Rotating electrical machines - Part 18-32: Functional evaluation of insulation systems (Type II) - Electrical endurance qualification procedures for form-wound windings IEC 60034-18-32:2022)

This part of IEC 60034-18 describes qualification procedures for the evaluation of electrical endurance of insulation systems for use in rotating electrical machines using form-wound windings. The test procedures are comparative in nature, such that the performance of a candidate insulation system is compared to that of a reference insulation system with proven service experience. If no reference system is available, the diagram in Annex A is available for use. The qualification procedures of inverter duty insulation system for form-wound windings can be found in IEC 60034-18-42 or IEC 60034-18-41.

Drehende elektrische Maschinen - Teil 18-32: Funktionelle Bewertung von Isoliersystemen - Prüfverfahren für Wicklungen mit vorgeformten Elementen - Bewertung der elektrischen Lebensdauer (IEC 60034-18-32:2022)

Machines électriques tournantes - Partie 18-32: Evaluation fonctionnelle des systèmes d'isolation - Procédures d'essai pour enroulements préformés - Evaluation par endurance électrique (IEC 60034-18-32:2022)

IEC 60034-18-32:2022 décrit les procédures de qualification pour l'évaluation de l'endurance électrique des systèmes d'isolation utilisés dans les machines électriques tournantes à enroulements préformés sous tension sinusoïdale à la fréquence d'alimentation. Les procédures d'essai pour l'isolation principale sont comparatives, puisque les performances d'un système d'isolation candidat sont comparées à celles d'un système d'isolation de référence dont l'expérience en service a été démontrée. Si aucun système de référence n'est disponible, l'Annexe A décrit un diagramme utilisable. Les procédures de qualification d'un système d'isolation d'onduleur pour enroulements préformés peuvent être consultées dans l'IEC 60034‑18-42 ou l'IEC 60034-18-41. Une nouvelle procédure d'essai informative pour systèmes de contrôle de contrainte est introduite et définie à l'Annexe B.
Cette deuxième édition annule et remplace la première édition parue en 2010. Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:
a. modification du titre;
b. simplification des articles;
c. diminution du nombre de procédures d'essai;
d. inclusion de barres et bobines complètes comme éprouvettes;
e. ajout d'un article qui traite des défaillances et des critères de défaillance.

Električni rotacijski stroji - 18-32. del: Funkcionalno vrednotenje izolacijskih sistemov (tip II) - Električno vrednotenje postopkov kvalificiranja za predhodno oblikovana navitja (IEC 60034-18-32:2022)

Ta del standarda IEC 60034-18 opisuje postopke kvalificiranja za vrednotenje električne vzdržljivosti izolacijskih sistemov za uporabo pri električnih rotacijskih strojih, ki uporabljajo predhodno oblikovana navitja. Preskusni postopki so primerjalne narave, in sicer se delovanje primernega izolacijskega sistema primerja z delovanjem referenčnega izolacijskega sistema z dokazanimi izkušnjami pri uporabi. Če referenčni sistem ni na voljo, se lahko uporabi shema iz dodatka A. Postopki kvalificiranja za izolacijski sistem pretvornika za predhodno oblikovana navitja so navedeni v standardu IEC 60034-18-42 ali IEC 60034-18-41.

General Information

Status
Published
Public Enquiry End Date
29-Nov-2020
Publication Date
23-May-2022
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
09-Mar-2022
Due Date
14-May-2022
Completion Date
24-May-2022

Relations

Buy Standard

Standard
EN IEC 60034-18-32:2022 - BARVE
English language
29 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN IEC 60034-18-32:2020 - BARVE
English language
25 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN IEC 60034-18-32:2022
01-julij-2022
Nadomešča:
SIST EN 60034-18-32:2011
Električni rotacijski stroji - 18-32. del: Funkcionalno vrednotenje izolacijskih
sistemov (tip II) - Električno vrednotenje postopkov kvalificiranja za predhodno
oblikovana navitja (IEC 60034-18-32:2022)
Rotating electrical machines - Part 18-32: Functional evaluation of insulation systems
(Type II) - Electrical endurance qualification procedures for form-wound windings
(IEC 60034-18-32:2022)
Drehende elektrische Maschinen - Teil 18-32: Funktionelle Bewertung von
Isoliersystemen - Prüfverfahren für Wicklungen mit vorgeformten Elementen - Bewertung
der elektrischen Lebensdauer (IEC 60034-18-32:2022)
Machines électriques tournantes - Partie 18-32: Evaluation fonctionnelle des systèmes
d'isolation - Procédures d'essai pour enroulements préformés - Evaluation par
endurance électrique (IEC 60034-18-32:2022)
Ta slovenski standard je istoveten z: EN IEC 60034-18-32:2022
ICS:
29.080.30 Izolacijski sistemi Insulation systems
29.160.01 Rotacijski stroji na splošno Rotating machinery in
general
SIST EN IEC 60034-18-32:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN IEC 60034-18-32:2022

---------------------- Page: 2 ----------------------
SIST EN IEC 60034-18-32:2022


EUROPEAN STANDARD EN IEC 60034-18-32

NORME EUROPÉENNE

EUROPÄISCHE NORM March 2022
ICS 29.160.01 Supersedes EN 60034-18-32:2010
English Version
Rotating electrical machines - Part 18-32: Functional evaluation
of insulation systems (Type II) - Electrical endurance
qualification procedures for form-wound windings
(IEC 60034-18-32:2022)
Machines électriques tournantes - Partie 18-32: Evaluation Drehende elektrische Maschinen - Teil 18-32: Funktionelle
fonctionnelle des systèmes d'isolation (Type II) - Bewertung von Isoliersystemen - Elektrische Lebensdauer
Procédures de qualification de l'endurance électrique pour Qualifizierungsverfahren für Wicklungen mit vorgeformten
enroulements préformés Elementen
(IEC 60034-18-32:2022) (IEC 60034-18-32:2022)
This European Standard was approved by CENELEC on 2022-03-01. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.


European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
 Ref. No. EN IEC 60034-18-32:2022 E

---------------------- Page: 3 ----------------------
SIST EN IEC 60034-18-32:2022
EN IEC 60034-18-32:2022 (E)
European foreword
The text of document 2/2068/FDIS, future edition 2 of IEC 60034-18-32, prepared by IEC/TC 2
"Rotating machinery" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC
as EN IEC 60034-18-32:2022.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2022-12-01
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2025-03-01
document have to be withdrawn

This document supersedes EN 60034-18-32:2010 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 60034-18-32:2022 was approved by CENELEC as a
European Standard without any modification.
2

---------------------- Page: 4 ----------------------
SIST EN IEC 60034-18-32:2022
EN IEC 60034-18-32:2022 (E)
Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the
relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cenelec.eu.
Publication Year Title EN/HD Year
1
IEC 60034-1 - Rotating electrical machines - Part 1: EN 60034-1 -
Rating and performance
IEC 60034-15 2009 Rotating electrical machines - Part 15: EN 60034-15 2009
Impulse voltage withstand levels of form-
wound stator coils for rotating a.c.
machines
IEC 60034-18-1 2010 Rotating electrical machines - Part 18-1: EN 60034-18-1 2010
Functional evaluation of insulation
systems - General guidelines
IEC/TS 60034-18-33 2010 Rotating electrical machines - Part 18-33: CLC/TS 60034-18-33 2011
Functional evaluation of insulation
systems - Test procedures for form-wound
windings - Multifactor evaluation by
endurance under simultaneous thermal
and electrical stresses
IEC 60034-18-41 - Rotating electrical machines - Part 18-41: EN 60034-18-41 -
Partial discharge free electrical insulation
systems (Type I) used in rotating electrical
machines fed from voltage converters -
Qualification and quality control tests
IEC 60034-18-42 2017 Rotating electrical machines - Part 18-42: EN 60034-18-42 2017
Partial discharge resistant electrical
insulation systems (Type II) used in
rotating electrical machines fed from
voltage converters - Qualification tests
+ A1 2020  + A1 2020
IEC 60034-27-1 - Rotating electrical machines - Part 27-1: EN IEC 60034-27-1 -
Off-line partial discharge measurements
on the winding insulation

1
Under preparation. Stage at the time of publication: FprEN 60034-1 and FprEN 60034-1/prAA.
3

---------------------- Page: 5 ----------------------
SIST EN IEC 60034-18-32:2022
EN IEC 60034-18-32:2022 (E)
IEC 60034-27-3 - Rotating electrical machines - Part 27-3: EN 60034-27-3 -
Dielectric dissipation factor measurement
on stator winding insulation of rotating
electrical machines
IEC 60216-4-1 - Electrical insulating materials - Thermal EN 60216-4-1 -
endurance properties - Part 4-1: Ageing
ovens - Single-chamber ovens
IEC 62539 - Guide for the statistical analysis of - -
electrical insulation breakdown data


4

---------------------- Page: 6 ----------------------
SIST EN IEC 60034-18-32:2022




IEC 60034-18-32

®


Edition 2.0 2022-01





INTERNATIONAL



STANDARD




NORME



INTERNATIONALE
colour

inside










Rotating electrical machines –

Part 18-32: Functional evaluation of insulation systems (Type II) –

Electrical endurance qualification procedures for form-wound windings




Machines électriques tournantes –

Partie 18-32: Evaluation fonctionnelle des systèmes d'isolation (Type II) –


Procédures de qualification de l'endurance électrique pour enroulements

préformés












INTERNATIONAL

ELECTROTECHNICAL

COMMISSION


COMMISSION

ELECTROTECHNIQUE


INTERNATIONALE




ICS 29.160.01 ISBN 978-2-8322-1047-8





Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale

---------------------- Page: 7 ----------------------
SIST EN IEC 60034-18-32:2022
– 2 – IEC 60034-18-32:2022 © IEC 2022
CONTENTS
FOREWORD . 4
INTRODUCTION . 6
1 Scope . 7
2 Normative references . 7
3 Terms and definitions . 8
4 General considerations . 9
4.1 Relationship to IEC 60034-18-1 . 9
4.2 Selection and designation of test procedures . 9
4.3 Reference insulation system . 9
4.4 Test procedures . 9
4.4.1 General . 9
4.4.2 Electrical ageing of the mainwall insulation . 9
4.4.3 Electrical ageing of the stress control system . 10
4.4.4 Electrical ageing of the turn insulation . 10
4.5 Extent of tests . 10
4.5.1 Full evaluation of the mainwall insulation . 10
4.5.2 Reduced evaluation of the mainwall insulation . 10
4.5.3 Evaluation of the stress control system . 10
5 Test objects . 10
5.1 Construction of test objects . 10
5.2 Number of test specimens . 11
5.3 Initial quality control tests . 11
6 Electrical ageing . 11
6.1 General . 11
6.2 Voltage levels and intended test lives of the mainwall insulation . 11
6.3 Test temperatures during electrical endurance testing of the mainwall
insulation . 11
6.3.1 Electrical ageing at room temperature . 11
6.3.2 Electrical ageing at elevated temperature . 12
6.3.3 Ageing procedure for the mainwall insulation . 12
6.4 Maintenance of stress control coatings . 12
7 Diagnostic sub-cycle . 12
7.1 General . 12
7.2 Voltage test of the mainwall insulation . 12
7.3 Other diagnostic tests . 13
8 Failures of the mainwall insulation . 13
8.1 Failure location and verification. 13
8.2 Failed specimen observations . 13
9 Functional evaluation of the mainwall data . 13
9.1 General . 13
9.2 Full evaluation (same voltage level and same expected service life) . 13
9.3 Reduced evaluation (same voltage level and same expected service life) . 15
9.4 Recommended data to be recorded . 16
9.5 Determining qualification for performances different to the reference system . 17
9.5.1 Overview . 17

---------------------- Page: 8 ----------------------
SIST EN IEC 60034-18-32:2022
IEC 60034-18-32:2022 © IEC 2022 – 3 –
9.5.2 Case B: Qualification for the same phase to phase voltage and a
different expected service life . 17
9.5.3 Case C: Qualification for different voltage level and same expected
service life . 18
9.5.4 Case D: Qualification for different voltage level and different expected

service life . 19
9.5.5 Non-linearity of regression lines. 20
Annex A (normative) Reference life line for mainwall insulation in the absence of a
manufacturer’s reference life line . 21
Annex B (informative) . 22
B.1 Electrical ageing of the conductive slot coating . 22
B.2 Electrical ageing of the stress control coating . 22
B.3 Test objects . 22
B.4 Evaluation of the stress control system . 22
B.5 Ageing procedure for the conductive slot and stress control coating. 23
B.5.1 General . 23
B.5.2 Arrangement of temperature control by heater plates . 23
B.5.3 Heating by means of an oven . 23
B.5.4 Test parameter . 23
B.6 Qualification of the stress control system . 24
B.6.1 General . 24
B.6.2 Test procedure . 24
B.6.3 Test pass criteria . 24
B.7 Examples of deterioration marks at the stress control system . 25

Figure 1 – Comparison of ageing data from candidate (C) and reference (R) insulation
systems showing qualification . 14
Figure 2 – Comparison of ageing data from candidate and reference insulation systems
showing failure to qualify . 15
Figure 3 – Comparison of reduced evaluation test data from four separate candidate
systems with that from the reference system . 16
Figure 4 – Candidate system qualified for the same voltage level and different
expected service life . 18
Figure 5 – Candidate system qualified for a higher voltage level and the same
expected service life . 19
Figure 6 – Candidate system qualified for a different service life and different voltage
level from the reference . 20
Figure A.1 – Reference lifeline for mainwall insulation . 21
Figure B.1 – Application of heater elements to a stator bar . 23
Figure B.2 – Typical deterioration mark at the conductive slot coating . 25

Table 1 – Conditions for qualification of candidate system . 17
Table B.1 – Phase to ground test voltages and test temperatures . 24

---------------------- Page: 9 ----------------------
SIST EN IEC 60034-18-32:2022
– 4 – IEC 60034-18-32:2022 © IEC 2022
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________

ROTATING ELECTRICAL MACHINES –

Part 18-32: Functional evaluation of insulation systems (Type II) –
Electrical endurance qualification procedures for form-wound windings

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
rights. IEC shall not be held responsible for identifying any or all such patent rights.
IEC 60034-18-32 has been prepared by IEC technical committee 2: Rotating machinery. It is an
International Standard.
This second edition cancels and replaces the first edition published in 2010. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) Title modified.
b) Simplification of clauses.
c) Reduction in the number of test procedures.
d) Inclusion of full bars and coils as test objects.
e) A new clause dealing with failures and failure criteria.

---------------------- Page: 10 ----------------------
SIST EN IEC 60034-18-32:2022
IEC 60034-18-32:2022 © IEC 2022 – 5 –
The text of this International Standard is based on the following documents:
Draft Report on voting
2/2068/FDIS 2/2075/RVD

Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
A list of all parts in the IEC 60034 series, published under the general title Rotating electrical
machines, can be found on the IEC website.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/standardsdev/publications.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

---------------------- Page: 11 ----------------------
SIST EN IEC 60034-18-32:2022
– 6 – IEC 60034-18-32:2022 © IEC 2022
INTRODUCTION
IEC 60034-18-1 presents general principles for the evaluation of insulation systems used in
rotating electrical machines.
This document deals exclusively with insulation systems for form-wound windings (Type II) and
concentrates on electrical functional evaluation.
In IEC 60034-18-42, tests are described for qualification of Type II insulation systems in
voltage-source converter operation. These insulation systems are generally used in rotating
machines which have form-wound windings, mostly rated above 700 V r.m.s. The two standards
IEC 60034-18-41 and IEC 60034-18-42 separate the systems into those which are not expected
to experience partial discharge activity within specified conditions in their service lives (Type
I), and those which are expected to experience and withstand partial discharge activity in any
part of the insulation system throughout their service lives (Type II).

---------------------- Page: 12 ----------------------
SIST EN IEC 60034-18-32:2022
IEC 60034-18-32:2022 © IEC 2022 – 7 –
ROTATING ELECTRICAL MACHINES –

Part 18-32: Functional evaluation of insulation systems (Type II) –
Electrical endurance qualification procedures for form-wound windings



1 Scope
This part of IEC 60034-18 describes qualification procedures for the evaluation of electrical
endurance of insulation systems for use in rotating electrical machines using form-wound
windings energized with sinusoidal power frequency voltage. The test procedures for the main
wall insulation are comparative in nature, such that the performance of a candidate insulation
system is compared to that of a reference insulation system with proven service experience. If
no reference system is available, the diagram in Annex A is available for use. The qualification
procedures of inverter duty insulation system for form-wound windings can be found in
IEC 60034-18-42 or IEC 60034-18-41. A new and informative test procedure for the stress
control system is introduced and defined in Annex B.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60034-1, Rotating electrical machines – Part 1: Rating and performance
IEC 60034-15:2009, Rotating electrical machines – Part 15: Impulse voltage withstand levels
of form-wound stator coils for rotating a.c. machines
IEC 60034-18-1:2010, Rotating electrical machines – Part 18-1: Functional evaluation of
insulation systems – General guidelines
IEC TS 60034-18-33:2010, Rotating electrical machines – Part 18-33: Functional evaluation of
insulation systems – Test procedures for form-wound windings – Multifactor evaluation by
endurance under simultaneous thermal and electrical stresses
IEC 60034-18-41, Rotating electrical machines – Part 18-41: Partial discharge free electrical
insulation systems (Type I) used in rotating electrical machines fed from voltage converters –
Qualification and quality control tests
IEC 60034-18-42:2017, Rotating electrical machines – Part 18-42: Partial discharge resistant
electrical insulation systems (Type II) used in rotating electrical machines fed from voltage
converters – Qualification tests
IEC 60034-18-42:2017/AMD1:2020
IEC 60034-27-1, Rotating electrical machines – Part 27-1: Off-line partial discharge
measurements on the winding insulation
IEC 60034-27-3, Rotating electrical machines – Part 27-3: Dielectric dissipation factor
measurement on stator winding insulation of rotating electrical machines
IEC 60216-4-1, Electrical insulating materials – Thermal endurance properties – Part 4-1:
Ageing ovens – Single-chamber ovens

---------------------- Page: 13 ----------------------
SIST EN IEC 60034-18-32:2022
– 8 – IEC 60034-18-32:2022 © IEC 2022
IEC 62539, Guide for the statistical analysis of electrical insulation breakdown data
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
3.1
mainwall insulation
main electrical insulation that separates the conductors from the earthed stator/rotor core in
motor and generator windings
3.2
strand insulation
electrical insulation that covers each conductor in coils/bars
3.3
turn insulation
electrical insulation that separates the conductor turns from each other in coils/bars
3.4
conductive slot coating
conductive paint or tape layer in intimate contact with the mainwall insulation in the slot portion
of the coil side, often called semi-conductive coating
Note 1 to entry: The purpose is to prevent partial d
...

SLOVENSKI STANDARD
oSIST prEN IEC 60034-18-32:2020
01-november-2020
Električni rotacijski stroji - 18-32. del: Funkcionalno vrednotenje izolacijskih
sistemov - Električno vrednotenje postopkov kvalificiranja za za predhodno
oblikovana navitja
Rotating electrical machines - Part 18-32: Functional evaluation of insulation systems -
Electrical endurance qualification procedures for form-wound windings
Drehende elektrische Maschinen - Teil 18-32: Funktionelle Bewertung von
Isoliersystemen - Prüfverfahren für Wicklungen mit vorgeformten Elementen - Bewertung
der elektrischen Lebensdauer
Machines électriques tournantes - Partie 18-32: Evaluation fonctionnelle des systèmes
d'isolation - Procédures d'essai pour enroulements préformés - Evaluation par
endurance électrique
Ta slovenski standard je istoveten z: prEN IEC 60034-18-32:2020
ICS:
29.080.30 Izolacijski sistemi Insulation systems
29.160.01 Rotacijski stroji na splošno Rotating machinery in
general
oSIST prEN IEC 60034-18-32:2020 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN IEC 60034-18-32:2020

---------------------- Page: 2 ----------------------
oSIST prEN IEC 60034-18-32:2020
2/2016/CDV

COMMITTEE DRAFT FOR VOTE (CDV)
PROJECT NUMBER:
IEC 60034-18-32 ED2
DATE OF CIRCULATION: CLOSING DATE FOR VOTING:
2020-09-11 2020-12-04
SUPERSEDES DOCUMENTS:
2/1983/CD, 2/2001A/CC

IEC TC 2 : ROTATING MACHINERY
SECRETARIAT: SECRETARY:
United Kingdom Mr Charles Whitlock
OF INTEREST TO THE FOLLOWING COMMITTEES: PROPOSED HORIZONTAL STANDARD:


Other TC/SCs are requested to indicate their interest, if any, in
this CDV to the secretary.
FUNCTIONS CONCERNED:
EMC ENVIRONMENT QUALITY ASSURANCE SAFETY
SUBMITTED FOR CENELEC PARALLEL VOTING NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting
The attention of IEC National Committees, members of
CENELEC, is drawn to the fact that this Committee Draft for Vote
(CDV) is submitted for parallel voting.
The CENELEC members are invited to vote through the
CENELEC online voting system.

This document is still under study and subject to change. It should not be used for reference purposes.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

TITLE:
Rotating electrical machines – Part 18-32: Functional evaluation of insulation systems – Electrical endurance
qualification procedures for form-wound windings

PROPOSED STABILITY DATE: 2024

NOTE FROM TC/SC OFFICERS:


Copyright © 2020 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this
electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions.
You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without
permission in writing from IEC.

---------------------- Page: 3 ----------------------
oSIST prEN IEC 60034-18-32:2020
– 2 – IEC CDV 60034-18-32  IEC 2020
CONTENTS
FOREWORD . 4
INTRODUCTION . 6
1 Scope . 7
2 Normative references . 7
3 Terms and definitions . 8
4 General considerations . 8
4.1 Relationship to IEC 60034-18-1 . 8
4.2 Selection and designation of test procedures . 8
4.3 Reference insulation system . 9
4.4 Test procedures . 9
4.4.1 General . 9
4.4.2 Electrical ageing of the mainwall insulation . 9
4.4.3 Electrical ageing of the conductive slot coating . 9
4.4.4 Electrical ageing of the stress control coating . 10
4.4.5 Electrical ageing of the turn insulation . 10
4.5 Extent of tests . 10
4.5.1 Full evaluation of the mainwall insulation . 10
4.5.2 Reduced evaluation of the mainwall insulation . 10
4.5.3 Evaluation of the conductive slot coating . 10
4.5.4 Evaluation of the stress control coating . 10
5 Test objects . 11
5.1 Construction of test objects . 11
5.2 Number of test specimens . 11
5.3 Initial quality control tests . 11
6 Electrical ageing . 12
6.1 General . 12
6.2 Voltage levels and intended test lives of the mainwall insulation . 12
6.3 Test temperatures during electrical endurance testing of the mainwall
insulation. 12
6.3.1 Electrical ageing at room temperature . 12
6.3.2 Electrical ageing at elevated temperature . 12
6.3.3 Ageing procedure for the mainwall insulation . 12
6.4 Ageing procedure for the conductive slot and stress control coating . 13
6.4.1 Arrangement of temperature control by heater plates . 13
6.4.2 Heating by means of an oven . 13
6.4.3 Test parameter . 13
6.5 Maintenance of stress control coatings . 14
7 Diagnostic sub-cycle . 14
7.1 General . 14
7.2 Voltage test of the mainwall insulation . 14
7.3 Other diagnostic tests. 15
8 Failures of the mainwall insulation . 15
8.1 Failure location and verification . 15
8.2 Failed specimen observations . 15
9 Qualification of the stress control system. 15
9.1 Test procedure . 15

---------------------- Page: 4 ----------------------
oSIST prEN IEC 60034-18-32:2020
IEC CDV 60034-18-32  IEC 2020 – 3 –
9.2 Test pass criteria . 15
10 Functional evaluation of the mainwall data . 16
10.1 General . 16
10.2 Full evaluation (same voltage level and same expected service life) . 16
10.3 Reduced evaluation (same voltage level and same expected service life). 18
10.4 Recommended data to be recorded . 19
10.5 Determining qualification for performances different to the reference system . 20
10.5.1 Overview . 20
10.5.2 Case B: Qualification for the same phase to phase voltage and a

different expected service life . 20
10.5.3 Case C: Qualification for different voltage level and same expected
service life . 21
10.5.4 Case D: Qualification for different voltage level and different
expected service life . 22
10.5.5 Non-linearity of regression lines . 23
Annex A Reference life line for mainwall insulation in the absence of a manufacturer’s
reference life line . 24
Annex B Examples for deterioration marks at the stress control system . 25

Figure 1 – Application of heater elements to a stator bar . 13
Figure 2 – Comparison of ageing data from candidate (C) and reference (R) insulation
systems showing qualification . 17
Figure 3 – Comparison of ageing data from candidate and reference insulation systems
showing failure to qualify . 18
Figure 4 – Comparison of reduced evaluation test data from four separate candidate
systems with that from the reference system . 19
Figure 5 – Candidate system qualified for the same voltage level and different
expected service life . 21
Figure 6 – Candidate system qualified for a higher voltage level and the same
expected service life . 22
Figure 7 – Candidate system qualified for a different service life and different voltage
level from the reference . 23
Figure A.1: Reference lifeline for mainwall insulation . 24
Picture B.1: Typical deterioration mark at the conductive slot coating . 25

Table 1 – Phase to ground test voltages in relation to temperature at operating
condition . 14
Table 2 – Conditions for qualification of candidate system . 20

---------------------- Page: 5 ----------------------
oSIST prEN IEC 60034-18-32:2020
– 4 – IEC CDV 60034-18-32  IEC 2020
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
ROTATING ELECTRICAL MACHINES –

Part 18-32: Functional evaluation of insulation systems (Type II) –
Electrical endurance qualification procedures for form-wound windings

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent
rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60034-18-32 has been prepared by IEC technical committee 2: Rotating machinery.
This third edition cancels and replaces the second edition issued in 2010 and constitutes a technical revision.
The main technical changes with regard to the previous edition are as follows.
a) Simplification of clauses
b) Reduction in the number of test procedures
c) Inclusion of full bars and coils as test objects
d) A new clause dealing with failures and failure criteria
The text of this standard is based on the following documents:
FDIS Report on voting
2/XX/FDIS 2/XX/RVD

Full information on the voting for the approval of this International Standard can be found in the
report on voting indicated in the above table.

---------------------- Page: 6 ----------------------
oSIST prEN IEC 60034-18-32:2020
IEC CDV 60034-18-32  IEC 2020 – 5 –
The committee has decided that the contents of this publication will remain unchanged until the
)
1
maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the
data related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
NOTE A table of cross-references of all IEC TC2 publications can be found in the IEC TC2 dashboard on the IEC
website.
—————————
)
1
The National Committees are requested to note that for this publication the maintenance result date is .

---------------------- Page: 7 ----------------------
oSIST prEN IEC 60034-18-32:2020
– 6 – IEC CDV 60034-18-32  IEC 2020
1 INTRODUCTION
2 Part 1 of IEC 60034-18 presents general principles for the evaluation of insulation systems used
3 in rotating electrical machines.
4 This Standard deals exclusively with insulation systems for form-wound windings (Type II) and
5 concentrates on electrical functional evaluation.
6 In IEC 60034-18-42, tests are described for qualification of Type II insulation systems in
7 voltage-source converter operation. These insulation systems are generally used in rotating
8 machines which have form-wound windings, mostly rated above 700 V r.m.s. The two standards
9 IEC 60034-18-41 and IEC 60034-18-42 separate the systems into those which are not expected
10 to experience partial discharge activity within specified conditions in their service lives (Type I)
11 and those which are expected to experience and withstand partial discharge activity in any part
12 of the insulation system throughout their service lives (Type II).
13

---------------------- Page: 8 ----------------------
oSIST prEN IEC 60034-18-32:2020
IEC CDV 60034-18-32  IEC 2020 – 7 –
14 ROTATING ELECTRICAL MACHINES –
15
16 Part 18-32: Functional evaluation of insulation systems –
17 Electrical endurance qualification procedures for form-wound windings
18
19 1 Scope
20 This part of IEC 60034-18 describes qualification procedures for the evaluation of electrical
21 endurance of insulation systems for use in rotating electrical machines using form-wound
22 windings. The test procedures are comparative in nature, such that the performance of a
23 candidate insulation system is compared to that of a reference insulation system with proven
24 service experience. If no reference system is available, the diagram in Annex A is available for
25 use. The qualification procedures of inverter duty insulation system for form-wound windings
26 can be found in IEC 60034-18-42 or IEC 60034-18-41.
27 2 Normative references
28 The following referenced documents are indispensable for the application of this document. For
29 dated references, only the edition cited applies. For undated references, the latest edition of
30 the referenced document (including any amendments) applies.
31 IEC 60034-1: Rotating electrical machines – Part 1: Rating and performance
32 IEC 60034-15: 2009, Rotating electrical machines – Part 15: Impulse voltage withstand
33 levels of form-wound stator coils for rotating a.c. machines
34 IEC 60034-18-1: 2010, Rotating electrical machines – Part 18-1: Functional evaluation of
35 insulation systems – General guidelines Amendment 1 (1996)
36 IEC 60034-18-33: Rotating electrical machines – Part 18-33: Functional evaluation of in-
37 sulation systems – Test procedures for multifunctional evaluation of form-wound windings
38 by endurance under combined thermal and electrical stresses of insulation systems used in
39 rotating machines
40 IEC 60034-18-41: Rotating electrical machines – Part 18-41: Partial discharge free electrical
41 insulation systems (Type I) used in rotating electrical machines fed from voltage converters –
42 Qualification and quality control tests (IEC 60034-18-41:2014)
43 IEC 60034-18-42:  Rotating electrical machines – Part 18-42: Qualification and acceptance
44 tests for partial discharge resistant electrical insulation systems (Type II) used in rotating
45 electrical machines fed from voltage converters
46 IEC 61251 Electrical insulating materials – A.C. voltage endurance evaluation – Introduction
47 IEC 62539: Guide for the statistical analysis of electrical insulation breakdown data
48 IEC 60034-18-31: Rotating electrical machines – Part 18-31: Functional evaluation of
49 insulation systems – Test procedures for form-wound windings – Thermal evaluation and
50 classification of insulation systems used in rotating machines
51 IEC 60505: Evaluation and qualification of electrical insulation systems
52 IEC 60034-27-1: Rotating electrical machines – Part 27-1: Off-line partial discharge
53 measurements on the winding insulation
54 IEC 60034-27-3: Rotating electrical machines – Part 27-3: Dielectric dissipation factor
55 measurements on stator winding insulation of rotating electrical machines

---------------------- Page: 9 ----------------------
oSIST prEN IEC 60034-18-32:2020
– 8 – IEC CDV 60034-18-32  IEC 2020
56 3 Terms and definitions
57 For the purposes of this document, the following terms and definitions apply.
58 3.1
59 mainwall insulation
60 main electrical insulation that separates the conductors from the earthed stator/rotor core in
61 motor and generator windings
62 3.2
63 strand insulation
64 electrical insulation that covers each conductor in coils/bars
65 3.3
66 turn insulation
67 electrical insulation that separates the conductor turns from each other in coils/bars
68 3.4
69 conductive slot coating
70 conductive paint or tape layer in intimate contact with the mainwall insulation in the slot portion
71 of the coil side, often called semi-conductive coating
72 Note 1 to entry: The purpose is to prevent partial discharge from occurring between the coil/bar and the stator core.
73 3.5
74 stress control coating
75 paint or tape on the surface of the mainwall insulation that extends beyond the conductive slot
76 coating in high-voltage stator bars and coils
77 Note 2 to entry: The purpose of the coating is to prevent surface discharges in the end winding area.
78 3.6
79 stress control system
80 generic name for the combination of the conductive slot coating and stress control coating in
81 high-voltage stator bars and coils
82 3.7
83 confidence interval
84 a range of values so defined that there is a specified probability that the value of a parameter
85 (voltage, stress or time) lies within it
86 3.8
87 test temperature
88 is the temperature measured by temperature sensors either under the grounding plates or at
89 the specimens surface (oven heating) at the straight part of the coil/bar
90 4 General considerations
91 4.1 Relationship to IEC 60034-18-1
92 The principles of Part 1 of IEC 60034-18 should be followed unless the recommendations of
93 this International Standard indicate otherwise.
94 4.2 Selection and designation of test procedures
95 One or more of the procedures in this International Standard should be suitable for the majority
96 of evaluations. Evaluation is usually performed by the manufacturer of the machine/coils or by
97 a third party laboratory. It is the manufacturer’s responsibility to justify the most suitable

---------------------- Page: 10 ----------------------
oSIST prEN IEC 60034-18-32:2020
IEC CDV 60034-18-32  IEC 2020 – 9 –
98 procedure on the basis of past experience and knowledge of the insulation systems to be
99 compared.
100 Following test procedures are described:
101 • Mainwall insulation
102 • Turn insulation only together with the main insulation test
103 • Conductive slot coating
104 • Stress control coating
105 • Mainwall insulation, where voltage level and/or life time differs from the reference
106 system
107 4.3 Reference insulation system
108 A reference insulation system should be tested using a test procedure equivalent to that used
109 for the candidate system (see IEC 60034-18-1). The reference insulation system should have
110 service experience at not less than 75 % of the intended maximum rated voltage of the
111 candidate system. When extrapolation of the insulation thickness is used, information such as
112 “different insulation thickness at same electrical field stress levels by obtaining equal or similar
113 breakdown time” should be provided showing the correlation between electrical lifetime and
114 electrical stress for the different insulation thicknesses. If no reference insulation system is
115 available the diagram in Annex A shall be used as criterion.
116 4.4 Test procedures
117 4.4.1 General
118 Electrical ageing tests are usually performed at fixed voltage levels until failure (mainwall
119 insulation) or in combination with elevated temperature until signs of deterioration occur
120 (conductive slot coating system). Statistical evaluation of the results of testing should be
121 performed according to IEC 62539.
122 4.4.2 Electrical ageing of the mainwall insulation
123 From such tests, characteristic times to failure at each voltage level are obtained. The results
124 for both the candidate system and the reference system should be reported on a graph, as
125 shown by the example in Figure 2, and compared. There is no proven physical basis for

126 extrapolation of this characteristic to the service voltage level 𝑈𝑈 √3, where UN is the r.m.s.
𝑁𝑁
127 rated phase to phase voltage.
128 In service, electrical ageing of the mainwall insulation is primarily caused by continuous elec-
129 trical stress at power frequency. In addition, the insulation is required to withstand transient
130 overvoltages arising from switching surges or inverter supply. The ability of the mainwall
131 insulation to withstand transient overvoltages from converter supplies may be demonstrated by
132 the system’s performance using IEC 60034-18-42.
133 This standard describes electrical ageing of the mainwall insulation, carried out at power
134 frequency or higher. In order to keep acceleration of ageing in a linear progression, a maximum
135 of 10 times of the power frequencies is appropriate. Latest experiences with the application of
136 60034-18-42 show that a frequency of up to 1000 Hz ca ben used as well. Care shall be taken
137 that the dielectric losses do not increase the temperature of the insulation beyond the service
138 temperature to avoid additional thermal ageing effects. (IEC 60034-18-33 table 1)
139 4.4.3 Electrical ageing of the conductive slot coating
140 Ageing of conductive slot coating can be described as a successive degradation of the
141 conductive material caused by partial discharges. The conductive slot coating system shows a
142 notable dependency not only of the electrical field strength, but also of the applied temperature

---------------------- Page: 11 ----------------------
oSIST prEN IEC 60034-18-32:2020
– 10 – IEC CDV 60034-18-32  IEC 2020
143 in operation and absolute voltage level. It is therefore associated as multifactor ageing.
144 Additionally, larger voltage variations at the terminals as well as ambient stresses like ozone
145 may additionally affect the conductive slot coating, but these additional ageing factors are not
146 part of the qualification.
147 This standard describes electrical ageing under elevated temperature of the conductive slot
148 coating carried out at power frequency.
149 4.4.4 Electrical ageing of the stress control coating
150 Ageing of the stress control coating can be described as deterioration by either too excessive
151 surface electrical stress, too high temperatures or a combination of both. Furthermore ageing
152 of the stress control coating is also deteriorated by inadequate contact between stress control
153 coating and conductive slot coating.
154 4.4.5 Electrical ageing of the turn insulation
155 In normal direct-on-line operation of rotating machines the turn insulation is subjected to a
156 stress significantly below the partial discharge inception voltage. Continuous electrical ageing
157 is then not taking place and turn insulation qualification is therefore excluded from this
158 document. Withstand against transient overvoltages should be tested according to
159 IEC 60034-15.
160 In converter fed or other types of special operation the turn insulation may continuously be
161 subjected to a stress above the partial discharge inception voltage. Electrical ageing should
162 then be performed according to IEC 60034-18-42.
163
164 4.5 Extent of tests
165 4.5.1 Full evaluation of the mainwall insulation
166 The extent of the electrical functional tests will depend upon the purpose of the evaluation. A
167 full evaluation will be needed where there are substantial differences according to
168 IEC 60034-18-1.
169
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.