SIST EN 14870-1:2023
(Main)Petroleum and natural gas industries - Induction bends, fittings and flanges for pipeline transportation systems - Part 1: Induction bends (ISO 15590-1:2018, modified)
Petroleum and natural gas industries - Induction bends, fittings and flanges for pipeline transportation systems - Part 1: Induction bends (ISO 15590-1:2018, modified)
This document specifies the technical delivery conditions for bends made by the induction bending process for use in pipeline transportation systems for the petroleum and natural gas industries as defined in ISO 13623.
NOTE 1 ISO 13623 is modified adopted as EN 14161 to exclude on-land supply systems used by the European gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas appliances.
This document is applicable to induction bends made from seamless and welded pipe of unalloyed or low-alloy steels.
NOTE 2 These are typically C-Mn steels or low-alloy steels that are appropriate for the corresponding level and grade of line pipe in accordance with ISO 3183.
This document specifies the requirements for the manufacture of two product specification levels (PSLs) of induction bends corresponding to product specification levels given for pipe in ISO 3183:2012.
This document is not applicable to the selection of the induction bend PSL. It is the responsibility of the purchaser to specify the PSL, based upon the intended use and design requirements; see also ISO 3183, Introduction.
This document is not applicable to pipeline bends made by other manufacturing processes.
On-land supply systems used by the European gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas appliances are excluded from the scope of this document.
Erdöl- und Erdgasindustrie - Im Induktionsverfahren gefertigte Rohrbögen, Fittings und Flansche für Rohrleitungs-Transportsysteme - Teil 1: Im Induktionsverfahren gefertigte Rohrbögen (ISO 15590-1:2018, modifiziert)
Dieses Dokument legt die technischen Lieferzustände für Bögen fest, die im Induktionsbiegeprozess zur Anwendung in Fernleitungssystemen für die Erdöl- und Erdgasindustrie nach ISO 13623 hergestellt werden.
ANMERKUNG 1 ISO 13623 wird mit Änderungen übernommen als EN 14161 zum Ausschluss der von der Europäischen Gasversorgungsindustrie benutzten Überland-Versorgungssysteme von der Einspeisung des Erdgases in die Rohr¬leitungstransportsysteme für die Gasversorgung an Land bis zum Eingangsanschluss gasbetriebener Endgeräte.
Dieses Dokument ist anwendbar für im Induktionsverfahren aus nahtlosen und geschweißten Rohren gefertigte Rohrbögen aus unlegierten oder niedriglegierten Stählen.
ANMERKUNG 2 Dabei handelt es sich üblicherweise um C Mn-Stähle oder niedriglegierte Stähle, die für die ent-sprechende Anforderungsstufe und Stahlsorte der Fernleitung nach ISO 3183 geeignet sind.
Dieses Dokument legt die Anforderungen für die Herstellung nach zwei Produkt-Anforderungsstufen (PSL, en: product specification level) von im Induktionsverfahren gefertigten Rohrbögen entsprechend den Produkt-Anforderungsstufen für Rohre nach ISO 3183:2012 fest.
Dieses Dokument ist nicht anwendbar für die Wahl des PSL von im Induktionsverfahren gefertigten Rohr¬bögen. Die Festlegung der PSL auf der Grundlage des vorgesehenen Verwendungszwecks und der Auslegungs¬anforderungen liegt in der Verantwortung des Käufers; siehe auch ISO 3183, Einleitung.
Dieses Dokument ist nicht anwendbar für mit anderen Herstellungsprozessen gefertigte Rohrleitungsbögen.
Von der Europäischen Gasversorgungsindustrie benutzte Überland-Versorgungssysteme von der Einspeisung des Erdgases in die Rohrleitungstransportsysteme für die Gasversorgung an Land bis zum Eingangsanschluss gasbetriebener Endgeräte fallen nicht in den Anwendungsbereich dieses Dokuments.
Industries du pétrole et du gaz naturel - Coudes fabriqués par induction, raccords et brides pour systèmes de transport par conduites - Partie 1 : Coudes fabriqués par induction (ISO 15590-1:2018, modifiée)
Le présent document spécifie les conditions techniques de livraison des coudes fabriqués par le procédé de cintrage par induction et destinés aux systèmes de transport par conduites des industries du pétrole et du gaz naturel, tels que définis dans l'ISO 13623.
NOTE 1 L'ISO 13623 est modifiée et adoptée en tant qu'EN 14161 afin d'exclure les systèmes d'alimentation à terre utilisés par l'industrie d'alimentation en gaz européenne allant de l'entrée du gaz dans le réseau de transmission à terre jusqu'au raccord d'entrée des appareils à gaz.
Le présent document est applicable aux coudes cintrés par induction, fabriqués à partir de tubes soudés et non soudés, en aciers non alliés ou faiblement alliés.
NOTE 2 Il s'agit généralement d'aciers C-Mn ou d'aciers faiblement alliés adaptés aux niveau et nuance correspondants du tube de conduite, conformément à l'ISO 3183.
Le présent document spécifie les exigences de fabrication de deux niveaux de spécification de produit (PSL) des coudes cintrés par induction, correspondant aux niveaux de spécification indiqués pour les tubes dans l'ISO 3183:2012.
Le présent document n'est pas applicable à la sélection du niveau de spécification des produits (PSL) cintrés par induction. Il incombe à l'acheteur de spécifier le PSL en se basant sur l'usage prévu et les exigences de conception (voir aussi ISO 3183, Introduction).
Le présent document n'est pas applicable aux coudes de conduites fabriqués par d'autres procédés.
Les systèmes d'alimentation à terre utilisés dans l'industrie d'alimentation en gaz européenne, à partir de l'entrée du gaz dans le réseau de transmission à terre jusqu'au raccord d'entrée des appareils à gaz, sont exclus du domaine d'application du présent document.
Industrija za predelavo nafte in zemeljskega plina - Indukcijska cevna kolena, fitingi in prirobnice za naftovodne transportne sisteme - 1. del: Indukcijska cevna kolena (ISO 15590-1:2018, spremenjen)
Ta dokument določa tehnične dobavne pogoje za cevna kolena, izdelana z indukcijskim upogibanjem, za uporabo v naftovodnih transportnih sistemih v industriji za predelavo nafte in zemeljskega plina, kot je opredeljeno v standardu ISO 13623.
OPOMBA 1: Standard ISO 13623 je bil s spremembami sprejet kot EN 14161, da izključuje kopenske sisteme oskrbe, ki jih uporablja evropska industrija oskrbe s plinom, od dovoda plina v plinovodno omrežje na kopnem do dovodnega priključka plinskih naprav.
Ta dokument se uporablja za indukcijska cevna kolena, izdelana iz brezšivnih in varjenih cevi iz nelegiranih ali malolegiranih jekel.
OPOMBA 2: To so običajno jekla C-Mn ali malolegirana jekla, ki so primerna za ustrezno raven in razred cevovoda skladno s standardom ISO 3183.
Ta dokument določa zahteve za izdelavo dveh ravni specifikacije izdelka (PSL) indukcijskih cevnih kolen, ki ustrezajo ravnem specifikacije izdelka, ki so podane za cevi v standardu ISO 3183.
Ta dokument se ne uporablja za izbiro ravni specifikacije izdelka indukcijskega cevnega kolena. Kupec mora določiti raven specifikacije izdelka na podlagi predvidene uporabe in zahtev glede zasnove; glej tudi standard ISO 3183, Uvod.
Ta dokument se ne uporablja za cevna kolena cevovodov, izdelana z drugimi proizvodnimi postopki.
Kopenski sistemi oskrbe, ki jih uporablja evropska industrija oskrbe s plinom, od dovoda plina v plinovodno omrežje na kopnem do dovodnega priključka plinskih naprav ne spadajo na področje uporabe tega dokumenta.
General Information
- Status
- Published
- Public Enquiry End Date
- 30-Sep-2021
- Publication Date
- 25-Jun-2023
- Technical Committee
- I13 - Imaginarni 13
- Current Stage
- 6060 - National Implementation/Publication (Adopted Project)
- Start Date
- 15-Jun-2023
- Due Date
- 20-Aug-2023
- Completion Date
- 26-Jun-2023
Relations
- Effective Date
- 19-Jan-2023
Overview
EN 14870-1:2023 - titled Petroleum and natural gas industries - Induction bends, fittings and flanges for pipeline transportation systems - Part 1: Induction bends - specifies the technical delivery conditions for induction-bent pipe components used in pipeline transportation systems for the petroleum and natural gas industries. This European adoption is based on ISO 15590-1:2018 (modified) and applies to induction bends made from seamless and welded unalloyed or low‑alloy steels (typically C‑Mn and low‑alloy grades consistent with ISO 3183). EN 14870-1:2023 defines manufacturing, testing and inspection requirements and addresses two product specification levels (PSLs) aligned with ISO 3183.
Key topics and requirements
- Scope and applicability: For induction bends only; other bend manufacturing methods are excluded. European on‑land gas supply systems up to appliance inlet are excluded per the modified ISO 13623/EN 14161 note.
- Materials: Applies to unalloyed and low‑alloy steels appropriate to line‑pipe grades (see ISO 3183).
- Product Specification Levels (PSL): Two PSLs are defined to match pipe PSLs in ISO 3183; the purchaser must specify the required PSL.
- Manufacturing controls: Requirements for mother pipe selection, qualification test bends, production bending, post‑bending heat treatment, forming/sizing and end preparation.
- Testing & inspection: Chemical analysis, tensile and impact testing, hardness and metallography, non‑destructive testing (visual, ultrasonic, magnetic particle / liquid penetrant), hydrostatic testing and dimensional/gauging checks.
- Documentation & marking: Inspection documents, manufacturing procedure specification (MPS, normative Annex A), marking and traceability requirements.
- Sour service: Normative Annex B addresses PSL 2S requirements and additional testing for sour service applications (e.g., HIC/SSC related tests).
Applications and users
EN 14870-1:2023 is essential for:
- Pipeline designers and engineers specifying induction bends for oil & gas transmission systems
- Manufacturers and fabricators of induction bends and fittings
- Procurement and quality assurance teams preparing purchase orders and MPS documents
- Inspection, testing and NDT personnel ensuring compliance with delivery and acceptance criteria
- Operators and project contractors requiring consistent, traceable components for pipeline construction and maintenance
Typical uses include transportation pipelines where induction‑bent elbows are required to change direction while maintaining material and mechanical property consistency with the line pipe.
Related standards
- ISO 15590-1:2018 (base document, modified for EN adoption)
- ISO 3183 (line pipe grades and PSLs)
- ISO 13623 / EN 14161 (pipeline system scope and definitions)
Keywords: EN 14870-1:2023, induction bends, induction bending, pipeline transportation systems, petroleum and natural gas, PSL, ISO 15590-1, ISO 3183, manufacturing, testing, NDT.
Frequently Asked Questions
SIST EN 14870-1:2023 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Petroleum and natural gas industries - Induction bends, fittings and flanges for pipeline transportation systems - Part 1: Induction bends (ISO 15590-1:2018, modified)". This standard covers: This document specifies the technical delivery conditions for bends made by the induction bending process for use in pipeline transportation systems for the petroleum and natural gas industries as defined in ISO 13623. NOTE 1 ISO 13623 is modified adopted as EN 14161 to exclude on-land supply systems used by the European gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas appliances. This document is applicable to induction bends made from seamless and welded pipe of unalloyed or low-alloy steels. NOTE 2 These are typically C-Mn steels or low-alloy steels that are appropriate for the corresponding level and grade of line pipe in accordance with ISO 3183. This document specifies the requirements for the manufacture of two product specification levels (PSLs) of induction bends corresponding to product specification levels given for pipe in ISO 3183:2012. This document is not applicable to the selection of the induction bend PSL. It is the responsibility of the purchaser to specify the PSL, based upon the intended use and design requirements; see also ISO 3183, Introduction. This document is not applicable to pipeline bends made by other manufacturing processes. On-land supply systems used by the European gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas appliances are excluded from the scope of this document.
This document specifies the technical delivery conditions for bends made by the induction bending process for use in pipeline transportation systems for the petroleum and natural gas industries as defined in ISO 13623. NOTE 1 ISO 13623 is modified adopted as EN 14161 to exclude on-land supply systems used by the European gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas appliances. This document is applicable to induction bends made from seamless and welded pipe of unalloyed or low-alloy steels. NOTE 2 These are typically C-Mn steels or low-alloy steels that are appropriate for the corresponding level and grade of line pipe in accordance with ISO 3183. This document specifies the requirements for the manufacture of two product specification levels (PSLs) of induction bends corresponding to product specification levels given for pipe in ISO 3183:2012. This document is not applicable to the selection of the induction bend PSL. It is the responsibility of the purchaser to specify the PSL, based upon the intended use and design requirements; see also ISO 3183, Introduction. This document is not applicable to pipeline bends made by other manufacturing processes. On-land supply systems used by the European gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas appliances are excluded from the scope of this document.
SIST EN 14870-1:2023 is classified under the following ICS (International Classification for Standards) categories: 75.200 - Petroleum products and natural gas handling equipment; 83.140.30 - Plastics pipes and fittings for non fluid use. The ICS classification helps identify the subject area and facilitates finding related standards.
SIST EN 14870-1:2023 has the following relationships with other standards: It is inter standard links to SIST EN 14870-1:2011. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase SIST EN 14870-1:2023 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2023
Industrija za predelavo nafte in zemeljskega plina - Indukcijska cevna kolena,
fitingi in prirobnice za naftovodne transportne sisteme - 1. del: Indukcijska cevna
kolena (ISO 15590-1:2018, spremenjen)
Petroleum and natural gas industries - Induction bends, fittings and flanges for pipeline
transportation systems - Part 1: Induction bends (ISO 15590-1:2018, modified)
Erdöl- und Erdgasindustrie - Im Induktionsverfahren gefertigte Rohrbögen, Fittings und
Flansche für Rohrleitungs-Transportsysteme - Teil 1: Im Induktionsverfahren gefertigte
Rohrbögen (ISO 15590-1:2018, modifiziert)
Industries du pétrole et du gaz naturel - Coudes fabriqués par induction, raccords et
brides pour systèmes de transport par conduites - Partie 1 : Coudes fabriqués par
induction (ISO 15590-1:2018, modifiée)
Ta slovenski standard je istoveten z: EN 14870-1:2023
ICS:
75.200 Oprema za skladiščenje Petroleum products and
nafte, naftnih proizvodov in natural gas handling
zemeljskega plina equipment
83.140.30 Polimerne cevi in fitingi za Plastics pipes and fittings for
snovi, ki niso tekočine non fluid use
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 14870-1
EUROPEAN STANDARD
NORME EUROPÉENNE
June 2023
EUROPÄISCHE NORM
ICS 75.200 Supersedes EN 14870-1:2011
English Version
Petroleum and natural gas industries - Induction bends,
fittings and flanges for pipeline transportation systems -
Part 1: Induction bends (ISO 15590-1:2018, modified)
Industries du pétrole et du gaz naturel - Coudes Erdöl- und Erdgasindustrie - Im Induktionsverfahren
fabriqués par induction, raccords et brides pour gefertigte Rohrbögen, Fittings und Flansche für
systèmes de transport par conduites - Partie 1 : Coudes Rohrleitungs-Transportsysteme - Teil 1: Im
fabriqués par induction (ISO 15590-1:2018, modifiée) Induktionsverfahren gefertigte Rohrbögen (ISO 15590-
1:2018, modifiziert)
This European Standard was approved by CEN on 10 April 2023.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2023 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 14870-1 E
worldwide for CEN national Members.
Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 8
4 Symbols and abbreviated terms . 11
4.1 Symbols . 11
4.2 Abbreviated terms . 11
5 General requirements . 12
5.1 Units of measurement . 12
5.2 Rounding . 12
5.3 Conformance to this document . 12
6 Designation . 12
7 Design . 13
8 Information that shall be supplied by the purchaser . 13
8.1 General information . 13
8.2 Additional information . 13
8.3 Information on the mother pipe . 14
9 Manufacturing . 15
9.1 Mother pipe . 15
9.2 Qualification test bend . 15
9.3 Production bending . 16
9.4 Post-bending heat treatment . 16
9.5 Forming and sizing after bending . 17
9.6 Strip/plate end welds . 17
9.7 Jointers and girth welds . 17
9.8 End preparation . 17
10 Testing and inspection . 17
10.1 General requirements . 17
10.2 Extent of testing and inspection . 19
10.2.1 Qualification test bend . 19
10.2.2 Production bends . 21
10.2.3 Production test bends . 21
10.3 Chemical composition . 21
10.4 Physical testing . 22
10.4.1 Test pieces — General . 22
10.4.2 Tensile testing . 22
10.4.3 Charpy V-notch impact testing . 22
10.4.4 Through-thickness hardness testing . 23
10.4.5 Surface hardness testing . 24
10.4.6 Metallographic examination . 24
10.4.7 Crack tip opening displacement testing . 24
10.4.8 Guided bend testing . 25
10.4.9 Flattening tests . 25
10.5 Non-destructive testing . 25
10.5.1 General . 25
10.5.2 Visual inspection . 25
10.5.3 Weld seam testing . 26
10.5.4 Inspection of bend ends . 26
10.5.5 Magnetic particle testing or liquid-penetrant testing on the bend body . 26
10.5.6 Ultrasonic testing on the bend body . 26
10.5.7 Level of residual magnetism . 27
10.5.8 Repairs . 27
10.5.9 NDT personnel . 27
10.6 Dimensions . 27
10.7 Gauging . 30
10.8 Hydrostatic testing . 30
11 Inspection document . 30
12 Marking . 30
Annex A (normative) Manufacturing procedure specification (MPS) . 32
A.1 General . 32
A.2 Manufacturing procedure specification . 32
Annex B (normative) PSL 2S bends ordered for sour service . 34
B.1 Introduction . 34
B.2 Additional information that shall be supplied by the purchaser . 34
B.3 Manufacturing. 34
B.3.1 Manufacturing procedure. 34
B.3.2 Pipe manufacturing . 34
B.4 Testing and inspection. 35
B.4.1 Chemical composition . 35
B.4.2 Tensile properties . 35
B.4.3 HIC/SWC test . 35
B.4.4 SSC test . 36
B.4.5 Hardness test . 36
B.5 Hard spots . 37
B.6 Inspection . 37
B.7 Non-destructive inspection . 37
B.7.1 Laminar imperfections at the pipe ends . 37
B.7.2 Ultrasonic testing on the bend body . 37
B.7.3 Ultrasonic testing adjacent to weld seam . 37
B.7.4 Non-destructive inspection of HFW weld seams . 37
B.7.5 Ultrasonic inspection of SAW seam welds . 39
Bibliography . 40
European foreword
This document (EN 14870-1:2023) has been prepared by Technical Committee CEN/TC 12 “Materials,
equipment and offshore structures for petroleum, petrochemical and natural gas industries”, the
secretariat of which is held by NEN and CYS.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by December 2023, and conflicting national standards shall
be withdrawn at the latest by December 2023.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document will supersede EN 14870-1:2011.
A list of all parts in the EN 14870 series can be found on the CEN website.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United
Kingdom.
Introduction
This document makes reference to line pipe and bends with delivery conditions based on ISO 3183.
The requirements of the annex(es) apply only when specified on the purchase order.
This document does not provide guidance on when it is necessary to specify the above supplementary
requirements. It is the responsibility of the purchaser to specify, based upon the intended use and design
requirements, the supplementary requirements that will apply for a particular purchase order.
Users of this document should be aware that further or differing requirements can be needed for
individual applications. This document is not intended to inhibit a manufacturer from offering, or the
purchaser from accepting, alternative equipment or engineering solutions for the individual application.
This can be particularly applicable where there is innovative or developing technology. Where an
alternative is offered, it is the responsibility of the manufacturer to identify and provide details of any
variations from this document.
This third edition cancels and replaces the second edition (ISO 15590-1:2009), which has been
technically revised.
ISO 15590-1:2018, developed within ISO/TC 67/SC 2, has been adopted as EN 14870-1:2023
(ISO 15590-1:2018, modified).
The scope of ISO/TC 67/SC 2 is pipeline transportation systems for the petroleum and natural gas
industries without exclusions. However, in CEN the scopes of CEN/TC 12 and CEN/TC 234 overlapped
until 1995. This scope overlap caused problems for the parallel procedure for the above-mentioned item.
The conflict in scope was resolved when both the CEN Technical Committees concerns and the CEN
Technical Board decided to amend the scope of CEN/TC 12 by explicitly excluding “on-land supply systems
used by the gas supply industry excluding gas infrastructure from the input of gas into the on-shore
transmission network up to the inlet connection of gas appliances”.
1 Scope
This document specifies the technical delivery conditions for bends made by the induction bending
process for use in pipeline transportation systems for the petroleum and natural gas industries as defined
in ISO 13623.
NOTE 1 ISO 13623 is modified adopted as EN 14161 to exclude on-land supply systems used by the European
gas supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas
appliances.
This document is applicable to induction bends made from seamless and welded pipe of unalloyed or
low-alloy steels.
NOTE 2 These are typically C-Mn steels or low-alloy steels that are appropriate for the corresponding level and
grade of line pipe in accordance with ISO 3183.
This document specifies the requirements for the manufacture of two product specification levels (PSLs)
of induction bends corresponding to product specification levels given for pipe in ISO 3183:2012.
This document is not applicable to the selection of the induction bend PSL. It is the responsibility of the
purchaser to specify the PSL, based upon the intended use and design requirements; see also ISO 3183,
Introduction.
This document is not applicable to pipeline bends made by other manufacturing processes.
On-land supply systems used by the European gas supply industry from the input of gas into the on-land
transmission network up to the inlet connection of gas appliances are excluded from the scope of this
document.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 10204, Metallic products - Types of inspection documents
ISO 80000-1:2009, Quantities and units — Part 1: General
ISO 148-1, Metallic materials — Charpy pendulum impact test — Part 1: Test method
ISO 3183:2012, Petroleum and natural gas industries — Steel pipe for pipeline transportation systems
ISO 6507 (all parts), Metallic materials — Vickers hardness test
ISO 6508 (all parts), Metallic materials — Rockwell hardness test
ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature
ISO 6892-2, Metallic materials — Tensile testing — Part 2: Method of test at elevated temperature
ISO 7438, Metallic materials — Bend test
This document is superseded by ISO 3183:2019 after publication of ISO 15590-1:2018. As ISO 3183:2019 is
published as ISO supplement to API Spec 5L, this document maintains the references to particular sections in
ISO 3183:2012, which are considered still accurate.
ISO 7539-2, Corrosion of metals and alloys — Stress corrosion testing — Part 2: Preparation and use of
bent-beam specimens
ISO 8501-1:2007, Preparation of steel substrates before application of paints and related products — Visual
assessment of surface cleanliness — Part 1: Rust grades and preparation grades of uncoated steel substrates
and of steel substrates after overall removal of previous coatings
ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel
ISO 10474, Steel and steel products — Inspection documents
ISO 10893-4, Non-destructive testing of steel tubes — Part 4: Liquid penetrant inspection of seamless and
welded steel tubes for the detection of surface imperfections
ISO 10893-5, Non-destructive testing of steel tubes — Part 5: Magnetic particle inspection of seamless and
welded ferromagnetic steel tubes for the detection of surface imperfections
ISO 10893-8, Non-destructive testing of steel tubes — Part 8: Automated ultrasonic testing of seamless and
welded steel tubes for the detection of laminar imperfections
ISO 10893-9, Non-destructive testing of steel tubes — Part 9: Automated ultrasonic testing for the detection
of laminar imperfections in strip/plate used for the manufacture of welded steel tubes
ISO 10893-10:2011, Non-destructive testing of steel tubes — Part 10: Automated full peripheral ultrasonic
testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of longitudinal
and/or transverse imperfections
ISO 10893-11:2011, Non-destructive testing of steel tubes — Part 11: Automated ultrasonic testing of the
weld seam of welded steel tubes for the detection of longitudinal and/or transverse imperfections
ISO 12095, Seamless and welded steel tubes for pressure purposes — Liquid penetrant testing
ISO 13623, Petroleum and natural gas industries — Pipeline transportation systems
ISO 17640, Non-destructive testing of welds — Ultrasonic testing — Techniques, testing levels, and
assessment
ASNT SNT-TC-1A, Recommended Practice No. SNT-TC-1A: Personnel Qualification and Certification in
Nondestructive Testing
ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products
ASTM A435, Standard Specification for Straight-Beam Ultrasonic Examination of Steel Plates
ASTM A578/A578M, Standard Specification for Straight-Beam Ultrasonic Examination of Rolled Steel
Plates for Special Applications
This document is modified adopted as EN 14161 to exclude on-land supply systems used by the European gas
supply industry from the input of gas into the on-land transmission network up to the inlet connection of gas
appliances.
American Society for Nondestructive Testing, 1711 Arlingate Lane, Columbus, OH 43228-0518, USA.
American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, USA.
ASTM E18, Standard Test Methods for Rockwell Hardness of Metallic Materials
ASTM E92, Standard Test Method for Vickers Hardness of Metallic Materials
ASTM E112, Standard Test Methods for Determining Average Grain Size
ASTM E165, Standard Test Method for Liquid Penetrant Examination
ASTM E213, Standard Practice for Ultrasonic Testing of Metal Pipe and Tubing
ASTM E214, Standard Practice for Ultrasonic Pulse-Echo Straight-Beam Contact Testing
ASTM E340, Standard Test Method for Macroetching Metals and Alloys
ASTM E709, Standard Guide for Magnetic Particle Testing
ASTM E797, Standard Practice for Measuring Thickness by Manual Ultrasonic Pulse-Echo Contact Method
ASTM G39, Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens
NACE TM0177:2016, Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking in Hydrogen
Sulfide (H S) Environments
NACE TM0284:2016, Standard Test Method — Evaluation of Pipeline and Pressure Vessel Steels for
Resistance to Hydrogen-Induced Cracking
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1
arc
curved portion of a bend
3.2
as agreed
agreed upon by the manufacturer and purchaser, and specified in the purchase order
3.3
bend angle
amount of directional change through the bend
3.4
bend qualification test
qualification test that produces a bend in accordance with the MPS and demonstrates that bends that
meet the specified requirements of this document can be produced
NACE International, 1440 South Creek Drive, P.O. Box 201009, Houston, TX 77084-4906, USA.
3.5
bend radius
distance from the centre of curvature to the centreline axis of the bent pipe
3.6
chord
line segment connecting start and stop points of the bend zone measured at the centreline axis
3.7
defect
imperfection of a size and/or population density greater than the acceptance criteria specified in this
document
3.8
extrados
outer curved section of the bend arc
3.9
heat
batch of steel prepared in one steel-making operation
3.10
if agreed
as prescribed, or more stringent than is prescribed, if agreed upon by the manufacturer and the purchaser
and specified in the purchase order
3.11
imperfection
discontinuity or irregularity in the product wall or on the product surface that is detectable by inspection
methods outlined in this document
3.12
indication
evidence obtained by non-destructive inspection
3.13
induction bending
continuous bending process that utilizes induction heating to create a narrow, circumferential, heated
band around the material being bent
3.14
inspection
activities, such as measuring, examining, testing, weighing or gauging one or more characteristics of a
product and comparing the results of such activities with the specified requirements in order to
determine conformity
3.15
intrados
inner curved section of the bend arc
3.16
lamination
internal metal separation that creates layers, generally parallel to the pipe/bend surface
3.17
manufacturer
firm, company, or corporation responsible for making and marking the product in accordance with the
requirements of this document
3.18
manufacturing procedure specification
MPS
document that specifies the properties and description of the mother pipe, the bending procedure, the
post-bending heat treatment equipment and cycle, the qualification bend testing results, the non-
destructive testing procedures and the weld end bevel details used for the manufacture of the bends
3.19
mother pipe
straight section of pipe from which an induction bend is made
3.20
non-destructive inspection
inspection to reveal imperfections, using radiographic, ultrasonic or other methods specified in this
document that do not involve disturbance, stressing or breaking of the materials
3.21
purchaser
party responsible for both the definition of requirements for a product order and for payment of that
order
3.22
submerged-arc welding
SAW
welding process that produces melting and coalescence of metals by heating them with an arc or arcs
between a bare metal consumable electrode or electrodes and the workpiece, wherein the arc and molten
metal are shielded by a blanket of granular flux
3.23
service condition
condition of use that is specified by the purchaser in the purchase order
Note 1 to entry: In this document, the terms “sour service” and “offshore service” are service conditions.
3.24
strip/plate end weld
weld that joins strip or plate ends together
3.25
tangent
straight section at the end of an induction bend
3.26
transition zone
area of the start and stop points of induction heating, which includes material that extends from the
unheated mother pipe to the material that has been heated to the full bending temperature
3.27
wall thinning
amount of reduction from the original wall thickness of the pipe to the wall thickness in the extrados after
bending
4 Symbols and abbreviated terms
4.1 Symbols
A elongation of tensile test specimen after fracture, expressed as a percentage
CVD, L crest to valley depth
CVD
D and D outside diameters of two adjacent crests
2 4
D outside diameter of the intervening valley
D specified diameter, outside or inside
D maximum measured diameter, outside or inside
max
D minimum measured diameter, outside or inside
min
l distance between adjacent crests for waving
O out-of-roundness
r bend centreline radius
b
r nominal mid-thickness radius of the mother pipe
p
R ultimate tensile strength
m
R yield strength for 0,5 % total elongation
t0,5
T minimum design temperature specified by the purchaser
dmin
t minimum wall thickness at the bend intrados
i
t minimum wall thickness required in accordance with ISO 13623, or other applicable
min
design code, for the straight pipe adjacent to the bend, including any corrosion
allowance
4.2 Abbreviated terms
BQT bend qualification test
CTOD crack tip opening displacement testing
HAZ heat-affected zone
HIC hydrogen-induced cracking
HFW high-frequency electric welding process for pipe during manufacturing
MPS manufacturing procedure specification
MT magnetic particle testing
NDT non-destructive testing
PSL product specification level
PT liquid-penetrant testing
RT radiographic testing
SAW submerged arc welding process for pipe during manufacture
SAWH submerged arc helical welding process for pipe during manufacture
SAWL submerged arc longitudinal welding process for pipe during manufacture
SSC sulfide stress-cracking
SWC step-wise cracking
UT ultrasonic testing
WPS welding procedure specification
5 General requirements
5.1 Units of measurement
In this document, data are expressed in both SI units and USC units. For a specific order item, unless
otherwise stated, only one system of units shall be used, without combining data expressed in the other
system.
For data expressed in SI units, a comma is used as the decimal separator and a space is used as the
thousands separator. For data expressed in USC units, a dot (on the line) is used as the decimal separator
and a space is used as the thousands separator.
5.2 Rounding
Unless otherwise stated in this document, to determine conformance with the specified requirements,
observed or calculated values shall be rounded to the nearest unit in the last right-hand place of figures
used in expressing the limiting value, in accordance with ISO 80000-1:2009, Annex B, Rule A.
[3]
NOTE For the purposes of this provision, the rounding method of ASTM E29-04 is equivalent to ISO 80000-
1:2009, Annex B, Rule A.
5.3 Conformance to this document
A quality management system should be applied to assist conformance to the requirements of this
document.
[2]
NOTE ISO 29001 gives sector-specific guidance on quality management systems.
A contract may specify that the manufacturer is responsible for conforming to all the applicable
requirements of this document. It shall be permissible for the purchaser to make any investigation
necessary to be assured of conformance by the manufacturer and to reject any material that does not
conform.
6 Designation
Designation of induction bends shall take the form “IB xxx-PSL 1” or “IB xxx-PSL 2” or “IB xxx-PSL 2S”,
where:
— “xxx” is the specified minimum yield strength, expressed in megapascals (MPa);
— the letters “PSL 1” or “PSL 2” identify the technical delivery conditions class for induction bends in
non-sour service;
— the letters “PSL 2S” identify PSL 2 bends for use in sour service conditions;
— the letters “PSL 2O” identify PSL 2 bends for use in offshore service conditions;
— the letters “PSL 2SO” identify PSL 2 bends for use in both offshore and sour service conditions.
7 Design
For pipelines not designed in accordance with ISO 13623, the minimum required wall thickness of the
bend extrados can be less than t .
min
The requirements in this clause address the design of a bend against internal pressure. It is necessary
that the purchaser or designer also consider other loads, both static and dynamic, and pipeline test
conditions to demonstrate compliance with the strength requirements of ISO 13623.
8 Information that shall be supplied by the purchaser
8.1 General information
The purchaser shall provide the following information:
a) number of this document and year of publication (i.e. EN 14870-1:2023);
b) bend designation of each bend;
c) quantity of bends;
d) supply of mother pipe by the purchaser or the manufacturer;
e) required bend dimensions, including
— diameter (inside or outside),
— minimum intrados and extrados wall thickness after bending,
— bend radius,
— bend angle,
— tangent lengths;
f) end preparation if different from square ends.
8.2 Additional information
The purchaser should specify the following additional information:
a) minimum design temperature;
b) maximum design temperature (and any requirement for high-temperature tensile testing);
c) maximum wall thickness;
d) special dimensional requirements;
e) requirements for supplementary inspection and testing;
f) requirements for gauging and other measurements of dimensions, if different from this part of
EN 14870;
g) pipeline design standard or design factors, if different from ISO 13623;
h) pipeline operating conditions;
i) whether it is necessary to apply post-bending heat treatment;
j) mechanical-property requirements at the maximum design temperature;
k) Charpy impact test temperature;
l) requirements for proof, burst or hydrostatic testing;
m) hold-points for witness and approval by purchaser;
n) surface condition;
o) coating or painting requirements;
p) marking requirements, if different from this part of EN 14870;
q) requirements for ends or bevel protection (e.g. end caps or bevel protectors);
r) packaging and shipping instructions;
s) third-party inspection organization;
t) standard designation of inspection document that is required in accordance with EN 10204 or
ISO 10474;
u) requirements for format and additional content of the inspection document;
v) additional requirements for hardness testing;
w) other special requirements.
8.3 Information on the mother pipe
The following information on the mother pipe shall be provided to the manufacturer:
a) purchasing specification;
b) pipe diameter, inside or outside;
c) pipe wall thickness, nominal or minimum;
d) pipe lengths;
e) pipe manufacturer;
f) pipe material specification and pipe material certificates, including chemical composition, heat
treatment, mechanical properties, dimensions and results of NDT;
g) welding procedure specification and weld metal chemical composition for SAWL and SAWH pipe;
h) weld-seam-repair welding-procedure specification for SAWL and SAWH pipe;
i) applicability of Annex B for sour service.
NOTE Information f), g) and h) is necessary for the design of the bending procedure by the manufacturer.
9 Manufacturing
9.1 Mother pipe
The mother pipe shall be manufactured in accordance with ISO 3183.
The mother pipe for the manufacture of PSL 2 bends shall be in accordance with ISO 3183 PSL 2.
The mother pipe for the manufacture of PSL 2S bends shall be made in accordance with ISO 3183:2012,
Annex H with the additional requirements specified in Annex B of this document.
The mother pipe for the manufacture of PSL 2O bends shall be made in accordance with ISO 3183:2012,
Annex J.
The mother pipe for the manufacture of PSL 2SO bends shall be made in accordance with ISO 3183:2012,
Annex H, ISO 3182:2012, Annex J, and the additional requirements specified in Annex B of this document.
The mother pipe may be supplied by either the purchaser or the manufacturer.
If the mother pipe is supplied by the purchaser, the manufacturer should be consulted as to the required
chemical composition, properties and dimensions of the mother pipe, (including seam weld and seam
repair weld) with regard to its suitability for induction bending.
The mother pipe shall not contain weld repairs to the pipe body.
The wall thickness of the mother pipe shall have adequate allowance for wall thinning at the extrados
due to induction bending.
The surface of the mother pipe shall be free from contamination by low-melting-temperature metals, such
as copper, zinc, brass and aluminium, and may be blast cleaned to ISO 8501-1:2007, Sa 2.
9.2 Qualification test bend
The manufacture of all PSL-level test bends shall be carried out in accordance with an MPS that shall be
qualified in accordance with Clause 9 before commencement of production, or at the beginning of
production if agreed.
NOTE Annex A gives details of MPS.
A test bend with at least sufficient arc length to allow extraction of the necessary test specimens shall be
manufactured in accordance with each preliminary MPS. The inspection and testing of the test bend shall
include sufficient tangents and both stop and start transition zones if included in the produced bends.
The test bend shall be tested and inspected in accordance with Clause 10. The MPS being used for
production shall, for each of the essential variables in Table 1, specify
— the values recorded during the manufacturing of the test bend;
— the permissible range during production bending.
The variation in essential variables shall not exceed the permissible limits shown in Table 1.
Table 1 — Essential variables and maximum permissible variations
a
Essential variable Maximum permissible variations
Heat of steel None
Mother pipe seam weld WPS and welding consumables None
Surface condition By agreement
Nominal mother pipe diameter None
Nominal mother pipe wall thickness ±3 mm (0.118 in) or ±10 % whichever is the smallest
Bend radius An approved MPS qualifies all larger radii (but not
smaller) in the following ranges:
1. Up to and including 3D
2. 3D up to and including 5D
3. 5D up to and including 10D
4. 10D up
Forming speed ±2,5 mm/min (0.098 in/min)
Forming temperature ±25 °C (±45 °F)
Coil design None
Coolant None
Coolant flow rate or pressure ±10 %
Coolant temperature ±15 °C (±27 °F)
b
Induction heating frequency ±10 %
c
Weld seam location ±15° from the location in the test bend
Post-bending heat treatment Method: no change
+15
Soaking time: min
Soaking temperature: ±15 °C (±27 °F)
Heating and cooling rates: by agreement
a
The permissible variations apply to the values obtained in the approved bend qualification test (BQT) at steady state.
b
The variation may be increased to ±20 % for test bends that will receive post-bend quench and temper heat treatment.
c
The pipe long seam is normally placed on the neutral axis during bending.
9.3 Production bending
Induction bending shall be carried out in accordance with a qualified MPS as specified in Annex A.
Interruption of the induction bending operation shall result in rejection of the bend.
9.4 Post-bending heat treatment
Post-bending heat treatment of bends is not mandatory for compliance with this document.
Post-bending heat treatment may be performed to achieve the required material properties, improve
corrosion resistance, remove transition zones at the ends of the bend arc or to relieve residual stresses.
The temperature of each furnace load of bends shall be monitored by thermocouples connected directly
to selected bends and shall be recorded. The type and location of the thermocouples shall be as specified
in the MPS or in the dedicated drawings issued for heat treatment loading.
9.5 Forming and sizing after bending
Hot forming, including spot heating, or hot sizing after bending, shall not be performed unless followed
by a subsequent full heat treatment above
...
この記事は、ISO 13623に定義された石油および天然ガス産業向けのパイプライン輸送システムで使用されるインダクションベンドの技術的な納品条件について説明しています。この文書は、無合金または低合金鋼の無継および溶接パイプから製造されるインダクションベンドに適用されます。ISO 3183に準拠したラインパイプのレベルおよび等級に対応する、通常はC-Mn鋼または低合金鋼の要件も記載されています。また、この文書では、ISO 3183でパイプに指定された2つの製品仕様レベル(PSL)の製造要件も指定しています。ただし、インダクションベンドのPSLの選択には適用されません。使用目的と設計要件に基づいて、PSLを指定するのは購入者の責任です。この文書は他の製造プロセスによって作られたパイプラインベンドには適用されず、ヨーロッパのガス供給業界で使用される陸上供給システムも対象外です。
The article discusses the technical delivery conditions for induction bends used in pipeline transportation systems for the petroleum and natural gas industries. It applies to bends made from seamless and welded pipes of unalloyed or low-alloy steels. The document specifies the requirements for two product specification levels (PSLs) of induction bends, which correspond to the levels specified for pipe in ISO 3183. It also states that the responsibility for selecting the PSL lies with the purchaser, based on the intended use and design requirements. The article excludes pipeline bends made by other manufacturing processes and excludes on-land supply systems used by the European gas supply industry from the scope of the document.
이 문서는 ISO 13623에서 정의된 석유 및 천연가스 산업용 파이프라인 운송 시스템에 사용되는 인덕션 벤드에 대한 기술적인 납품 조건을 명시한다. 이 문서는 열처리 굽힘 공정으로 제작된 인덕션 벤드에 적용되며, 비합금이나 저합금 강으로 제작된 원활하고 용접된 파이프로부터 제작된 벤드를 다룬다. 이 문서는 ISO 3183에 따른 라인 파이프의 수준 및 등급에 알맞은 일반적으로 C-Mn 강이나 저합금 강을 명시한다. 또한, 이 문서는 ISO 3183에서 파이프에 대해 제시된 제품 사양 수준(PSL) 두 가지에 대한 제조 요구사항을 명시한다. 이 문서는 인덕션 벤드 PSL을 선택하는 데 적용되지 않는다. 이는 구매자의 책임으로, 사용 목적과 설계 요구사항에 기반하여 PSL을 지정해야 한다. 또한, 이 문서는 다른 제조 공정으로 제작된 파이프라인 벤드에는 적용되지 않으며, 유럽 가스 공급 산업에서 가스 공급의 입력부터 가스 기기의 입구 연결까지의 온지에 사용되는 육상 공급 시스템도 이 문서의 적용 대상에서 제외된다.










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...