This document describes methods of specifying and evaluating the manipulation performance of service robots, notably: —   grasp size; —   grasp strength; —   grasp slip resistance; —   opening a hinged door; and —   opening a sliding door. There are other grasping characteristics and use cases for manipulation of service robots. It is expected that these will be included in a future revision. This document deals with the indoor environment only. However, the depicted tests can also be applicable for robots operating in outdoor environments. This document is not applicable for the verification or validation of safety requirements.

  • Standard
    14 pages
    English language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off

This document presents requirements and guidelines on the specification of modular frameworks, on open modular design and on the integration of modules for realising service robots in various environments, including personal and professional sectors. The document is targeted at the following user groups: — modular service robot framework developers who specify performance frameworks in an unambiguous way; — module designers and/or manufacturers who supply end users or robot integrators; — service robot integrators who choose applicable modules for building a modular system. This document includes guidelines on how to apply existing safety and security standards to service robot modules. This document is not a safety standard. This document applies specifically to service robots, although the modularity principles presented in this document can be utilized by framework developers, module manufacturers, and module integrators from other fields not necessarily restricted to robotics.

  • Standard
    69 pages
    English language
    sale 15% off
  • Draft
    69 pages
    English language
    sale 15% off

This document describes methods that can be used to test personal care robots in terms of safety requirements defined in ISO 13482. The target robots of this document are identical to those of ISO 13482. The manufacturer determines the required tests and appropriate testing parameters based on a risk assessment of the robot's design and usage. This risk assessment can determine that tests and test parameters other than those contained in this document are acceptable. Not all test methods are applicable to all robot types. Test methods labelled "universal" are applicable to all personal care robots. For other tests, the heading states for which robot types the test can be applied (e.g. "for wearable robot" or "for mobile robot"). Some test methods can be replaced by using other applicable standards, even if they are not listed in this document.

  • Technical report
    79 pages
    English language
    sale 15% off

IEC 80601-2-78:2019 applies to the general requirements for BASIC SAFETY and ESSENTIAL PERFORMANCE of MEDICAL ROBOTS that physically interact with a PATIENT with an IMPAIRMENT to support or perform REHABILITATION, ASSESSMENT, COMPENSATION or ALLEVIATION related to the PATIENT’S MOVEMENT FUNCTIONS, as intended by the MANUFACTURER. IEC 80601-2-78:2019 does not apply to • external limb prosthetic devices (use ISO 22523), • electric wheelchairs (use ISO 7176 (all parts)), • diagnostic imaging equipment (e.g. MRI, use IEC 60601-2-33), and • personal care ROBOTS (use ISO 13482).

  • Standard
    160 pages
    English and French language
    sale 15% off

This document describes methods of specifying and evaluating the navigation performance of mobile service robots. Navigation performance in this document is measured by pose accuracy and repeatability, as well as the ability to detect and avoid obstacles. Other measures of navigation performance are available but are not covered in this document. The criteria and related test methods are applicable only to mobile platforms that are in contact with the travel surface. For evaluating the characteristics of manipulators, ISO 9283 applies. This document deals with indoor environments only. However, the depicted tests can also be applicable for robots operating in outdoor environments, as described in Annex A. This document is not applicable for the verification or validation of safety requirements. It does not deal with safety requirements for test personnel during testing.

  • Standard
    17 pages
    English language
    sale 15% off

This document provides guidance on the use of ISO 13482 and is intended to facilitate the design of personal care robots in conformity with ISO 13482. Additional guidance is provided for users with limited experience of risk assessment and risk reduction. This document provides clarification and guidance on new terms and safety requirements introduced to allow close human-robot interaction and human-robot contact in personal care robot applications, including mobile servant robots, physical assistant robots and person carrier robots. This document considers the application of ISO 13482 to all service robots and includes related examples.

  • Technical report
    55 pages
    English language
    sale 15% off

This document provides guidance on safety measures for the design and integration of end-effectors used for robot systems. The integration includes the following: — the manufacturing, design and integration of end-effectors; — the necessary information for use. This document provides additional safety guidance on the integration of robot systems, as described in ISO 10218‑2:2011.

  • Technical report
    25 pages
    English language
    sale 15% off

ISO/TR 20218-2:2017 is applicable to robot systems for manual load/unload applications in which a hazard zone is safeguarded by preventing access to it. For this type of application, it is important to consider the need for both access restrictions to hazard zones and for ergonomically suitable work places. ISO/TR 20218-2:2017 supplements ISO 10218-2:2011 and provides additional information and guidance on reducing the risk of intrusion into the hazard zones in the design and safeguarding of manual load/unload installations.

  • Technical report
    14 pages
    English language
    sale 15% off

IEC TR 60601-4-1:2017(E) is intended to help a manufacturer through the key decisions and steps to be taken to perform a detailed risk management and usability engineering processes for medical electrical equipment or a medical electrical system, hereafter referred to as MEE or MES, employing a degree of autonomy (DOA). This document provides a definition of DOA of MEE or MES and a medical robot, and also provides guidance on: - methodologies to perform the risk management process and usability engineering for an MEE or MES with a DOA; - considerations of basic safety and essential performance for an MEE and MES with a DOA; and - identifying the use of DOA, and similar concepts in existing ISO/IEC standards dealing with MEE or MES with the goal to facilitate alignment of standards by consistent use of the concept of DOA; and - distinguishing between medical robots, and other MEE and MES. Unless specified otherwise, this document considers MEE and MES together. The manufacturer of an MEE or MES with a DOA is expected to design and manufacture an MEE or MES that fulfils its intended use and does not have unacceptable risk throughout its life-cycle. This document provides guidance to help the manufacturer in complying with the requirements of IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012 for MEE and MES with DOA. The document is also intended as guidance for future standard writers. There are no prerequisites to this document.

  • Technical report
    80 pages
    English language
    sale 15% off

ISO 19649:2017 defines terms relating to mobile robots that travel on a solid surface and that operate in both industrial robot and service robot applications. It defines terms used for describing mobility, locomotion and other topics relating to the navigation of mobile robots.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off

ISO 18646-1:2016 describes methods for specifying and evaluating the locomotion performance of wheeled robots in indoor environments.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off

ISO/TS 15066:2016 specifies safety requirements for collaborative industrial robot systems and the work environment, and supplements the requirements and guidance on collaborative industrial robot operation given in ISO 10218‑1 and ISO 10218‑2. ISO/TS 15066:2016 applies to industrial robot systems as described in ISO 10218‑1 and ISO 10218‑2. It does not apply to non-industrial robots, although the safety principles presented can be useful to other areas of robotics. NOTE This Technical Specification does not apply to collaborative applications designed prior to its publication.

  • Technical specification
    33 pages
    English language
    sale 15% off

ISO 13482:2014 specifies requirements and guidelines for the inherently safe design, protective measures, and information for use of personal care robots, in particular the following three types of personal care robots: mobile servant robot; physical assistant robot; person carrier robot. These robots typically perform tasks to improve the quality of life of intended users, irrespective of age or capability. ISO 13482:2014 describes hazards associated with the use of these robots, and provides requirements to eliminate, or reduce, the risks associated with these hazards to an acceptable level. ISO 13482:2014 covers human-robot physical contact applications. ISO 13482:2014 presents significant hazards and describes how to deal with them for each personal care robot type. ISO 13482:2014 covers robotic devices used in personal care applications, which are treated as personal care robots. ISO 13482:2014 is limited to earthbound robots. ISO 13482:2014 does not apply to: robots travelling faster than 20 km/h robot toys; water-borne robots and flying robots; industrial robots, which are covered in ISO 10218; robots as medical devices; military or public force application robots. The scope of ISO 13482:2014 is limited primarily to human care related hazards but, where appropriate, it includes domestic animals or property (defined as safety-related objects), when the personal care robot is properly installed and maintained and used for its intended purpose or under conditions which can reasonably be foreseen. ISO 13482:2014 is not applicable to robots manufactured prior to its publication date. ISO 13482:2014 deals with all significant hazards, hazardous situations or hazardous events as described in Annex A. Attention is drawn to the fact that for hazards related to impact (e.g. due to a collision) no exhaustive and internationally recognized data (e.g. pain or injury limits) exist at the time of publication of ISO 13482:2014.

  • Standard
    79 pages
    English language
    sale 15% off
  • Standard
    93 pages
    French language
    sale 15% off

ISO 9787:2013 defines and specifies robot coordinate systems. It also provides nomenclature, including notations, for the basic robot motions. It is intended to aid in robot alignment, testing, and programming. ISO 9787:2013 applies to all robots and robotic devices as defined in ISO 8373.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    12 pages
    French language
    sale 15% off

ISO 10218-1:2011 specifies requirements and guidelines for the inherent safe design, protective measures and information for use of industrial robots. It describes basic hazards associated with robots and provides requirements to eliminate, or adequately reduce, the risks associated with these hazards. ISO 10218-1:2011 does not address the robot as a complete machine. Noise emission is generally not considered a significant hazard of the robot alone, and consequently noise is excluded from the scope of ISO 10218-1:2011. ISO 10218-1:2011 does not apply to non‑industrial robots, although the safety principles established in ISO 10218 can be utilized for these other robots.

  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    45 pages
    French language
    sale 15% off

ISO 10218-2:2011 specifies safety requirements for the integration of industrial robots and industrial robot systems as defined in ISO 10218-1, and industrial robot cell(s). The integration includes the following: the design, manufacturing, installation, operation, maintenance and decommissioning of the industrial robot system or cell; necessary information for the design, manufacturing, installation, operation, maintenance and decommissioning of the industrial robot system or cell; component devices of the industrial robot system or cell. ISO 10218-2:2011 describes the basic hazards and hazardous situations identified with these systems, and provides requirements to eliminate or adequately reduce the risks associated with these hazards. ISO 10218-2:2011 also specifies requirements for the industrial robot system as part of an integrated manufacturing system. ISO 10218-2:2011 does not deal specifically with hazards associated with processes (e.g. laser radiation, ejected chips, welding smoke). Other standards can be applicable to these process hazards.

  • Standard
    72 pages
    English language
    sale 15% off
  • Standard
    79 pages
    French language
    sale 15% off
  • Draft
    22 pages
    English language
    sale 15% off

ISO 9409-1:2004 defines the main dimensions, designation and marking for a circular plate as mechanical interface. It is intended to ensure the exchangeability and to keep the orientation of hand-mounted end effectors. It does not define other requirements of the end effector coupling device. It does not contain any correlation of load-carrying ranges, as it is expected that the appropriate interface is selected depending on the application and the load-carrying capacity of the robot.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    7 pages
    French language
    sale 15% off

ISO 9409-2:2002 defines the main dimensions, designation and marking for a shaft with cylindrical projection as mechanical interface. It is intended to ensure the exchangeability and to keep the orientation of hand-mounted end effectors. ISO 9409-2:2002 does not contain any correlation of load-carrying ranges. The mechanical interfaces specified in ISO 9409-2:2002 will also find application in simple handling systems which are not covered by the definition of manipulating industrial robots, such as pick-and-place or master-slave units.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    French language
    sale 15% off

This International Standard specifies how characteristics of robots shall be presented by the manufacturer.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

Defines terms relevant to automatic end effector exchange systems used for manipulating industrial robots. The terms are presented by their symbol, unit, definition and description. The definition includes references to existing standards.

  • Standard
    18 pages
    English language
    sale 15% off
  • Standard
    18 pages
    French language
    sale 15% off
  • Standard
    18 pages
    French language
    sale 15% off

Supplies information on the state-of-the-art of test equipment operating principles. Additional information is provided that describes the applications of current test equipment technology to ISO 9283.

  • Technical report
    15 pages
    English language
    sale 15% off
  • Technical report
    22 pages
    French language
    sale 15% off
  • Technical report
    22 pages
    French language
    sale 15% off