.
If several parameters are specified within one graphical symbol, the parameter in the first line is
relevant for the selection of default settings.
In tables 2 to 6 the topmost specified criterion defines the column for all other not explicitly specified
default settings.
If a nesting index Nic not listed in tables 2 to 6 is specified a second criterion shall be specified to define
the column for the default settings.
If a nesting index Nis not listed in tables 2 to 6 is specified the maximum sampling interval dx shall be
Nis / 5.
NOTE see examples B.1 to B.6
4.3.2 Default settings for functional parameters (Rk, Rpk, Rvk etc.) and R- and W-parameters
without defined defaults
The default settings for the functional parameters and parameters without defined defaults based on
the specified profile L-filter nesting index Nic for R-parameters or the specified profile S-filter nesting
index Nic for W- parameter respectively or the specified setting class number Sc are given in table 2.
NOTE 1 For the functional parameters Rk, Rpk, Rvk etc. the specification of the Profile L-filter nesting index
Nic or the specification of the setting class number Sc is mandatory.
NOTE 2 For R- and W-parameters not listed in table 3 the specification of the profile L-filter nesting index Nic
or the specified profile S-filter nesting index Nic for W- parameter respectively or the specification of the setting
class number Sc is mandatory.
Table 2 — Default settings for functional parameters (Rk, Rpk, Rvk etc.) and R- and
W-parameters without defined defaults
Setting class Sc Sc1 Sc2 Sc3 Sc4 Sc5
Profile L-filter nesting
index Nic (cut off λc, for
R-parameters)
0,08 0,25 0,8 2,5 8
or Profile S-filter nesting
index Nic (cut off λc, for
W-parameters)
mm
Evaluation length lm
0,4 1,25 4 12,5 40
mm
Profile S-filter nesting
index Nis (cut off λs)
0,8 0,8 2,5 8 25
µm
Maximum sampling inter-
val dx
0,15 0,15 0,5 1,5 5
µm
Maximum tip radius r µm 2 2 2 5 10
tip
© ISO 2020 – All rights reserved 3
---------------------- Page: 11 ----------------------
oSIST prEN ISO 21920-3:2020
ISO/DIS 21920-3:2020(E)
Table 2 (continued)
Setting class Sc Sc1 Sc2 Sc3 Sc4 Sc5
Only for section based parameters:
Section length lsc mm 0,08 0,25 0,8 2,5 8
Number of sections nsc 5 5 5 5 5
4.3.3 Default settings for R-parameters with specified upper tolerance limit
The default settings for R-parameters based on the specified upper limit U or specified
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.