ASTM C1013-94
(Specification)Specification for Faced Rigid Cellular Polyisocyanurate Roof Insulation (Withdrawn 1997)
Specification for Faced Rigid Cellular Polyisocyanurate Roof Insulation (Withdrawn 1997)
General Information
Standards Content (Sample)
~ ~~
~~
O759530 0549823 830 H
PIVIERICAN SOCIETY FOR TESTING AND MATERIALS
({Th Designation: c 1013 - 94
1916 Race St Philadelphia, Pa 19103
Reprinted from the Annual Book of ASTM Standards Copyright ASTM
li not listed in the current combined index, will appear in the next edition
Standard Specification for
Faced Rigid Cellular Polyisocyanurate Roof Insulation’
This standard is issued under the fixed designation C 1013; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (c) indicates an editorial change since the last revision or reapproval.
C 1058 Practice for Selecting Temperatures for Evaluation
1. Scope
and Reporting Thermal Properties of Thermal Insula-
1.1 This specification covers the composition and physical
tion2
properties for faced rigid cellular polyisocyanurate thermal
C 1 1 14 Test Method for Steady-State Thermal Transmis-
insulation board used principally above structural roof
sion Properties by Means of the Thin-Heater Apparatus2
decks, and as a base for roofing in building construction.
D 3 12 Specification for Asphalt Used in Roofing3
1.2 The values stated in inch-pound units are to be
D450 Specification for Coal-Tar Pitch Used in Roofing,
regarded as the standard. The values given in parentheses are
Dampproofing, and Waterproofing3
for information only.
D 162 1 Test Method for Compressive Properties of Rigid
1.3 When the installation or use of thermal insulation
Cellular Plastics4
materials, accessories, and systems may pose safety or health
D2126 Test Method for Response of Rigid Cellular
problems, the manufacturer shall provide the user appro-
Plastics to Thermal and Humid Aging4
priate current information regarding any known problems
E 84 Test Method for Surface Burning Characteristics of
associated with the recommended use of the company’s
Building Materialss
products and shall also recommend protective measures to
be employed in their safe utilization. The user shall establish
3. Terminology
appropriate safety and health practices and determine the
3.1 DeJinitions-For definitions of terms used in this
applicability of regulatory requirements prior to use.
specification, refer to Terminology C 168.
3.2 Description of Term Spec$c to This Standard:
3.2.1 polyisocyanurate-encompasses both polyurethane
2. Referenced Documents
and polyisocyanurate.
2. I ASTM Standards:
4. Ordering Information
C 165 Test Method for Measuring Compressive Properties
of Thermal Insulations2
4.1 Orders for materials purchased under this specifica-
C 168 Terminology Relating to Thermal Insulating Ma-
tion shall include the following:
terials2
4.1.1 Designation and year of issue,
C 177 Test Method for Steady-State Heat Flux Measure-
4.1.2 Product name,
ments and Thermal Transmission Properties by Means
4.1.3 Board dimensions,
of the Guarded Hot Plate Apparatus2
4.1.4 Quantity of material,
C203 Test Methods for Breaking Load and Flexural
4.1.5 Special packaging or package marking (14.1 and
Properties of Block-Type Thermal Insulation2
14.2), if required, and
C 209 Test Methods for Cellulosic Fiber Insulating Board2 4.1.6 Thermal resistance (R-value).
C 236 Test Method for Steady-State Thermal Performance
of Building Assemblies by Means of a Guarded Hot 5. Materials and Manufacture
Box2
5.1 Faced rigid cellular polyisocyanurate roof insulation
C 390 Criteria for Sampling and Acceptance of Preformed
shall consist of a rigid cellular polyisocyanurate core of
Thermal Insulation Lots2
essentially closed cell structure. It shall be faced during
C 5 I8 Test Method for Steady-State Heat Flux Measure-
manufacture with membranes suitable for application of
ments and Thermal Transmission Properties by Means
D 3 12 or
roofing asphalt in accordance with Specification
of the Heat Flow Meter Apparatus2
coal tar pitch in accordance with Specification D450 or
C 976 Test Method for Thermal Performance of Building single ply roofing membranes.
Assemblies by Means of a Calibrated Hot Box2
C 1045 Practice for Calculating Thermal Transmission 6. Physical Properties
Properties from Steady-State Heat Flux Measurements2
6.1 Thermal Resistance-The mean thermal resistance of
the material tested shall not be less than the minimum value
1. The thermal resistances of individual
identified in Table
I This specification is under the jurisdiction of ASTM Committee C-16 on
Thermal Insulation and is the direct responsibility of Subcommittee C16.22 on
Organic and Nonhomogeneous Inorganic Thermal Insulations.
3 Annual Book of ASTM Standards, Vol 04.04.
Current edition approved Oct. 15, 1994. Published December 1994. Originally
Annual Book of ASTM Standards, Vol 08.01.
published as C 1013 - 85. Last previous edition C 1013 - 85.
2 Annual Book ofASTM Standards, Vol 04.06. 5 Ann
...
This May Also Interest You
ABSTRACT
This specification covers sheet and tubular preformed flexible elastomeric cellular thermal insulation. The materials are classified into three grades according to the operating temperature range of the industrial systems that each material is used for. The non-thermoplastic, thermoset products should be made of natural or synthetic rubber that may be modified using various thermoplastic or thermosetting resins, plasticizers, modifiers, antioxidants, curatives, blowing agents, and other additives. All products should be tested using the prescribed procedures and conform to the specified values of apparent thermal conductivity, water absorption, water-vapor permeability, and linear shrinkage.
SCOPE
1.1 This specification covers preformed flexible elastomeric cellular-thermal insulation in sheet and tubular form. Grade 1 covers materials to be used on commercial or industrial systems with operating temperatures from –183 to 104°C [–297 to 220°F], Grade 2 covers material used on industrial systems with operating temperatures from –183 to 150°C [–297 to 300°F], and Grade 3 covers material used on industrial systems with operating temperatures from –183 to 120°C [–297 to 250°F] where halogens are not permitted.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification6 pagesEnglish languagesale 15% off
- Technical specification6 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyurethane modified polyisocyanurate plastic material intended for use as thermal insulation on surfaces. This insulation can be classified into six types according to its compressive resistance: Types I, IV, II, III, V, and VI. Also this insulation can be classified as Grades 1 and 2 according to its service temperature range. The thermal insulation is produced by the polymerization of polymeric polyisocyanates in the presence of polyhydroxyl compounds, catalysts, cell stabilizers, and blowing agents. Different test methods shall be performed in order to determine the thermal insulation's following properties: density, compressive resistance, apparent thermal conductivity, hot-surface performance, water absorption, water vapor permeability, dimensional stability, closed-cell content, surface bearing characteristics, tensile strength, and leachable chloride, fluoride, silicate, and sodium ions.
SCOPE
1.1 This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyisocyanurate plastic material intended for use as thermal insulation on surfaces from –297°F (–183°C) to 300°F (149°C). For specific applications, the actual temperature limits shall be agreed upon by the manufacturer and purchaser.
1.2 This specification only covers “polyurethane modified polyisocyanurate” thermal insulation which is commonly referred to as “polyisocyanurate” thermal insulation. This standard does not encompass all polyurethane modified materials. Polyurethane modified polyisocyanurate and other polyurethane materials are similar, but the materials will perform differently under some service conditions.
1.3 This standard is designed as a material specification, not a design document. Physical property requirements vary by application and temperature. At temperatures below –70°F (–51°C) the physical properties of the polyisocyanurate insulation at the service temperature are of particular importance. Below –70°F (–51°C) the manufacturer and the purchaser must agree on what additional cold temperature performance properties are required to determine if the material can function adequately for the particular application.
1.4 This standard addresses requirements of unfaced preformed rigid cellular polyisocyanurate thermal insulation manufactured using blowing agents with an ozone depletion potential of 0 (ODP 0).
1.5 Except 6.2 and 8.2 – 8.4, which are related to the size and shape of fabricated parts, and 16.1, which is related to the storage of fabricated parts, the requirements in this standard specification apply to the polyisocyanurate insulation in the form of buns supplied by the insulation manufacturer.
1.6 When adopted by an authority having jurisdiction, codes that address fire properties in many applications regulate the use of the thermal insulation materials covered by this specification. Fire properties are controlled by job, project, or other specifications where codes or government regulations do not apply.
1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification10 pagesEnglish languagesale 15% off
- Technical specification10 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the standards for the types, physical properties and dimensions of cellular polystyrene boards with or without facings or coatings made by molding (EPS) or extrusion (XPS) of expandable polystyrene proposed for use as thermal insulation. This specification, however, does not cover laminated products manufactured with any type of rigid board facer including fiberboard, perlite board, gypsum board, or oriented strand board. All thermal insulation shall be of uniform density and shall contain sufficient flame retardants to meet the oxygen index of requirements. They shall also meet the physical requirements such as thermal resistance, compressive resistance, flexural strength, water vapor permeance, water absorption, dimensional stability, and oxygen index specified herein.
SCOPE
1.1 This specification2 covers the types, physical properties, and dimensions of cellular polystyrene boards with or without facings or coatings made by molding (EPS) or extrusion (XPS) of expandable polystyrene. Products manufactured to this specification are intended for use as thermal insulation for temperatures from –65 to +165°F (–53.9 to +73.9°C). This specification does not apply to laminated products manufactured with any type of rigid board facer including fiberboard, perlite board, gypsum board, or oriented strand board.
1.1.1 Additional requirements for Types IV and XIII for pipe, tank, and equipment thermal insulation for temperatures from –320 to +165°F (–196 to +73.9°C) are contained in Annex A1.
1.2 The use of thermal insulation materials covered by this specification is potentially regulated by codes that address fire performance. For some end uses, specifiers need to also address the effect of moisture and wind pressure resistance. Guidelines regarding these end use considerations are included in Appendix X1.
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification8 pagesEnglish languagesale 15% off
- Technical specification8 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyurethane modified polyisocyanurate plastic material intended for use as thermal insulation on surfaces. This insulation can be classified into six types according to its compressive resistance: Types I, IV, II, III, V, and VI. Also this insulation can be classified as Grades 1 and 2 according to its service temperature range. The thermal insulation is produced by the polymerization of polymeric polyisocyanates in the presence of polyhydroxyl compounds, catalysts, cell stabilizers, and blowing agents. Different test methods shall be performed in order to determine the thermal insulation's following properties: density, compressive resistance, apparent thermal conductivity, hot-surface performance, water absorption, water vapor permeability, dimensional stability, closed-cell content, surface bearing characteristics, tensile strength, and leachable chloride, fluoride, silicate, and sodium ions.
SCOPE
1.1 This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyisocyanurate plastic material intended for use as thermal insulation on surfaces from –297°F (–183°C) to 300°F (149°C). For specific applications, the actual temperature limits shall be agreed upon by the manufacturer and purchaser.
1.2 This specification only covers “polyurethane modified polyisocyanurate” thermal insulation which is commonly referred to as “polyisocyanurate” thermal insulation. This standard does not encompass all polyurethane modified materials. Polyurethane modified polyisocyanurate and other polyurethane materials are similar, but the materials will perform differently under some service conditions.
1.3 This standard is designed as a material specification, not a design document. Physical property requirements vary by application and temperature. At temperatures below –70°F (–51°C) the physical properties of the polyisocyanurate insulation at the service temperature are of particular importance. Below –70°F (–51°C) the manufacturer and the purchaser must agree on what additional cold temperature performance properties are required to determine if the material can function adequately for the particular application.
1.4 This standard addresses requirements of unfaced preformed rigid cellular polyisocyanurate thermal insulation manufactured using blowing agents with an ozone depletion potential of 0 (ODP 0).
1.5 Except 6.2 and 8.2 – 8.4, which are related to the size and shape of fabricated parts, and 16.1, which is related to the storage of fabricated parts, the requirements in this standard specification apply to the polyisocyanurate insulation in the form of buns supplied by the insulation manufacturer.
1.6 When adopted by an authority having jurisdiction, codes that address fire properties in many applications regulate the use of the thermal insulation materials covered by this specification. Fire properties are controlled by job, project, or other specifications where codes or government regulations do not apply.
1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification10 pagesEnglish languagesale 15% off
- Technical specification10 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers sheet and tubular preformed flexible elastomeric cellular thermal insulation. The materials are classified into three grades according to the operating temperature range of the industrial systems that each material is used for. The non-thermoplastic, thermoset products should be made of natural or synthetic rubber that may be modified using various thermoplastic or thermosetting resins, plasticizers, modifiers, antioxidants, curatives, blowing agents, and other additives. All products should be tested using the prescribed procedures and conform to the specified values of apparent thermal conductivity, water absorption, water-vapor permeability, and linear shrinkage.
SCOPE
1.1 This specification covers preformed flexible elastomeric cellular-thermal insulation in sheet and tubular form. Grade 1 covers materials to be used on commercial or industrial systems with operating temperatures from –183 to 104°C [–297 to 220°F], Grade 2 covers material used on industrial systems with operating temperatures from –183 to 150°C [–297 to 300°F], and Grade 3 covers material used on industrial systems with operating temperatures from –183 to 120°C [–297 to 250°F] where halogens are not permitted.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification6 pagesEnglish languagesale 15% off
- Technical specification6 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyurethane modified polyisocyanurate plastic material intended for use as thermal insulation on surfaces. This insulation can be classified into six types according to its compressive resistance: Types I, IV, II, III, V, and VI. Also this insulation can be classified as Grades 1 and 2 according to its service temperature range. The thermal insulation is produced by the polymerization of polymeric polyisocyanates in the presence of polyhydroxyl compounds, catalysts, cell stabilizers, and blowing agents. Different test methods shall be performed in order to determine the thermal insulation's following properties: density, compressive resistance, apparent thermal conductivity, hot-surface performance, water absorption, water vapor permeability, dimensional stability, closed-cell content, surface bearing characteristics, tensile strength, and leachable chloride, fluoride, silicate, and sodium ions.
SCOPE
1.1 This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyisocyanurate plastic material intended for use as thermal insulation on surfaces from –297°F (–183°C) to 300°F (149°C). For specific applications, the actual temperature limits shall be agreed upon by the manufacturer and purchaser.
1.2 This specification only covers “polyurethane modified polyisocyanurate” thermal insulation which is commonly referred to as “polyisocyanurate” thermal insulation. This standard does not encompass all polyurethane modified materials. Polyurethane modified polyisocyanurate and other polyurethane materials are similar, but the materials will perform differently under some service conditions.
1.3 This standard is designed as a material specification, not a design document. Physical property requirements vary by application and temperature. At temperatures below –70°F (–51°C) the physical properties of the polyisocyanurate insulation at the service temperature are of particular importance. Below –70°F (–51°C) the manufacturer and the purchaser must agree on what additional cold temperature performance properties are required to determine if the material can function adequately for the particular application.
1.4 This standard addresses requirements of unfaced preformed rigid cellular polyisocyanurate thermal insulation manufactured using blowing agents with an ozone depletion potential of 0 (ODP 0).
1.5 Except 6.2 and 8.2 – 8.4, which are related to the size and shape of fabricated parts, and 16.1, which is related to the storage of fabricated parts, the requirements in this standard specification apply to the polyisocyanurate insulation in the form of buns supplied by the insulation manufacturer.
1.6 When adopted by an authority having jurisdiction, codes that address fire properties in many applications regulate the use of the thermal insulation materials covered by this specification. Fire properties are controlled by job, project, or other specifications where codes or government regulations do not apply.
1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification10 pagesEnglish languagesale 15% off
- Technical specification10 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers sheet and tubular preformed flexible elastomeric cellular thermal insulation. The materials are classified into three grades according to the operating temperature range of the industrial systems that each material is used for. The non-thermoplastic, thermoset products should be made of natural or synthetic rubber that may be modified using various thermoplastic or thermosetting resins, plasticizers, modifiers, antioxidants, curatives, blowing agents, and other additives. All products should be tested using the prescribed procedures and conform to the specified values of apparent thermal conductivity, water absorption, water-vapor permeability, and linear shrinkage.
SCOPE
1.1 This specification covers preformed flexible elastomeric cellular-thermal insulation in sheet and tubular form. Grade 1 covers materials to be used on commercial or industrial systems with operating temperatures from –183 to 104°C [–297 to 220°F], Grade 2 covers material used on industrial systems with operating temperatures from –183 to 150°C [–297 to 300°F], and Grade 3 covers material used on industrial systems with operating temperatures from –183 to 120°C [–297 to 250°F] where halogens are not permitted.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification6 pagesEnglish languagesale 15% off
- Technical specification6 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyurethane modified polyisocyanurate plastic material intended for use as thermal insulation on surfaces. This insulation can be classified into six types according to its compressive resistance: Types I, IV, II, III, V, and VI. Also this insulation can be classified as Grades 1 and 2 according to its service temperature range. The thermal insulation is produced by the polymerization of polymeric polyisocyanates in the presence of polyhydroxyl compounds, catalysts, cell stabilizers, and blowing agents. Different test methods shall be performed in order to determine the thermal insulation's following properties: density, compressive resistance, apparent thermal conductivity, hot-surface performance, water absorption, water vapor permeability, dimensional stability, closed-cell content, surface bearing characteristics, tensile strength, and leachable chloride, fluoride, silicate, and sodium ions.
SCOPE
1.1 This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyisocyanurate plastic material intended for use as thermal insulation on surfaces from –297°F (–183°C) to 300°F (149°C). For specific applications, the actual temperature limits shall be agreed upon by the manufacturer and purchaser.
1.2 This specification only covers “polyurethane modified polyisocyanurate” thermal insulation which is commonly referred to as “polyisocyanurate” thermal insulation. This standard does not encompass all polyurethane modified materials. Polyurethane modified polyisocyanurate and other polyurethane materials are similar, but the materials will perform differently under some service conditions.
1.3 This standard is designed as a material specification, not a design document. Physical property requirements vary by application and temperature. At temperatures below –70°F (–51°C) the physical properties of the polyisocyanurate insulation at the service temperature are of particular importance. Below –70°F (–51°C) the manufacturer and the purchaser must agree on what additional cold temperature performance properties are required to determine if the material can function adequately for the particular application.
1.4 This standard addresses requirements of unfaced preformed rigid cellular polyisocyanurate thermal insulation manufactured using blowing agents with an ozone depletion potential of 0 (ODP 0).
1.5 When adopted by an authority having jurisdiction, codes that address fire properties in many applications regulate the use of the thermal insulation materials covered by this specification. Fire properties are controlled by job, project, or other specifications where codes or government regulations do not apply.
1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification10 pagesEnglish languagesale 15% off
- Technical specification10 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the standards for the types, physical properties and dimensions of cellular polystyrene boards with or without facings or coatings made by molding (EPS) or extrusion (XPS) of expandable polystyrene proposed for use as thermal insulation. This specification, however, does not cover laminated products manufactured with any type of rigid board facer including fiberboard, perlite board, gypsum board, or oriented strand board. All thermal insulation shall be of uniform density and shall contain sufficient flame retardants to meet the oxygen index of requirements. They shall also meet the physical requirements such as thermal resistance, compressive resistance, flexural strength, water vapor permeance, water absorption, dimensional stability, and oxygen index specified herein.
SCOPE
1.1 This specification2 covers the types, physical properties, and dimensions of cellular polystyrene boards with or without facings or coatings made by molding (EPS) or extrusion (XPS) of expandable polystyrene. Products manufactured to this specification are intended for use as thermal insulation for temperatures from –65 to +165°F (–53.9 to +73.9°C). This specification does not apply to laminated products manufactured with any type of rigid board facer including fiberboard, perlite board, gypsum board, or oriented strand board.
1.1.1 Additional requirements for Types IV and XIII for pipe, tank, and equipment thermal insulation for temperatures from –320 to +165°F (–196 to +73.9°C) are contained in Annex A1.
1.2 The use of thermal insulation materials covered by this specification is potentially regulated by codes that address fire performance. For some end uses, specifiers need to also address the effect of moisture and wind pressure resistance. Guidelines regarding these end use considerations are included in Appendix X1.
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification8 pagesEnglish languagesale 15% off
- Technical specification8 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyurethane modified polyisocyanurate plastic material intended for use as thermal insulation on surfaces. This insulation can be classified into six types according to its compressive resistance: Types I, IV, II, III, V, and VI. Also this insulation can be classified as Grades 1 and 2 according to its service temperature range. The thermal insulation is produced by the polymerization of polymeric polyisocyanates in the presence of polyhydroxyl compounds, catalysts, cell stabilizers, and blowing agents. Different test methods shall be performed in order to determine the thermal insulation's following properties: density, compressive resistance, apparent thermal conductivity, hot-surface performance, water absorption, water vapor permeability, dimensional stability, closed-cell content, surface bearing characteristics, tensile strength, and leachable chloride, fluoride, silicate, and sodium ions.
SCOPE
1.1 This specification covers the types, physical properties, and dimensions of unfaced, preformed rigid cellular polyisocyanurate plastic material intended for use as thermal insulation on surfaces from –297°F (–183°C) to 300°F (149°C). For specific applications, the actual temperature limits shall be agreed upon by the manufacturer and purchaser.
1.2 This specification only covers “polyurethane modified polyisocyanurate” thermal insulation which is commonly referred to as “polyisocyanurate” thermal insulation. This standard does not encompass all polyurethane modified materials. Polyurethane modified polyisocyanurate and other polyurethane materials are similar, but the materials will perform differently under some service conditions.
1.3 This standard is designed as a material specification, not a design document. Physical property requirements vary by application and temperature. At temperatures below –70°F (–51°C) the physical properties of the polyisocyanurate insulation at the service temperature are of particular importance. Below –70°F (–51°C) the manufacturer and the purchaser must agree on what additional cold temperature performance properties are required to determine if the material can function adequately for the particular application.
1.4 This standard addresses requirements of unfaced preformed rigid cellular polyisocyanurate thermal insulation manufactured using blowing agents with an ozone depletion potential of 0 (ODP 0).
1.5 When adopted by an authority having jurisdiction, codes that address fire properties in many applications regulate the use of the thermal insulation materials covered by this specification. Fire properties are controlled by job, project, or other specifications where codes or government regulations do not apply.
1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification10 pagesEnglish languagesale 15% off
- Technical specification10 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.