Thermal performance of windows, doors and shutters - Calculation of thermal transmittance - Part 1: General (ISO 10077-1:2017, Corrected version 2020-02)

This document specifies methods for the calculation of the thermal transmittance of windows and
pedestrian doors consisting of glazed and/or opaque panels fitted in a frame, with and without shutters.
This document allows for
— different types of glazing (glass or plastic; single or multiple glazing; with or without low emissivity
coatings, and with spaces filled with air or other gases),
— opaque panels within the window or door,
— various types of frames (wood, plastic, metallic with and without thermal barrier, metallic with
pinpoint metallic connections or any combination of materials), and
— where appropriate, the additional thermal resistance introduced by different types of closed shutter
or external blind, depending on their air permeability.
The thermal transmittance of roof windows and other projecting windows can be calculated according
to this document, provided that the thermal transmittance of their frame sections is determined by
measurement or by numerical calculation.
Default values for glazing, frames and shutters are given in the annexes. Thermal bridge effects at the
rebate or joint between the window or door frame and the rest of the building envelope are excluded
from the calculation.
The calculation does not include
— effects of solar radiation (see standards under M2-8),
— heat transfer caused by air leakage (see standards under M2-6),
— calculation of condensation,
— ventilation of air spaces in double and coupled windows, and
— surrounding parts of an oriel window.
The document is not applicable to
— curtain walls and other structural glazing (see other standards under M2-5), and
— industrial, commercial and garage doors.
NOTE Table 1 in the Introduction shows the relative position of this document within the set of EPB
standards in the context of the modular structure as set out in ISO 52000-1.

Wärmetechnisches Verhalten von Fenstern, Türen und Abschlüssen - Berechnung des Wärmedurchgangskoeffizienten - Teil 1: Allgemeines (ISO 10077-1:2017)

Performance thermique des fenêtres, portes et fermetures - Calcul du coefficient de transmission thermique - Partie 1: Généralités (ISO 10077-1:2017)

L'ISO 10077-1:2017 spécifie des méthodes de calcul du coefficient de transmission thermique des fenêtres et des portes pour piétons constituées de panneaux vitrés et/ou opaques montés dans un cadre, avec ou sans fermetures.

Toplotne značilnosti oken, vrat in polken - Izračun toplotne prehodnosti - 1. del: Splošno (ISO 10077-1:2017, popravljena različica 2020-02)

Ta dokument določa metode za izračun toplotne prehodnosti oken in vrat za pešce, sestavljenih iz steklenih in/ali prosojnih plošč, nameščenih v okvirje, s polkni ali brez njih.
Ta dokument se uporablja za:
– različne vrste zasteklitve (iz stekla ali plastike, enojna ali večkratna zasteklitev, z nanosom ali brez nanosa nizke emisivnosti in s prostori, napolnjenimi z zrakom ali drugimi plini);
– prosojne plošče v oknih ali vratih;
– različne vrste okvirjev (leseni, plastični, kovinski s termično prevleko ali brez nje, kovinski s točkastimi kovinskimi povezavami ali katera koli kombinacija materialov); in
– dodatno toplotno upornost različnih vrst zaprtih polken ali zunanjih žaluzij, kjer je to ustrezno, odvisno od njihove zračne prepustnosti.
Toplotna prehodnost strešnih oken in drugih štrlečih oken se lahko izračuna v skladu s tem dokumentom pod pogojem, da je toplotna prehodnost njihovih okvirjev določena na podlagi meritev ali številskega izračuna.
Privzete vrednosti za zasteklitev, okvirje in polkna so podane v dodatkih. Izračun ne vključuje učinkov toplotnih mostov v utorih ali spojih med okenskim ali vratnim okvirjem in ovojem stavbe.
Izračun ne vključuje:
– učinkov sončnega sevanja (glej standarde v razdelku M2-8);
– prenos toplote zaradi puščanja zraka (glej standarde v razdelku M2-6);
– izračun kondenzacije;
– prezračevanje zračnih prostorov v dvojnih ali spojenih oknih; in
– obstranski deli polkrožnih oken.
Ta dokument se ne uporablja za:
– predelne stene in druge strukturne zasteklitve (glej druge standarde v razdelku M2-5); in
– industrijska, komercialna in garažna vrata.
OPOMBA: Preglednica 1 v uvodu prikazuje relativno mesto tega dokumenta znotraj skupine standardov EPB v kontekstu modularne strukture, kot je opredeljeno v standardu ISO 52000-1.

General Information

Status
Published
Public Enquiry End Date
09-Jan-2017
Publication Date
15-Aug-2017
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
01-Aug-2017
Due Date
06-Oct-2017
Completion Date
16-Aug-2017

Relations

Buy Standard

Standard
EN ISO 10077-1:2017
English language
52 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
EN ISO 10077-1:2017 - natisnjeno za čitalnico
English language
53 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN ISO 10077-1:2017
01-september-2017
Nadomešča:
SIST EN ISO 10077-1:2007
SIST EN ISO 10077-1:2007/AC:2010
Toplotne značilnosti oken, vrat in polken - Izračun toplotne prehodnosti - 1. del:
Splošno (ISO 10077-1:2017, popravljena različica 2020-02)
Thermal performance of windows, doors and shutters - Calculation of thermal
transmittance - Part 1: General (ISO 10077-1:2017, Corrected version 2020-02)
Wärmetechnisches Verhalten von Fenstern, Türen und Abschlüssen - Berechnung des
Wärmedurchgangskoeffizienten - Teil 1: Allgemeines (ISO 10077-1:2017)
Performance thermique des fenêtres, portes et fermetures - Calcul du coefficient de
transmission thermique - Partie 1: Généralités (ISO 10077-1:2017)
Ta slovenski standard je istoveten z: EN ISO 10077-1:2017
ICS:
91.060.50 Vrata in okna Doors and windows
91.120.10 Toplotna izolacija stavb Thermal insulation of
buildings
SIST EN ISO 10077-1:2017 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN ISO 10077-1:2017

---------------------- Page: 2 ----------------------
SIST EN ISO 10077-1:2017


EN ISO 10077-1
EUROPEAN STANDARD

NORME EUROPÉENNE

July 2017
EUROPÄISCHE NORM
ICS 91.060.50; 91.120.10 Supersedes EN ISO 10077-1:2006
English Version

Thermal performance of windows, doors and shutters -
Calculation of thermal transmittance - Part 1: General (ISO
10077-1:2017, Corrected version 2020-02)
Performance thermique des fenêtres, portes et Wärmetechnisches Verhalten von Fenstern, Türen und
fermetures - Calcul du coefficient de transmission Abschlüssen - Berechnung des
thermique - Partie 1: Généralités (ISO 10077-1:2017, Wärmedurchgangskoeffizienten - Teil 1: Allgemeines
Version corrigée 2020-02) (ISO 10077-1:2017, korrigierte Fassung 2020-02)
This European Standard was approved by CEN on 27 February 2017.

This European Standard was corrected and reissued by the CEN-CENELEC Management Centre on 18 March 2020.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATIO N

EUROPÄISCHES KOMITEE FÜR NORMUN G

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2017 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 10077-1:2017 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
SIST EN ISO 10077-1:2017
EN ISO 10077-1:2017 (E)
Contents Page
European foreword . 3

2

---------------------- Page: 4 ----------------------
SIST EN ISO 10077-1:2017
EN ISO 10077-1:2017 (E)
European foreword
This document (EN ISO 10077-1:2017) has been prepared by Technical Committee CEN/TC 89
“Thermal performance of buildings and building components”, the secretariat of which is held by SIS, in
collaboration with Technical Committee ISO/TC 163 "Thermal performance and energy use in the built
environment".
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by January 2018 and conflicting national standards shall
be withdrawn at the latest by January 2018.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
This document is part of the set of standards on the energy performance of buildings (the set of EPB
standards) and has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association (Mandate M/480, see reference [EF1] below), and supports essential
requirements of EU Directive 2010/31/EC on the energy performance of buildings (EPBD, [EF2]).
In case this standard is used in the context of national or regional legal requirements, mandatory
choices may be given at national or regional level for such specific applications, in particular for the
application within the context of EU Directives transposed into national legal requirements.
Further target groups are users of the voluntary common European Union certification scheme for the
energy performance of non-residential buildings (EPBD art.11.9) and any other regional (e.g. Pan
European) parties wanting to motivate their assumptions by classifying the building energy
performance for a dedicated building stock.
This document supersedes EN ISO 10077-1:2006.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,
Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
the United Kingdom.
References:
[EF1] Mandate M480, Mandate to CEN, CENELEC and ETSI for the elaboration and adoption of
standards for a methodology calculating the integrated energy performance of buildings and
promoting the energy efficiency of buildings, in accordance with the terms set in the recast of the
Directive on the energy performance of buildings (2010/31/EU) of 14th December 2010
th
[EF2] EPBD, Recast of the Directive on the energy performance of buildings (2010/31/EU) of 14
December 2010.
3

---------------------- Page: 5 ----------------------
SIST EN ISO 10077-1:2017
EN ISO 10077-1:2017 (E)
Endorsement notice
The text of ISO 10077-1:2017, Corrected version 2020-02 has been approved by CEN as EN ISO 10077-
1:2017 without any modification.
4

---------------------- Page: 6 ----------------------
SIST EN ISO 10077-1:2017
INTERNATIONAL ISO
STANDARD 10077-1
Third edition
2017-06
Corrected version
2020-02
Thermal performance of windows,
doors and shutters — Calculation of
thermal transmittance —
Part 1:
General
Performance thermique des fenêtres, portes et fermetures — Calcul
du coefficient de transmission thermique —
Partie 1: Généralités
Reference number
ISO 10077-1:2017(E)
©
ISO 2017

---------------------- Page: 7 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2017
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2017 – All rights reserved

---------------------- Page: 8 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 3
4 Symbols and subscripts . 3
4.1 Symbols . 3
4.2 Subscripts . 4
5 Description of the method . 4
5.1 Output of the method . 4
5.2 General description . 4
5.3 Other general topics . 5
6 Calculation of thermal transmittance . 5
6.1 Output data . 5
6.2 Calculation time intervals . 5
6.3 Input data . 5
6.3.1 Geometrical characteristics . 5
6.3.2 Thermal characteristics . 8
6.4 Calculation procedure .11
6.4.1 Applicable time interval .11
6.4.2 Calculation of thermal transmittance .11
7 Test report .17
7.1 Contents of test report .17
7.2 Drawing of sections .18
7.2.1 Drawing of the whole window or door.18
7.2.2 Values used in the calculation .18
7.2.3 Presentation of results .18
Annex A (normative) Input and method selection data sheet — Template .19
Annex B (informative) Input and method selection data sheet — Default choices .21
Annex C (normative) Regional references in line with ISO Global Relevance Policy .23
Annex D (normative) Internal and external surface thermal resistances.24
Annex E (normative) Thermal resistance of air spaces between glazing and thermal
transmittance of coupled, double or triple glazing .25
Annex F (normative) Thermal transmittance of frames .26
Annex G (normative) Linear thermal transmittance of frame/glazing junction and glazing bars .31
Annex H (normative) Thermal transmittance of windows .35
Bibliography .40
© ISO 2017 – All rights reserved iii

---------------------- Page: 9 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www .iso .org/ iso/ foreword .html.
ISO 10077-1 was prepared by the European Committee for Standardization (CEN) Technical
Committee CEN/TC 89, Thermal performance of buildings and building components, in collaboration
with ISO Technical Committee TC 163, Thermal performance and energy use in the built environment,
Subcommittee SC 2, Calculation methods, in accordance with the Agreement on technical cooperation
between ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 10077-1:2006), of which it constitutes a
minor revision. The necessary editorial revisions were made to comply with the requirements for the
EPB set of standards.
In addition, the following clauses and subclauses of the previous version have been revised.
— In Clause 6 (previous edition), the boundary condition “determined with the glazing replaced with
2
a material of thermal conductivity not exceeding 0,04 W/(m ·K)” was deleted, because the rules are
defined in EN 12412-2.
— In Clause 6 (previous edition), the measurement according to EN 12412-2 for the determination of
Ψ and/or Ψ was deleted. It is not within the scope of EN 12412-2 to determine Ψ values.
g p
— In Clause 6 (previous edition), the second paragraph was deleted. It is not necessary to give further
possibilities. Determination of the input data in unambiguous is defined.
1)
— In 5.2.2 (previous edition), the formula was deleted. Determination of U is according to ISO 10292.
g
— Formulae (1) and (2) were extended for the consideration of glazing bars.
— Tabulated values were added for the linear thermal transmittance of glazing bars.
— Status of Annex C (previous edition) was changed to normative; some values were revised to give
the values to two significant figures.
1) See Table C.1 for alternative regional references in line with ISO Global Relevance Policy.
iv © ISO 2017 – All rights reserved

---------------------- Page: 10 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

— Table C.2 (previous edition) was moved to ISO/TR 52022-2:2017.
— Annex E (previous edition) was moved to the main body of the document.
— Annex G and Annex H (previous edition) were moved to ISO/TR 52022-2:2017.
It also incorporates the Technical Corrigendum ISO 10077-1:2006/Cor. 1:2009.
A list of all parts in the ISO 10077 series can be found on the ISO website.
This corrected version of ISO 10077-1:2017 incorporates the following corrections:
— In the Introduction, the reference to Annex D was changed to Annex F;
— In the Introduction, the reference to Annex E was changed to Annex G;
— In 6.3.2.2, the reference to Annex G was changed to Annex H;
— In 6.3.2.3.2, Ug was changed to U ;
g
— In the Note in 6.4.2.1.2, the reference to Annex F was changed to Annex E;
— In the header of Tables H.2, H.3 and H.4, the value was changed from 0,8 to 0,80;
— In Table H.3, in the thirteenth column and first row after the header, the value was changed from
51 to 5,1;
— In Table H.3, in the third column and twenty-ninth row after the header, the value was changed
from 0,18 to 0,81.
© ISO 2017 – All rights reserved v

---------------------- Page: 11 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Introduction
This document is part of a series of standards aiming at international harmonization of the methodology
for the assessment of the energy performance of buildings, called “set of EPB standards.”
All EPB standards follow specific rules to ensure overall consistency, unambiguity and transparency.
All EPB standards provide a certain flexibility with regard to the methods, the required input data and
references to other EPB standards, by the introduction of a normative template in Annex A and Annex B
with informative default choices.
For the correct use of this document, a normative template is given in Annex A to specify these choices.
Informative default choices are provided in Annex B.
The main target groups of this document are manufacturers of windows.
Use by or for regulators: In case the document is used in the context of national or regional legal
requirements, mandatory choices may be given at national or regional level for such specific
applications. These choices (either the informative default choices from Annex B or choices adapted to
national/regional needs, but in any case, following the template in Annex A) can be made available as
national annex or as separate (e.g. legal) document (national data sheet).
NOTE 1 So in this case:
— the regulators will specify the choices;
— the individual user will apply the standard to assess the energy performance of a building, and thereby use
the choices made by the regulators.
Topics addressed in this document can be subject to public regulation. Public regulation on the same
topics can override the default values in Annex B. Public regulation on the same topics can even, for
certain applications, override the use of this document. Legal requirements and choices are in general
not published in standards but in legal documents. In order to avoid double publications and difficult
updating of double documents, a national annex may refer to the legal texts where national choices
have been made by public authorities. Different national annexes or national data sheets are possible,
for different applications.
It is expected, if the default values, choices and references to other EPB standards in Annex B are not
followed due to national regulations, policy or traditions, that
— national or regional authorities prepare data sheets containing the choices and national or regional
values, according to the model in Annex A. In this case, a national annex (e.g. NA) is recommended,
containing a reference to these data sheets;
— or, by default, the national standards body will consider the possibility to add or include a national
annex in agreement with the template in Annex A, in accordance to the legal documents that give
national or regional values and choices.
Further target groups are parties wanting to motivate their assumptions by classifying the building
energy performance for a dedicated building stock.
More information is provided in the Technical Report accompanying this document (ISO/TR 52022-2).
The calculation method described in this document is used to evaluate the thermal transmittance of
windows and doors, or as part of the determination of the energy use of a building.
An alternative to calculation is testing of the complete window or door according to ISO 12567-1 or, for
roof windows, according to ISO 12567-2.
vi © ISO 2017 – All rights reserved

---------------------- Page: 12 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

The calculation is based on four component parts of the overall thermal transmittance:
— for elements containing glazing, the thermal transmittance of the glazing, calculated using EN 673
or measured according to EN 674 or EN 675;
— for elements containing opaque panels, the thermal transmittance of the opaque panels, calculated
according to ISO 6946 and/or ISO 10211 (all parts) or measured according to ISO 8301 or ISO 8302;
— thermal transmittance of the frame, calculated using ISO 10077-2, measured according to EN 12412-
2, or taken from Annex F;
— linear thermal transmittance of the frame/glazing junction, calculated according to ISO 10077-2 or
taken from Annex G.
The thermal transmittance of curtain walling can be calculated using ISO 12631.
EN 13241-1 gives procedures applicable to doors intended to provide access for goods and vehicles.
Table 1 shows the relative position of this document within the set of EPB standards in the context of
the modular structure as set out in ISO 52000-1.
NOTE 2 In ISO/TR 52000-2, the same table can be found, with, for each module, the numbers of the relevant
EPB standards and accompanying technical reports that are published or in preparation.
NOTE 3 The modules represent EPB standards, although one EPB standard could cover more than one module
and one module could be covered by more than one EPB standard, for instance, a simplified and a detailed method
respectively.
Table 1 — Position of this document (in case M2–5) within the modular structure of the set of
EPB standards
Building
Overarching Technical Building Systems
(as such)
Do- Building
Sub- Ven- Dehu- PV,
Descrip- Descrip- Descrip- Heat- Cool- Humidi- mestic automa-
mod- tila- midifi- Lighting wind,
tions tions tions ing ing fication hot tion and
ule tion cation .
water control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1 General General General
Common
terms and
Building
definitions;
a
2 energy Needs
symbols,
needs
units and
subscripts
(Free)
Maxi-
indoor
mum
3 Applications conditions
load and
without
power
systems
Ways to Ways to
Ways to ex- express express
4 press energy energy energy
performance perfor- perfor-
mance mance
Building Heat
Emission
categories transfer by ISO 10077-
5 and
and building transmis- 1
control
boundaries sion
Heat
Building oc-
transfer by Distribu-
cupancy and
6 infiltration tion and
operating
and venti- control
conditions
lation
a
The shaded modules are not applicable.
© ISO 2017 – All rights reserved vii

---------------------- Page: 13 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Table 1 (continued)
Building
Overarching Technical Building Systems
(as such)
Do- Building
Sub- Ven- Dehu- PV,
Descrip- Descrip- Descrip- Heat- Cool- Humidi- mestic automa-
mod- tila- midifi- Lighting wind,
tions tions tions ing ing fication hot tion and
ule tion cation .
water control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
Aggregation
of energy Storage
Internal
7 services and
heat gains
and energy control
carriers
Genera-
Building Solar heat
8 tion and
zoning gains
control
Load dis-
Building patching
Calculated
dynamics and op-
9 energy per-
(thermal erating
formance
mass) condi-
tions
Meas-
Measured
Measured ured
energy
10 energy per- Energy
perfor-
formance Perfor-
mance
mance
Inspec-
11 Inspection Inspection
tion
Ways to ex-
12 press indoor BMS
comfort
External
13 environment
conditions
Economic
14
calculation
a
The shaded modules are not applicable.
viii © ISO 2017 – All rights reserved

---------------------- Page: 14 ----------------------
SIST EN ISO 10077-1:2017
INTERNATIONAL STANDARD ISO 10077-1:2017(E)
Thermal performance of windows, doors and shutters —
Calculation of thermal transmittance —
Part 1:
General
1 Scope
This document specifies methods for the calculation of the thermal transmittance of windows and
pedestrian doors consisting of glazed and/or opaque panels fitted in a frame, with and without shutters.
This document allows for
— different types of glazing (glass or plastic; single or multiple glazing; with or without low emissivity
coatings, and with spaces filled with air or other gases),
— opaque panels within the window or door,
— various types of frames (wood, plastic, metallic with and without thermal barrier, metallic with
pinpoint metallic connections or any combination of materials), and
— where appropriate, the additional thermal resistance introduced by different types of closed shutter
or external blind, depending on their air permeability.
The thermal transmittance of roof windows and other projecting windows can be calculated according
to this document, provided that the thermal transmittance of their frame sections is determined by
measurement or by numerical calculation.
Default values for glazing, frames and shutters are given in the annexes. Thermal bridge effects at the
rebate or joint between the window or door frame and the rest of the building envelope are excluded
from the calculation.
The calculation does not include
— effects of solar radiation (see standards under M2-8),
— heat transfer caused by air leakage (see standards under M2-6),
— calculation of condensation,
— ventilation of air spaces in double and coupled windows, and
— surrounding parts of an oriel window.
The document is not applicable to
— curtain walls and other structural glazing (see other standards under M2-5), and
— industrial, commercial and garage doors.
NOTE Table 1 in the Introduction shows the relative position of this document within the set of EPB
standards in the context of the modular structure as set out in ISO 52000-1.
© ISO 2017 – All rights reserved 1

---------------------- Page: 15 ----------------------
SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes
...

SLOVENSKI STANDARD
SIST EN ISO 10077-1:2017
01-september-2017
1DGRPHãþD
SIST EN ISO 10077-1:2007
SIST EN ISO 10077-1:2007/AC:2010
7RSORWQH]QDþLOQRVWLRNHQYUDWLQSRONHQ,]UDþXQWRSORWQHSUHKRGQRVWLGHO
6SORãQR ,62
Thermal performance of windows, doors and shutters - Calculation of thermal
transmittance - Part 1: General (ISO 10077-1:2017)
Wärmetechnisches Verhalten von Fenstern, Türen und Abschlüssen - Berechnung des
Wärmedurchgangskoeffizienten - Teil 1: Allgemeines (ISO 10077-1:2017)
Performance thermique des fenêtres, portes et fermetures - Calcul du coefficient de
transmission thermique - Partie 1: Généralités (ISO 10077-1:2017)
Ta slovenski standard je istoveten z: EN ISO 10077-1:2017
ICS:
91.060.50 Vrata in okna Doors and windows
91.120.10 Toplotna izolacija stavb Thermal insulation of
buildings
SIST EN ISO 10077-1:2017 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST EN ISO 10077-1:2017

---------------------- Page: 2 ----------------------

SIST EN ISO 10077-1:2017


EN ISO 10077-1
EUROPEAN STANDARD

NORME EUROPÉENNE

July 2017
EUROPÄISCHE NORM
ICS 91.060.50; 91.120.10 Supersedes EN ISO 10077-1:2006
English Version

Thermal performance of windows, doors and shutters -
Calculation of thermal transmittance - Part 1: General (ISO
10077-1:2017)
Performance thermique des fenêtres, portes et Wärmetechnisches Verhalten von Fenstern, Türen und
fermetures - Calcul du coefficient de transmission Abschlüssen - Berechnung des
thermique - Partie 1: Généralités (ISO 10077-1:2017) Wärmedurchgangskoeffizienten - Teil 1: Allgemeines
(ISO 10077-1:2017)
This European Standard was approved by CEN on 27 February 2017.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2017 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 10077-1:2017 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------

SIST EN ISO 10077-1:2017
EN ISO 10777-1:2017 (E)
Contents Page
European foreword . 3

2

---------------------- Page: 4 ----------------------

SIST EN ISO 10077-1:2017
EN ISO 10777-1:2017 (E)
European foreword
This document (EN ISO 10777-1:2017) has been prepared by Technical Committee CEN/TC 89
“Thermal performance of buildings and building components”, the secretariat of which is held by SIS, in
collaboration with Technical Committee ISO/TC 163 "Thermal performance and energy use in the built
environment".
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by January 2018 and conflicting national standards shall
be withdrawn at the latest by January 2018.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
This document is part of the set of standards on the energy performance of buildings (the set of EPB
standards) and has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association (Mandate M/480, see reference [EF1] below), and supports essential
requirements of EU Directive 2010/31/EC on the energy performance of buildings (EPBD, [EF2]).
In case this standard is used in the context of national or regional legal requirements, mandatory
choices may be given at national or regional level for such specific applications, in particular for the
application within the context of EU Directives transposed into national legal requirements.
Further target groups are users of the voluntary common European Union certification scheme for the
energy performance of non-residential buildings (EPBD art.11.9) and any other regional (e.g. Pan
European) parties wanting to motivate their assumptions by classifying the building energy
performance for a dedicated building stock.
This document supersedes EN ISO 10077-1:2006.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,
Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
the United Kingdom.
References:
[EF1] Mandate M480, Mandate to CEN, CENELEC and ETSI for the elaboration and adoption of
standards for a methodology calculating the integrated energy performance of buildings and
promoting the energy efficiency of buildings, in accordance with the terms set in the recast of the
Directive on the energy performance of buildings (2010/31/EU) of 14th December 2010
th
[EF2] EPBD, Recast of the Directive on the energy performance of buildings (2010/31/EU) of 14
December 2010.
3

---------------------- Page: 5 ----------------------

SIST EN ISO 10077-1:2017
EN ISO 10777-1:2017 (E)
Endorsement notice
The text of ISO 10777-1:2017 has been approved by CEN as EN ISO 10777-1:2017 without any
modification.
4

---------------------- Page: 6 ----------------------

SIST EN ISO 10077-1:2017
INTERNATIONAL ISO
STANDARD 10077-1
Third edition
2017-06
Thermal performance of windows,
doors and shutters — Calculation of
thermal transmittance —
Part 1:
General
Performance thermique des fenêtres, portes et fermetures — Calcul
du coefficient de transmission thermique —
Partie 1: Généralités
Reference number
ISO 10077-1:2017(E)
©
ISO 2017

---------------------- Page: 7 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved

---------------------- Page: 8 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 3
4 Symbols and subscripts . 3
4.1 Symbols . 3
4.2 Subscripts . 4
5 Description of the method . 4
5.1 Output of the method . 4
5.2 General description . 4
5.3 Other general topics . 5
6 Calculation of thermal transmittance . 5
6.1 Output data . 5
6.2 Calculation time intervals . 5
6.3 Input data . 5
6.3.1 Geometrical characteristics . 5
6.3.2 Thermal characteristics . 8
6.4 Calculation procedure .11
6.4.1 Applicable time interval .11
6.4.2 Calculation of thermal transmittance .11
7 Test report .17
7.1 Contents of test report .17
7.2 Drawing of sections .18
7.2.1 Drawing of the whole window or door.18
7.2.2 Values used in the calculation .18
7.2.3 Presentation of results .18
Annex A (normative) Input and method selection data sheet — Template .19
Annex B (informative) Input and method selection data sheet — Default choices .21
Annex C (normative) Regional references in line with ISO Global Relevance Policy .23
Annex D (normative) Internal and external surface thermal resistances.24
Annex E (normative) Thermal resistance of air spaces between glazing and thermal
transmittance of coupled, double or triple glazing .25
Annex F (normative) Thermal transmittance of frames .26
Annex G (normative) Linear thermal transmittance of frame/glazing junction and glazing bars .32
Annex H (normative) Thermal transmittance of windows .36
Bibliography .41
© ISO 2017 – All rights reserved iii

---------------------- Page: 9 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: w w w . i s o .org/ iso/ foreword .html.
ISO 10077-1 was prepared by the European Committee for Standardization (CEN) Technical
Committee CEN/TC 89, Thermal performance of buildings and building components, in collaboration
with ISO Technical Committee TC 163, Thermal performance and energy use in the built environment,
Subcommittee SC 2, Calculation methods, in accordance with the Agreement on technical cooperation
between ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 10077-1:2006), of which it constitutes a
minor revision. The necessary editorial revisions were made to comply with the requirements for the
EPB set of standards.
In addition, the following clauses and subclauses of the previous version have been revised.
— In Clause 6 (previous edition), the boundary condition “determined with the glazing replaced with
2
a material of thermal conductivity not exceeding 0,04 W/(m ·K)” was deleted, because the rules are
defined in EN 12412-2.
— In Clause 6 (previous edition), the measurement according to EN 12412-2 for the determination of
Ψ and/or Ψ was deleted. It is not within the scope of EN 12412-2 to determine Ψ values.
g p
— In Clause 6 (previous edition), the second paragraph was deleted. It is not necessary to give further
possibilities. Determination of the input data in unambiguous is defined.
1)
— In 5.2.2 (previous edition), the formula was deleted. Determination of U is according to ISO 10292.
g
— Formulae (1) and (2) were extended for the consideration of glazing bars.
— Tabulated values were added for the linear thermal transmittance of glazing bars.
— Status of Annex C (previous edition) was changed to normative; some values were revised to give
the values to two significant figures.
1) See Table C.1 for alternative regional references in line with ISO Global Relevance Policy.
iv © ISO 2017 – All rights reserved

---------------------- Page: 10 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

— Table C.2 (previous edition) was moved to ISO/TR 52022-2:2017.
— Annex E (previous edition) was moved to the main body of the document.
— Annex G and Annex H (previous edition) were moved to ISO/TR 52022-2:2017.
It also incorporates the Technical Corrigendum ISO 10077-1:2006/Cor. 1:2009.
A list of all parts in the ISO 10077 series can be found on the ISO website.
© ISO 2017 – All rights reserved v

---------------------- Page: 11 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Introduction
This document is part of a series of standards aiming at international harmonization of the methodology
for the assessment of the energy performance of buildings, called “set of EPB standards.”
All EPB standards follow specific rules to ensure overall consistency, unambiguity and transparency.
All EPB standards provide a certain flexibility with regard to the methods, the required input data and
references to other EPB standards, by the introduction of a normative template in Annex A and Annex B
with informative default choices.
For the correct use of this document, a normative template is given in Annex A to specify these choices.
Informative default choices are provided in Annex B.
The main target groups of this document are manufacturers of windows.
Use by or for regulators: In case the document is used in the context of national or regional legal
requirements, mandatory choices may be given at national or regional level for such specific
applications. These choices (either the informative default choices from Annex B or choices adapted to
national/regional needs, but in any case, following the template in Annex A) can be made available as
national annex or as separate (e.g. legal) document (national data sheet).
NOTE 1 So in this case:
— the regulators will specify the choices;
— the individual user will apply the standard to assess the energy performance of a building, and thereby use
the choices made by the regulators.
Topics addressed in this document can be subject to public regulation. Public regulation on the same
topics can override the default values in Annex B. Public regulation on the same topics can even, for
certain applications, override the use of this document. Legal requirements and choices are in general
not published in standards but in legal documents. In order to avoid double publications and difficult
updating of double documents, a national annex may refer to the legal texts where national choices
have been made by public authorities. Different national annexes or national data sheets are possible,
for different applications.
It is expected, if the default values, choices and references to other EPB standards in Annex B are not
followed due to national regulations, policy or traditions, that
— national or regional authorities prepare data sheets containing the choices and national or regional
values, according to the model in Annex A. In this case, a national annex (e.g. NA) is recommended,
containing a reference to these data sheets;
— or, by default, the national standards body will consider the possibility to add or include a national
annex in agreement with the template in Annex A, in accordance to the legal documents that give
national or regional values and choices.
Further target groups are parties wanting to motivate their assumptions by classifying the building
energy performance for a dedicated building stock.
More information is provided in the Technical Report accompanying this document (ISO/TR 52022-2).
The calculation method described in this document is used to evaluate the thermal transmittance of
windows and doors, or as part of the determination of the energy use of a building.
An alternative to calculation is testing of the complete window or door according to ISO 12567-1 or, for
roof windows, according to ISO 12567-2.
vi © ISO 2017 – All rights reserved

---------------------- Page: 12 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

The calculation is based on four component parts of the overall thermal transmittance:
— for elements containing glazing, the thermal transmittance of the glazing, calculated using EN 673
or measured according to EN 674 or EN 675;
— for elements containing opaque panels, the thermal transmittance of the opaque panels, calculated
according to ISO 6946 and/or ISO 10211 (all parts) or measured according to ISO 8301 or ISO 8302;
— thermal transmittance of the frame, calculated using ISO 10077-2, measured according to EN 12412-
2, or taken from Annex D;
— linear thermal transmittance of the frame/glazing junction, calculated according to ISO 10077-2 or
taken from Annex E.
The thermal transmittance of curtain walling can be calculated using ISO 12631.
EN 13241-1 gives procedures applicable to doors intended to provide access for goods and vehicles.
Table 1 shows the relative position of this document within the set of EPB standards in the context of
the modular structure as set out in ISO 52000-1.
NOTE 2 In ISO/TR 52000-2, the same table can be found, with, for each module, the numbers of the relevant
EPB standards and accompanying technical reports that are published or in preparation.
NOTE 3 The modules represent EPB standards, although one EPB standard could cover more than one module
and one module could be covered by more than one EPB standard, for instance, a simplified and a detailed method
respectively.
Table 1 — Position of this document (in case M2–5) within the modular structure of the set of
EPB standards
Building
Overarching Technical Building Systems
(as such)
Do- Building
Sub- Ven- Dehu- PV,
Descrip- Descrip- Descrip- Heat- Cool- Humidi- mestic automa-
mod- tila- midifi- Lighting wind,
tions tions tions ing ing fication hot tion and
ule tion cation .
water control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1 General General General
Common
terms and
Building
definitions;
a
2 energy Needs
symbols,
needs
units and
subscripts
(Free)
Maxi-
indoor
mum
3 Applications conditions
load and
without
power
systems
Ways to Ways to
Ways to ex- express express
4 press energy energy energy
performance perfor- perfor-
mance mance
Building Heat
Emission
categories transfer by
5 ISO 10077-1 and
and building transmis-
control
boundaries sion
a
The shaded modules are not applicable.
© ISO 2017 – All rights reserved vii

---------------------- Page: 13 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

Table 1 (continued)
Building
Overarching Technical Building Systems
(as such)
Do- Building
Sub- Ven- Dehu- PV,
Descrip- Descrip- Descrip- Heat- Cool- Humidi- mestic automa-
mod- tila- midifi- Lighting wind,
tions tions tions ing ing fication hot tion and
ule tion cation .
water control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
Heat
Building oc-
transfer by Distribu-
cupancy and
6 infiltration tion and
operating
and venti- control
conditions
lation
Aggregation
of energy Storage
Internal
7 services and
heat gains
and energy control
carriers
Genera-
Building Solar heat
8 tion and
zoning gains
control
Load dis-
Building patching
Calculated
dynamics and op-
9 energy per-
(thermal erating
formance
mass) condi-
tions
Meas-
Measured
Measured ured
energy
10 energy per- Energy
perfor-
formance Perfor-
mance
mance
Inspec-
11 Inspection Inspection
tion
Ways to ex-
12 press indoor BMS
comfort
External
13 environment
conditions
Economic
14
calculation
a
The shaded modules are not applicable.
viii © ISO 2017 – All rights reserved

---------------------- Page: 14 ----------------------

SIST EN ISO 10077-1:2017
INTERNATIONAL STANDARD ISO 10077-1:2017(E)
Thermal performance of windows, doors and shutters —
Calculation of thermal transmittance —
Part 1:
General
1 Scope
This document specifies methods for the calculation of the thermal transmittance of windows and
pedestrian doors consisting of glazed and/or opaque panels fitted in a frame, with and without shutters.
This document allows for
— different types of glazing (glass or plastic; single or multiple glazing; with or without low emissivity
coatings, and with spaces filled with air or other gases),
— opaque panels within the window or door,
— various types of frames (wood, plastic, metallic with and without thermal barrier, metallic with
pinpoint metallic connections or any combination of materials), and
— where appropriate, the additional thermal resistance introduced by different types of closed shutter
or external blind, depending on their air permeability.
The thermal transmittance of roof windows and other projecting windows can be calculated according
to this document, provided that the thermal transmittance of their frame sections is determined by
measurement or by numerical calculation.
Default values for glazing, frames and shutters are given in the annexes. Thermal bridge effects at the
rebate or joint between the window or door frame and the rest of the building envelope are excluded
from the calculation.
The calculation does not include
— effects of solar radiation (see standards under M2-8),
— heat transfer caused by air leakage (see standards under M2-6),
— calculation of condensation,
— ventilation of air spaces in double and coupled windows, and
— surrounding parts of an oriel window.
The document is not applicable to
— curtain walls and other structural glazing (see other standards under M2-5), and
— industrial, commercial and garage doors.
NOTE Table 1 in the Introduction shows the relative position of this document within the set of EPB
standards in the context of the modular structure as set out in ISO 52000-1.
© ISO 2017 – All rights reserved 1

---------------------- Page: 15 ----------------------

SIST EN ISO 10077-1:2017
ISO 10077-1:2017(E)

2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 6946, Building components and building elements — Thermal resistance and thermal transmittance —
Calculation method
ISO 7345, Thermal insulation — Physical quantities and definitions
ISO 8301, Thermal insulation — Determination of steady-state thermal resistance and related properties —
Heat flow meter apparatus
ISO 8302, Thermal insulation — Determination of steady-state thermal resistance and related properties —
Guarded hot plate apparatus
ISO 10077-2, Thermal performance of windows, doors and shutters — Calculation of thermal
transmittance — Part 2: Numerical method for frames
ISO 10211, Thermal bridges in building construction — Heat flows and surface temperatures — Detailed
calculations
ISO 10291, Glass in building — Determination of steady-state U values (thermal transmittance) of multiple
glazing — Guarded hot plate method
ISO 10
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.