SIST-TS CEN/CLC ISO/IEC/TS 12791:2025
(Main)Information technology - Artificial intelligence - Treatment of unwanted bias in classification and regression machine learning tasks (ISO/IEC TS 12791:2024)
Information technology - Artificial intelligence - Treatment of unwanted bias in classification and regression machine learning tasks (ISO/IEC TS 12791:2024)
This document provides mitigation techniques that can be applied throughout the AI system life
cycle in order to treat unwanted bias. This document describes how to address unwanted bias
in AI systems that use machine learning to conduct classification and regression tasks. This
document is applicable to all types and sizes of organization.
Informationstechnik - Künstliche Intelligenz - Behandlung von unerwünschtem Bias bei Klassifizierungs- und Regressionsaufgaben des maschinellen Lernens (ISO/IEC TS 12791:2024)
Technologies de l'information - Intelligence artificielle - Traitement des biais indésirables dans les tâches d'apprentissage automatique de classification et de régression (ISO/IEC TS 12791:2024)
Informacijska tehnologija - Umetna inteligenca - Obravnava neželene pristranskosti pri nalogah strojnega učenja klasifikacije in regresije (ISO/IEC TS 12791:2024)
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-februar-2025
Informacijska tehnologija - Umetna inteligenca - Obravnava neželene
pristranskosti pri nalogah strojnega učenja klasifikacije in regresije (ISO/IEC TS
12791:2024)
Information technology - Artificial intelligence - Treatment of unwanted bias in
classification and regression machine learning tasks (ISO/IEC TS 12791:2024)
Informationstechnik - Künstliche Intelligenz - Behandlung von unerwünschtem Bias bei
Klassifizierungs- und Regressionsaufgaben des maschinellen Lernens (ISO/IEC TS
12791:2024)
Technologies de l'information - Intelligence artificielle - Traitement des biais indésirables
dans les tâches d'apprentissage automatique de classification et de régression (ISO/IEC
TS 12791:2024)
Ta slovenski standard je istoveten z: CEN/CLC ISO/IEC/TS 12791:2024
ICS:
35.020 Informacijska tehnika in Information technology (IT) in
tehnologija na splošno general
SIST-TS CEN/CLC ISO/IEC/TS en,fr,de
12791:2025
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
TECHNICAL SPECIFICATION CEN/CLC ISO/IEC/TS
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION
November 2024
ICS 35.020
English version
Information technology - Artificial intelligence - Treatment
of unwanted bias in classification and regression machine
learning tasks (ISO/IEC TS 12791:2024)
Technologies de l'information - Intelligence artificielle Informationstechnik - Künstliche Intelligenz -
- Traitement des biais indésirables dans les tâches Behandlung von unerwünschtem Bias bei
d'apprentissage automatique de classification et de Klassifizierungs- und Regressionsaufgaben des
régression (ISO/IEC TS 12791:2024) maschinellen Lernens (ISO/IEC TS 12791:2024)
This Technical Specification (CEN/TS) was approved by CEN on 12 October 2024 for provisional application.
The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN and CENELEC will be
requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European
Standard.
CEN and CENELEC members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the
CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in
force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.
CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium,
Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.
CEN-CENELEC Management Centre:
Rue de la Science 23, B-1040 Brussels
© 2024 CEN/CENELEC All rights of exploitation in any form and by any means
Ref. No. CEN/CLC ISO/IEC/TS 12791:2024 E
reserved worldwide for CEN national Members and for
CENELEC Members.
Contents Page
European foreword . 3
European foreword
This document (CEN/CLC ISO/IEC/TS 12791:2024) has been prepared by Technical Committee
ISO/IEC JTC 1 "Information technology" in collaboration with Technical Committee CEN-CENELEC/ JTC
21 “Artificial Intelligence” the secretariat of which is held by DS.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN-CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national standards
body/national committee. A complete listing of these bodies can be found on the CEN and CENELEC
websites.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the
United Kingdom.
Endorsement notice
The text of ISO/IEC TS 12791:2024 has been approved by CEN-CENELEC as
Technical
Specification
ISO/IEC TS 12791
First edition
Information technology — Artificial
2024-10
intelligence — Treatment of
unwanted bias in classification and
regression machine learning tasks
Technologies de l'information — Intelligence artificielle —
Traitement des biais indésirables dans les tâches d'apprentissage
automatique de classification et de régression
Reference number
ISO/IEC TS 12791:2024(en) © ISO/IEC 2024
ISO/IEC TS 12791:2024(en)
© ISO/IEC 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
© ISO/IEC 2024 – All rights reserved
ii
ISO/IEC TS 12791:2024(en)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 General .1
3.2 Artificial intelligence .3
3.3 Bias .4
3.4 Testing .5
4 Abbreviated terms . 6
5 Treating unwanted bias in the AI system life cycle . 6
5.1 Inception .6
5.1.1 Stakeholder identification .6
5.1.2 Stakeholder needs and requirements definition .7
5.1.3 Procurement .8
5.1.4 Data sources .9
5.1.5 Integration with risk management .11
5.1.6 Acceptance criteria .11
5.2 Design and development . 12
5.2.1 Feature representation . 12
5.2.2 Metadata sufficiency . 12
5.2.3 Data annotations . 12
5.2.4 Adjusting data . 13
5.2.5 Methods for managing identified risks . 13
5.3 Verification and validation . 13
5.3.1 General . 13
5.3.2 Static testing of data used in development .14
5.3.3 Dynamic testing .14
5.4 Re-evaluation, continuous validation, operations and monitoring . 15
5.4.1 General . 15
5.4.2 External change .16
5.5 Disposal . . .17
6 Techniques to address unwanted bias . 17
6.1 General .17
6.2 Algorithmic and training techniques .17
6.2.1 General .17
6.2.2 Pre-trained models .18
6.3 Data techniques .19
7 Handling bias in a distributed AI system life cycle . 19
Annex A (informative) Life cycle processes map .21
Annex B
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.