SIST EN 14150:2019
(Main)Geosynthetic barriers - Determination of permeability to liquids
Geosynthetic barriers - Determination of permeability to liquids
This document specifies a method for measuring the steady-state liquid flow through a geosynthetic barrier, used to contain liquids in long-term applications.
The test method and described apparatus allow the measurement of flows accurately down to 10−6 m³/m²/day. In particular circumstances where testing indicates that values obtained for a geosynthetic barrier lie below the threshold of sensitivity of this test method, then the value of liquid flow is declared as being less than10−6 m³/m²/day.
Due to its long duration, this test method is not suitable for production control testing.
Clay geosynthetic barriers cannot be tested with this apparatus.
Geosynthetische Dichtungsbahnen - Bestimmung der Flüssigkeitsdurchlässigkeit
Dieses Dokument legt ein Verfahren zur Messung des stationären Flüssigkeitsdurchflusses durch eine geosynthetische Dichtungsbahn fest, die eingesetzt wird, um Flüssigkeiten bei Langzeitanwendungen aufzunehmen.
Das Prüfverfahren und die beschriebenen Prüfeinrichtungen ermöglichen die genaue Messung von Durchflüssen bis zu 10−6 m³/m²/d. Unter besonderen Umständen, wenn die Prüfung ergibt, dass die für die geosynthetischen Dichtungsbahnen ermittelten Werte unterhalb des Schwellenwertes dieses Prüfverfahrens liegen, wird der Wert des Flüssigkeitsdurchflusses mit weniger als 10−6 m³/m²/d angegeben.
Wegen der langen Prüfungsdauer ist dieses Prüfverfahren nicht für die werkseigene Produktionskontrolle geeignet.
Geosynthetische Tondichtungsbahnen können mit dieser Prüfeinrichtung nicht geprüft werden.
Géomembranes - Détermination de la perméabilité aux liquides
Le présent document spécifie une méthode pour mesurer le flux d’un liquide en régime permanent à travers une géomembrane utilisée pour contenir des liquides dans des applications de longue durée.
La méthode d’essai et l’appareillage décrit permettent le mesurage de flux inférieurs ou égaux à 10-6 m³/m²/jour. Dans le cas particulier où, lors de l’essai, les valeurs obtenues pour une géomembrane sont inférieures au seuil de sensibilité de la présente méthode, la valeur de flux du liquide est alors déclarée inférieure à 10-6 m³/m²/jour.
En raison de sa longue durée, la présente méthode d’essai ne convient pas aux essais de contrôle de production.
Les géosynthétiques bentonitiques ne peuvent être soumis à l’essai au moyen du présent appareillage.
Geosintetične ovire - Ugotavljanje prepustnosti za tekočine
Ta evropski standard določa metodo za merjenje pretoka tekočine v stanju dinamičnega ravnovesja skozi geosintetično pregrado, ki se uporablja za zadrževanje tekočin pri dolgotrajnih aplikacijah. Preskusna metoda in opisana naprava omogočata natančno merjenje pretokov do 10–6 m3/m2/dan. V posebnih okoliščinah, ko preskušanje pokaže, da so vrednosti, pridobljene za geosintetično pregrado, pod pragom občutljivosti te preskusne metode, je vrednost pretoka tekočine navedena kot manjša od 10–6 m3/m2/dan. Ta preskusna metoda zaradi dolgotrajnosti ni primerna za preskušanje v okviru kontrole proizvodnje. Preskušanje oblog z geosintetično glino s to napravo ni mogoče.
General Information
- Status
- Published
- Public Enquiry End Date
- 02-Oct-2017
- Publication Date
- 01-Jul-2019
- Technical Committee
- ITEK - Textile and textile products
- Current Stage
- 6060 - National Implementation/Publication (Adopted Project)
- Start Date
- 26-Jun-2019
- Due Date
- 31-Aug-2019
- Completion Date
- 02-Jul-2019
- Directive
- 89/106/EEC - Construction products
Relations
- Effective Date
- 01-Sep-2019
Overview
EN 14150:2019 (CEN) defines a laboratory method to determine the steady-state permeability of geosynthetic barriers (geomembranes) to liquids for long‑term containment applications. The procedure measures liquid flow through a specimen under a controlled hydraulic gradient and is capable of reliably detecting flows down to 10−6 m³/m²/day. Where flows are below the test sensitivity, results are reported as < 10−6 m³/m²/day. The standard supersedes EN 14150:2006 and was prepared by CEN/TC 189 (Geosynthetics).
Key topics and technical requirements
- Test principle: Apply a constant differential hydraulic pressure across the geosynthetic barrier (standard setup uses upstream 150 kPa and downstream 50 kPa, i.e. a 100 kPa differential) and measure steady-state liquid flow by monitoring volume change on each side.
- Apparatus: Two-part vertical test cell with porous downstream plate, flushing valves, and a specimen exposure diameter of ≥ 200 mm. The cell must be leak‑tight and resist oxidation and applied pressures.
- Volume measurement systems:
- Type A: Capillary tubes (example: 0.3 m length, diameter < 3 mm) requiring a thermostatic chamber at (23 ± 0.2) °C.
- Type B: Pressure–volume controllers (piston/cylinder with motor control) operated in a temperature‑controlled room (typically (23 ± 1) °C) with multiple temperature transducers for volume correction.
- Accuracy and control: Pressure measurement tolerance ± 2 kPa; volume measurement and temperature control requirements are specified to ensure sensitivity to low flows.
- Specimen preparation: Clean specimens, immersion in test liquid at room temperature for at least 24 h prior to testing. Textured surfaces may require smoothing; clay geosynthetic barriers are excluded from this test method.
- Limitations: Long test duration - not suitable for production control testing.
Applications and users
EN 14150:2019 is intended for:
- Geotechnical and environmental engineers specifying long‑term containment liners (landfills, lagoons, tanks, tunnel membranes).
- Independent testing laboratories validating geomembrane hydraulic performance.
- Manufacturers and product developers characterizing permeability for technical data sheets.
- Regulators, specifiers, and consultants verifying compliance with containment performance requirements.
Practical benefits include proving low‑flow integrity of geomembranes, supporting design assessment for pollutant migration control, and generating defensible test data for long‑term containment projects.
Related standards
- Supersedes EN 14150:2006.
- Prepared by CEN/TC 189 - Geosynthetics (European Committee for Standardization).
Frequently Asked Questions
SIST EN 14150:2019 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Geosynthetic barriers - Determination of permeability to liquids". This standard covers: This document specifies a method for measuring the steady-state liquid flow through a geosynthetic barrier, used to contain liquids in long-term applications. The test method and described apparatus allow the measurement of flows accurately down to 10−6 m³/m²/day. In particular circumstances where testing indicates that values obtained for a geosynthetic barrier lie below the threshold of sensitivity of this test method, then the value of liquid flow is declared as being less than10−6 m³/m²/day. Due to its long duration, this test method is not suitable for production control testing. Clay geosynthetic barriers cannot be tested with this apparatus.
This document specifies a method for measuring the steady-state liquid flow through a geosynthetic barrier, used to contain liquids in long-term applications. The test method and described apparatus allow the measurement of flows accurately down to 10−6 m³/m²/day. In particular circumstances where testing indicates that values obtained for a geosynthetic barrier lie below the threshold of sensitivity of this test method, then the value of liquid flow is declared as being less than10−6 m³/m²/day. Due to its long duration, this test method is not suitable for production control testing. Clay geosynthetic barriers cannot be tested with this apparatus.
SIST EN 14150:2019 is classified under the following ICS (International Classification for Standards) categories: 59.080.70 - Geotextiles. The ICS classification helps identify the subject area and facilitates finding related standards.
SIST EN 14150:2019 has the following relationships with other standards: It is inter standard links to SIST EN 14150:2006. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
SIST EN 14150:2019 is associated with the following European legislation: EU Directives/Regulations: 305/2011, 89/106/EEC; Standardization Mandates: M/107. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase SIST EN 14150:2019 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2019
Nadomešča:
SIST EN 14150:2006
Geosintetične ovire - Ugotavljanje prepustnosti za tekočine
Geosynthetic barriers - Determination of permeability to liquids
Geosynthetische Dichtungsbahnen - Bestimmung der Flüssigkeitsdurchlässigkeit
Géomembranes - Détermination de la perméabilité aux liquides
Ta slovenski standard je istoveten z: EN 14150:2019
ICS:
59.080.70 Geotekstilije Geotextiles
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 14150
EUROPEAN STANDARD
NORME EUROPÉENNE
June 2019
EUROPÄISCHE NORM
ICS 59.080.70 Supersedes EN 14150:2006
English Version
Geosynthetic barriers - Determination of permeability to
liquids
Géomembranes - Détermination de la perméabilité aux Geosynthetische Dichtungsbahnen - Bestimmung der
liquides Flüssigkeitsdurchlässigkeit
This European Standard was approved by CEN on 29 April 2019.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 14150:2019 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions . 4
4 Principle . 4
5 Apparatus . 4
5.1 Cell . 4
5.2 Volume measuring devices and pressure delivery system . 5
5.3 Liquid supply . 7
5.4 Temperature control . 7
6 Specimens . 8
7 Procedure. 8
7.1 General . 8
7.2 Installation . 8
7.2.1 General . 8
7.2.2 Type A volume measuring devices: . 8
7.2.3 Type B volume measuring devices: . 9
7.3 Test stage . 9
8 Results . 10
9 Test validity . 10
10 Test report . 11
Annex A (normative) Description of post-control stages . 12
A.1 General . 12
A.2 First post-control stage . 12
A.3 Second post-control stage . 12
A.4 Calculations . 12
A.5 Volume-temperature dependence coefficients . 13
A.6 Test . 13
Bibliography . 14
European foreword
This document (EN 14150:2019) has been prepared by Technical Committee CEN/TC 189
“Geosynthetics”, the secretariat of which is held by NBN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by December 2019, and conflicting national standards
shall be withdrawn at the latest by December 2019.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
This document supersedes EN 14150:2006.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
1 Scope
This document specifies a method for measuring the steady-state liquid flow through a geosynthetic
barrier, used to contain liquids in long-term applications.
−6
The test method and described apparatus allow the measurement of flows accurately down to 10
3 2
m /m /day. In particular circumstances where testing indicates that values obtained for a geosynthetic
barrier lie below the threshold of sensitivity of this test method, then the value of liquid flow is declared
−6 3 2
as being less than10 m /m /day.
Due to its long duration, this test method is not suitable for production control testing.
Clay geosynthetic barriers cannot be tested with this apparatus.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at http://www.iso.org/obp
4 Principle
A differential hydraulic pressure is applied between the two sides of a geosynthetic barrier. It is kept
constant during the test at 100 kPa, the upstream pressure being set to 150 kPa and the downstream
pressure to 50 kPa.
The flow through the geosynthetic barrier is calculated from the variations of the liquid volume
measured on both sides of the geosynthetic barrier.
NOTE This test is conducted with water but can also be performed with other liquids, providing chemical
resistance and compatibility of the apparatus is ensured.
In the light of laboratory experience, it is recommended that the test procedural improvement and
equipment enhancement of the sensitivity threshold of the test procedure be reviewed and the
applicability of the test procedure to the product permeability assessed at regular intervals, not
exceeding 12 months.
Other pressure levels may be applied with the agreement of all concerned persons or parties. In this
case it is recommended that the pressure levels applied be described in the test report
5 Apparatus
5.1 Cell
The two-part cell (see Figure 1) shall resist oxidation and hydraulic pressure applied along the test. In
each part of the cell, a cavity allows to apply a hydraulic pressure. A porous disc resisting oxidation
placed in the downstream cavity prevents deformations of the geosynthetic barrier.
Key
1 downstream part U upstream water inlet
2 upstream part D downstream water inlet
3 geosynthetic barrier FU flushing valve upstream
4 porous plate FD flushing valve downstream
Figure 1 — Schematic representation of a test cell
The cell shall be designed to clamp the specimen without any leaks. There is no tightening system
necessary, as clamping between flat surfaces is usually sufficient. For some materials, a sealant may be
necessary. Any sealant non-sensitive to water and avoiding leaks can be used. In the case of bituminous
geosynthetic barriers, a bitumen rubber sealant can be used.
The cavities shall be constructed in such a way that the exposed diameter of the specimen be equal to or
greater than 200 mm. This diameter shall be measured with a maximum permissible measurement
error of ± 1 mm.
The cell is equipped with a liquid inlet on the upstream part (U-valve) and a liquid outlet on the
downstream part (D-valve) and flushing valves on each part (FU- and FD-valves).
The cell shall be oriented vertically to allow an easier and better air flushing. The flushing valves (FU
and FD) shall be placed on top of the cell and the inlet (U) and outlet (D) shall be on the bottom of the
cell.
NOTE The cell can also include, on both parts, a ring-shaped control cavity. In this case the downstream
control cavity will be equipped with a porous ring-shaped plate. Each ring-shaped cavity will be connected to an
independent volume measuring device and a pressure delivery system, in order to apply the same pressure as in
the corresponding measuring cavity. These ring-shaped cavities are there to minimize deformation in the
measuring cavity.
5.2 Volume measuring devices and pressure delivery system
These two devices are generally associated.
The volume measuring equipment shall be able to measure liquid flows through the geosynthetic
−6 3 2
barrier smaller than 10 m /m /d.
−8
The maximum permissible measurement error tolerated for the volume measurement shall be ± 10
m .
The maximum permissible measurement error of the pressure applied on each side of the geosynthetic
barrier shall be ± 2 kPa.
The volume measurements can be achieved using capillary tubes (Type A device) or pressure-volume
controllers (Type B device).
— Type A (see Figure 2): 0,3 m long tubes can be used. To reduce the effects of evaporation the tube
diameter shall be less than 3 mm. The pressure is applied by means of air pressure in capillary
tubes and controlled with a regulator. A liquid vessel connected to the cell, between each capillary
tube and the cell, allows the cavities to be filled before the test and enables the adjustment of liquid
levels in capillary tubes during the test. Due to temperature effects on volume, tests performed with
this kind of apparatus shall be carried out in a thermostatic chamber at (23 ± 0,2) °C.
Key
1 capillary tubes WU water regulator valve upstream
2 vessel WD water regulator valve downstream
3 upstream pressure FU flushing valve upstream
4 downstream pressure FD flushing valve downstream
5 the
...
記事のタイトル: SIST EN 14150:2019 - ジオシンセティックバリアー - 液体の透過性の決定 記事の内容: このヨーロッパ規格は、長期間の応用に使用されるジオシンセティックバリアーにおける液体の定常流れを測定する方法を規定しています。このテスト方法と装置により、10-6 m3/m2/dayまで正確に流量を測定することができます。特定の状況では、ジオシンセティックバリアーのテスト結果がこのテスト方法の感度の限界値を下回る場合、液体の流れの値は10-6 m3/m2/day未満と宣言されます。この長時間のテスト方法は生産管理テストには適していません。また、ジオシンセティッククレイライナーはこの装置でテストできません。
The article discusses SIST EN 14150:2019, a European standard that outlines a method for measuring the flow of liquids through a geosynthetic barrier. This method is specifically designed for long-term applications where the barrier is used to contain liquids. The test allows for accurate measurement of liquid flows as low as 10-6 m3/m2/day. However, if the test results indicate that the barrier's flow values are below the sensitivity threshold of the test method, the liquid flow is recorded as being less than 10-6 m3/m2/day. It is important to note that this test method is not suitable for production control testing due to its lengthy duration. Additionally, geosynthetic clay liners cannot be tested using this apparatus.
기사 제목: SIST EN 14150:2019 - 지오합성 장벽 - 액체 투과성 결정 기사 내용: 이 유럽 표준은 장기적인 응용에 사용되는 액체를 포함하기위한 지오합성 장벽의 안정된 액체 흐름을 측정하는 방법에 대해 명시하고 있다. 시험 방법과 기기는 10-6 m3/m2/day까지 정확하게 유량을 측정할 수 있도록 한다. 특정한 상황에서는 지오합성 장벽에 대한 시험 결과가 이 시험 방법의 감도 임계값보다 작을 경우, 액체 흐름 값은 10-6 m3/m2/day보다 작다고 선언된다. 이 시험 방법은 지속시간이 오래 걸리므로 생산 품질 관리에는 적합하지 않다. 또한, 지오합성 점토 라이너는 이 기기를 사용하여 시험할 수 없다.










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...