Latest Standards, Engineering Specifications, Manuals and Technical Publications

Collection of latest documents from ISO, IEC, CEN, CENELEC, ETSI, and SIST.

This document specifies requirements for stainless steel (shot and irregulars), as supplied for blast-cleaning processes. It specifies ranges of particle sizes, together with corresponding grade designations. Values are specified for hardness, density, defect/structural requirements, metallographic structure and chemical composition. The requirements specified in this document apply to abrasives supplied in the new condition only. Test methods for metallic blast-cleaning abrasives are given in the various parts of ISO 11125. Stainless steel shot and irregulars are used in both static and site blasting equipment. They are most often selected where there is a possibility for the recovery and re-use of the abrasive. NOTE 1 Although this document has been developed for preparation of steelwork, these materials are predominantly used for non-ferrous substrates. The properties specified will generally be appropriate for use when preparing other material surfaces, or components, using blast-cleaning techniques, and can be used for applications where no subsequent coating is applied. NOTE 2 Whenever dissimilar metals are used together, galvanic corrosion can occur.

  • Standard
    6 pages
    English language
    sale 15% off
  • Draft
    6 pages
    English language
    sale 15% off
  • Draft
    6 pages
    English language
    sale 15% off

This document specifies security block (SB) formats (see ISO/IEC 19785-1) registered in accordance with ISO/IEC 19785-2 as formats defined by the Common Biometric Exchange Formats Framework (CBEFF) biometric organization ISO/IEC JTC 1/SC 37. This document also specifies registered SB format identifiers. NOTE The SB format identifier is recorded in the standard biometric header (SBH) of a patron format (or defined by that patron format as the only available SB format). The general-purpose SB format specifies whether the biometric data block (BDB) is encrypted or the SBH and BDB have integrity applied (or both). The general-purpose SB format can include ACBio instances (see ISO/IEC 24761). This SB provides all necessary security parameters, including those used for encryption or integrity. This document does not restrict the algorithms and parameters used for encryption or integrity, but it provides for the recording of such algorithms and parameter values. This document does not cover profiling to determine what algorithms and parameter ranges can be used by the generator of an SB for a particular application area, and hence what algorithms and parameter ranges have to be supported by the user of an SB. The second SB format is more limited but simpler. In particular, it cannot contain ACBio instances and does not support encryption of the BDB. The general-purpose SB format in XML provides for specification of whether the BDB is encrypted or the SBH and BDB have integrity applied (or both).

  • Standard
    20 pages
    English language
    sale 15% off
  • Draft
    18 pages
    English language
    sale 15% off
  • Draft
    18 pages
    English language
    sale 15% off

This document specifies the criteria and minimum requirements for selecting internal coatings (often referred to as linings) for pressurized service within process vessels. The document provides the following: — key factors influencing coating selection; — generic composition of test liquids which can be used as references when evaluating supporting testing evidence for coatings; — principal test methods to be used as evidence of performance when selecting suitable coatings; — supporting evidence to be used in evaluating coatings that is relevant to the potential end use. This document covers types of coatings that are generally available, with properties that are known and documented. It also covers other materials to be evaluated and qualified for use. This document is applicable to process vessels coated at the new construction phase. It can be applied only where the coating is applied directly to the substrate. This document does not cover requirements related to metallic coatings nor weld overlay materials.

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    36 pages
    French language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off
  • Draft
    35 pages
    English language
    sale 15% off
  • Draft
    38 pages
    French language
    sale 15% off

This document provides basic performance requirements and corresponding test methods for containment high efficiency filtration units (CHEFUs). This document is applicable to the devices used to remove harmful bio-aerosol in biosafety facilities and similar controlled environment. This document is not applicable to a filtration unit for removing radioactive aerosol.

  • Standard
    21 pages
    English language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off

This document specifies a method used for the determination of the temperature of deflection under load of specified plastics (including fibre-reinforced plastics in which the fibre length is, prior to processing, greater than 7,5 mm) under defined conditions. A number of different test conditions are defined, depending on the anticipated specimen dimensions. For additional information, see ISO 75-1:2020, Clause 1.

  • Standard
    11 pages
    English language
    sale 15% off
  • Standard
    12 pages
    French language
    sale 15% off
  • Draft
    11 pages
    English language
    sale 15% off
  • Draft
    11 pages
    English language
    sale 15% off
  • Draft
    14 pages
    French language
    sale 15% off

This document specifies the limits of sizes for major, pitch and minor diameters of ISO general purpose metric screw threads (M) conforming to ISO 261 and having basic and design profiles in accordance with ISO 68-1. This document is applicable to the metric fastening screw threads with the ten tolerance classes (4H, 5H, 6H, 7H, 6G, 4h, 6h, 6g, 6f and 6e) recommended in ISO 965-1.

  • Standard
    72 pages
    English language
    sale 15% off
  • Draft
    72 pages
    English language
    sale 15% off
  • Draft
    72 pages
    English language
    sale 15% off

This document specifies the LIN protocol including the signal management, frame transfer, schedule table handling, task behaviour, status management, and commander and responder node. It contains also OSI layer 5 properties according to ISO 14229-7 UDSonLIN-based node configuration and identification services (SID: B016 to B816) belonging to the core protocol specification. A node (normally a commander node) that is connected to more than one LIN network is handled by higher layers (i.e. the application) not within the scope of this document.

  • Standard
    74 pages
    English language
    sale 15% off
  • Draft
    74 pages
    English language
    sale 15% off
  • Draft
    74 pages
    English language
    sale 15% off
  • Standard
    2 pages
    English language
    sale 15% off
  • Standard
    2 pages
    French language
    sale 15% off
  • Draft
    2 pages
    English language
    sale 15% off
  • Draft
    2 pages
    English language
    sale 15% off
  • Draft
    4 pages
    French language
    sale 15% off

This document specifies requirements and their test methods for sinus membrane elevators used during the placement of dental implants for sinus floor lifting. It also specifies the requirements for their marking and labelling.

  • Standard
    4 pages
    English language
    sale 15% off
  • Standard
    4 pages
    French language
    sale 15% off
  • Draft
    4 pages
    English language
    sale 15% off
  • Draft
    4 pages
    English language
    sale 15% off
  • Draft
    6 pages
    French language
    sale 15% off

This document specifies a test method for determining the transverse flexibility (troughability) of a conveyor belt, expressed as a ratio, F/L. The method is not suitable or valid for light conveyor belts as described in ISO 21183-1. NOTE The transverse “flexibility” determined by the method described in this document is only indirectly associated with the inverse of flexural modulus as specified in ISO 178. Nor does it take into consideration the differences in “flexibility” as exhibited by three-point and four-point bending, which takes account of the flexural strain and the thickness of the test piece.

  • Standard
    6 pages
    English language
    sale 15% off
  • Draft
    5 pages
    English language
    sale 15% off
  • Draft
    5 pages
    English language
    sale 15% off

This document specifies the mechanical property limits resulting from tensile testing applicable to aluminium and aluminium alloy extruded rod/bar, tube and profile.
Technical conditions for inspection and delivery, including product and testing requirements, are specified in EN 755-1. Temper designations are defined in EN 515. The chemical composition limits for these materials are given in EN 573-3.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the technical delivery requirements for seamless and welded butt-welding fittings (elbows, concentric and eccentric reducers, equal and reducing tees, caps) made of austenitic and austenitic-ferritic (duplex) stainless steel in two test-categories which are intended for pressure purposes at room temperature, at low temperature or at elevated temperatures, and for the transmission and distribution of fluids and gases.
It specifies:
a)   type of fittings;
1)   type A: butt-welding fittings with reduced pressure factor;
2)   type B: butt-welding fittings for use at full service pressure;
b)   steel grades and their chemical compositions;
c)   mechanical properties;
d)   dimensions and tolerances;
e)   requirements for inspection and testing;
f)   inspection documents;
g)   marking;
h)   protection and packaging.
NOTE   The selection of the appropriate fitting (material, thickness) is the ultimate responsibility of the manufacturer of the pressure equipment (see European Legislation for Pressure Equipment). In the case of a harmonized supporting standard for materials, presumption of conformity to the ESRs is limited to technical data of materials in the standard and does not presume adequacy of the material to a specific item of equipment. Consequently, it is essential that the technical data stated in the material standard be assessed against the design requirements of this specific item of equipment to verify that the ESRs of the PED are satisfied.

  • Standard
    138 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document acknowledges the field of application for taps, shower outlets, shower sets and shower systems used in water supply systems with a pressure range of (0,05 to 1,0) MPa [(0,5 to 10) bar].
The tests described in this document are type tests (laboratory tests) and not quality control tests carried out during manufacture.
This document covers:
—   PN10 taps;
—   PN5 shower outlets;
—   PN5 shower sets;
—   PN10 shower systems.
The following products are excluded from this document:
—   shower taps on its own;
—   taps for filling bathtubs;
—   the tub filling function of combined taps;
—   the function of a tap that delivers e.g. boiling water or sparkling water, etc.;
—   body or side jet showers.
The conditions of use for taps and shower systems are given in Table 1. The conditions of use for showers sets and shower outlets are given in Table 2.
Table 1 — Conditions of use for taps and shower systems
Water supply system   Operating range of taps and shower systems
   Limits   Recommended
see Figure 1   dynamic pressure
≥ 0,05 MPa
(0,5 bar)
static pressure
≤ 1,0 MPa
(10,0 bar)   dynamic pressure b
(0,1 to 0,5) MPa
[(1,0 to 5,0) bar]
temperature   ≤ 70 °C a   ≤ 65 °C
a   This maximum temperature limit can only be reached for short durations not greater than 1 h.
b   Measured at the point of discharge.
NOTE   Taps and shower systems for use at pressures lower than those in Table 1 are not covered by this standard.
Table 2 — Conditions of use for shower outlets and shower sets
Water supply system   Operating range of showers
   Limits   Recommended
see Figure 1   dynamic pressure
≥ 0,05 MPa
(0,5 bar)
static pressure
≤ 0,5 MPa
(5,0 bar)   dynamic pressure
(0,1 to 0,3) MPa
[(1,0 to 3,0) bar]
temperature   ≤ 70 °C a   ≤ 42 °C
a   This maximum temperature limit can only be reached for short durations not greater than 1 h.
Key
1   cold water
2   hot water
3   mains supply pipe (supply pressures up to 10 bar)
4   water heater
Figure 1 — Supply system with a pressure range of (0,05 to 1,0) MPa [(0,5 to 10) bar]
Health and quality requirements in accordance to European and national legislation for final materials in contact with water intended for human consumption are not covered by this document.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document covers safety requirements for powder actuated fixing and hard marking tools which operate with an intermediate member (piston) and are handled manually.
This document deals with all significant hazards (see Annex I), hazardous situations and events relevant to powder actuated fixing and hard marking tools, when they are used as intended and under conditions of misuse which are reasonably foreseeable (see Clause 4). It deals with the significant hazards in the different operating modes and intervention procedures as referred to in EN ISO 12100:2010, 5.4, 5.5, 5.6.
Although the safe use of powder actuated tools depends to an important extent on the use of appropriate cartridges and fasteners, this document is not formulating requirements for the cartridges and fasteners to be used with the tools (see Clause 6).
This document applies to tools designed for use with cartridges with casings made of metal or plastic and with solid propellant and containing a minor quantity of primer mix with a composition different from that of the main propellant.
This document applies to tools designed for use with single cartridges or with cartridges collated in disks or in strips.
The fixing tools in the scope are those intended for use with fasteners made from metal.
NOTE   Information about cartridges can be found either in EN 16264:2014 or the publication of the Permanent International Commission for the Proof of Small Arms (C.I.P.).
This document is not applicable to powder actuated fixing and hard marking tools which are manufactured before this document’s date of publication.

  • Standard
    70 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidance on the structural design of underground modular systems for infiltration, attenuation and storage of surface water under various conditions of loading. The procedures are explained, with the appropriate variables in the design formulae, and provides graphical information on vehicle surcharge loadings.
These modular systems are constructed from multiple cuboid shaped thermoplastic boxes generally with ancillary components such as inlet/outlet connectors, vents, and access/inspection provision. This guidance is for the design of modular systems conforming to EN 17152 1.
The boxes, including integral components, are injection moulded, extruded or thermoformed thermoplastics, manufactured from polypropylene (PP) or unplasticized poly(vinyl chloride) (PVC-U), and are intended to be used as elements in a modular system where the manufacturer has clearly stated in the documentation how the components are assembled to create a complete infiltration, attenuation or storage system.
Outside the scope of this document are the following conditions:
-   seismic loads;
-   lateral loads from adjacent structures and embankments;
-   influence of trees;
-   backfill materials not according to CEN/TR 17179 [1].
Geotextile and/or geomembrane used with modular systems are outside the scope of this document.
NOTE   If reference is made in this document to Eurocode standards, the conditions in a national foreword or national annex are normally stated.

  • Technical specification
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements for showcases for safe and secure display of cultural heritage objects complying with the requirements for preventive conservation. This document focuses on so-called passive showcases, those with unpowered climate conditioning systems. The role a showcase plays in preventive conservation is determinable via a site-specific risk assessment of relevant factors, which are mentioned in this document.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the requirements for the design, manufacturing, quality control, assembly, testing, and documentation of ball, check, gate, plug, and axial on–off valves for application in subsea pipeline systems for the petroleum and natural gas industries.
This document applies to ASME Class 150, 300, 600, 900, 1500, and 2500 valves intended for use in subsea pipelines. Use of these valves for any other purpose is outside the scope of this document.
This document is a supplement to API 6DSS, 3rd edition (2017), with Addendum 1 (2019) and Addendum 2 (2022), including Errata 1-3, the requirements of which are applicable with the additions specified in this document.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This amendment of EN 50604-1 provides clarification to questions raised by test institutes for being able to proceed in testing according to the standard. It is ready for immediate release / publication.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60730-2-23:2025 applies to the safety of electrical, electro-mechanical and electronic sensors including sensing elements and any conditioning circuitry. Sensors covered under the scope of this document serve only to transform an activating quantity into a usable output and do not perform a control operation as defined in IEC 60730-1. This document applies to sensors in so far as defining the reliability and accuracy of their inherent operating characteristics and corresponding response under normal and abnormal conditions within the sensor. Sensors, as defined herein, are used in or as part of an automatic electrical control or as independently mounted devices in connection with controls and control systems. The use of this document for other applications in which sensors are used is possible provided that the appropriate safety is maintained as defined by the end product standard. This document applies to discrete sensors constructed of, but not limited to, conductive, semi-conductive, or substrate, for the detection of activating quantities such as voltage, current, temperature, pressure, humidity, light (e.g. optical), gasoline vapours, and the like.
NOTE 1 Future consideration will be given to other sensor technologies constructed of other materials such as chemical, mechanical and micro-electromechanical systems (MEMS), along with other activating quantities like mass flow, liquid, movement, weight, vibration, or other as needed.
This document applies to sensing element(s) as well as any electronic hardware, software, or other conditioning circuits that are inherent to the sensor and relied upon to reliably transform the input signal into a useable response signal (output) for functional safety purposes. Conditioning circuits that are inseparable from the control for which the sensing element relies upon to perform its desired function are evaluated by the requirements of the relevant control Part 2 standard and/or IEC 60730-1.
NOTE 2 Additional requirements can be also applied by the application standard in which the sensor is used.
Throughout this document, whenever it is indicated that the IEC 60730-1 requirements are applicable, the term "control(s)", is replaced by the term "sensor(s)", and the term "equipment" is replaced by the term "control", as they are used in IEC 60730-1, respectively, unless otherwise specified herein.
This document does not apply to sensors explicitly described in another relevant part 2 of the IEC 60730 series.
NOTE 3 For example, a flame sensor as described in IEC 60730-2-5.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard deals with the safety of sealed (hermetic and semi-hermetic type) motor-compressors, their protection and control systems, if any, which are intended for use in equipment for household and similar purposes and which conform with the standards applicable to such equipment. It applies to motor-compressors tested separately, under the most severe conditions that may be expected to occur in normal use, their rated voltage being not more than 250 V for single-phase motor-compressors and 480 V for other motor-compressors

  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to half-burnt dolomite used for treatment of water intended for human consumption. It describes the characteristics of half-burnt dolomite and specifies the requirements and the corresponding test methods for half-burnt dolomite. It gives information on its use in water treatment.

  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a wavelength-dispersive X-ray fluorescence (WDXRF) test method for the determination of the sulfur content in ethanol (E85) automotive fuel [3], containing ethanol between 50 % (V/V) and 85 % (V/V), from 5 mg/kg to 20 mg/kg, using instruments with either monochromatic or polychromatic excitation.
NOTE 1   Sulfur contents higher than 20 mg/kg can be determined after sample dilution with an appropriate solvent. However, the precision was not established for diluted samples.
NOTE 2   For the purposes of this document, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction (µ) and the volume fraction (φ) of a material respectively.
WARNING - The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste, and waste using GC-MS and GC-ECD (see Table 2).
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this document, lower limit of application from 1 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μg/kg cannot be reached.
Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCB and presence of interfering substances. These differences make it impossible to describe one general procedure. This document contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
NOTE            The analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to in EN 61619, EN 12766-1 and ISO 6468 respectively.
The method can be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments.

  • Draft
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the determination of free melamine in coated and uncoated wood-based-panels.
NOTE 1   It is also applicable to other wood-based products, to other solid products e.g. impregnates or decorative paper and to liquid materials.
The determination of melamine is performed by extraction using dimethyl sulfoxide (DMSO) and subsequent high-performance liquid chromatography (HPLC) analysis and ultraviolet (UV) detection.
NOTE 2   For determination of melamine in foodstuff, EN 16858 is applicable. For determination of melamine in animal feeding stuffs, EN 17212 is applicable. For determination of melamine in textiles, EN ISO 1833-26 is applicable.

  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the characteristics and the tests required to qualify and control lots of high purity (≥99 %) aluminium coatings applied by ion-vapor deposition (IVD) on fasteners.

  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the characteristics of floor coverings based on polyvinyl chloride and modifications thereof, on jute or polyester backing or on polyester felt with polyvinyl chloride backing, supplied in either tile or roll form.
To encourage the consumer to make an informed choice the document includes a classification system (see EN ISO 10874) based on intensity of use, which shows where these floor coverings give satisfactory service. It also specifies requirements for marking.

  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method of evaluating the performance of a cable after exposure to a thermal shock.
It is intended to be used together with EN 3475-100.

  • Draft
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Scope of ISO 5149-4:2022:
This document specifies requirements for safety and environmental aspects in relation to operation,  maintenance and repair of refrigerating systems and the recovery, reuse and disposal of all types of refrigerant, refrigerant oil, heat transfer fluid, refrigerating system and part thereof.
This  document  does  not  cover  "motor  vehicle  air  conditioners"  constructed  according  to  the  product  standards such as ISO 13043.
These requirements are intended to minimize risks of injury to persons and damage to property and the environment resulting from improper handling of the refrigerants or from contaminants leading to system breakdown and resultant emission of the refrigerant.

  • Draft
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60730-2-8:2025 applies to electrically operated water valves • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "control" means "electrically operated water valve". EXAMPLE 1 Electrically operated water valves for appliances within the scope of IEC 60335. • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); EXAMPLE 2 Independently mounted water valves, controls in smart grid systems and controls for building automation systems within the scope of ISO 16484-2. • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 3 Electrically operated water valves for commercial catering, heating and air-conditioning equipment. • that are smart enabled electrically operated water valves; EXAMPLE 4 Smart grid control, remote interfaces and controls of energy-consuming equipment including computer or smart phone. • that are AC or DC powered electrically operated water valves with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that uses electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J of Part 1; • responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; • in which actuators and valve bodies are designed to be fitted to each other. • as well as manual controls when such are electrically or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to - the inherent safety of electrically operated water valves, and - functional safety of electrically operated water valves and safety related systems, - controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, - the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of electrically operated water valves used in, on, or in association with an equipment. This document contains requirements for electrical features of water valves and requirements for mechanical features of valves that affect their intended operation. This document does not • apply to electrically operated water valves intended exclusively for industrial process applications unless explicitly mentioned in the relevant Part 2 or the equipment standard. However, this document can be applied to evaluate automatic electrical controls intended specifically for industrial applications in cases where no relevant safety standard exists. • apply to - electrically operated water valves of nomi

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60364-8-82:2022 provides requirements and recommendations that apply to low-voltage electrical installations connected or not to a distribution network able to operate: – with local power supplies, and/or – with local storage units, and that monitors and controls the energy from the locally connected sources delivering it to: – current-using equipment, and/or – local storage units, and/or – distribution networks. Such electrical installations are designated as prosumer's electrical installations (PEIs). These requirements and recommendations apply to new installations and modifications of existing installations. This document also provides requirements and recommendations for the safe, efficient and correct behaviour of these installations when integrated into a smart grid. Information related to grid interaction to ensure the stability of the electrical system for grid connected PEIs is given in Annex B. This document covers the requirements related to stability of islanded and stand-alone PEIs. This first edition cancels and replaces IEC 60364-8-2 published in 2018. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60364­8­2:2018: a) the vocabulary and concepts have been aligned as much as possible with those used by TC 8 and SC 8B, taking notably into account the IEC 62898 and IEC 62786 series, still respecting the installers mindset (installers being the first users of the IEC 60364 series and being used to only refer to the IEC 60364 series); b) the type of system earthing and the change of type of system earthing (sequencing) when there is a change of mode of the prosuming installation, have been clarified; c) the conditions of connection and disconnection from the DSO network have also been described, both from the safety point of view and the proper functioning point of view; d) additional requirements have been introduced; e) the figures have been updated; f) a new normative Annex D on single dwelling or similar application islandable PEIs has been added; g) the numbering has also been reviewed to follow the updated numbering system of the IEC 60364 series, in line with the IEC Directives and compatible with Parts 7.

  • Standardization document
    72 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document deals with the technical requirements and the means for their verification for additive manufacturing (AM) machines using a bed of metallic powder, pyrophoric feedstock excluded, and a laser herein designated as machine.
This document deals with all significant hazards, hazardous situations or hazardous events during all phases of the life of the machine (ISO 12100:2010, 5.4), as listed in Annex A, caused by AM machines using a bed of metallic powder and a laser when used as intended and under conditions of misuse which are reasonably foreseeable by the manufacturer.
This document does not deal with hazards which can occur:
—     during the design and construction phase of the laser beam powder ped fusion (PBF-LB) machine itself;
—     operating in potentially explosive atmospheres.
This document does not apply to technologies other than AM metals PBF-LB.
This document is not applicable to machines manufactured before the date of its publication.

  • Draft
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for qualification of welding operators and weld setters for mechanized and automatic welding of metallic materials.
This document does not apply to personnel who:
—     do not control or adjust welding parameters;
—     are not involved in the setup of welding equipment.
Qualification of welding operators and weld setters for friction stir welding and friction stir spot welding are covered by ISO 25239-3 and ISO 18785-3, respectively.

  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61300-3-46:2025 provides a standard for the measurement of guide pin bore and fibre bore diameters for rectangular ferrules used in connectors specified in the IEC 61754 series. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of fibre bore measurement; b) addition of force gauge method; c) addition of Annex A on temperature dependence.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61203:2025 This document provides procedures and supervision for the use and maintenance of synthetic esters in transformers and other electrical equipment. This document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61847:2025 specifies: – the essential non-thermal output characteristics of ultrasonic surgical units; – methods of measurement of these output characteristics; – those characteristics to be declared by the manufacturers of such equipment. This document is applicable to equipment which meets the criteria of a), b) and c) below: a) ultrasonic surgical systems operating in the frequency range 20 kHz to 120 kHz; and b) ultrasonic surgical systems whose use is the fragmentation, emulsification, debridement, or cutting of human tissue, whether or not those effects are delivered in conjunction with tissue removal or coagulation; and c) ultrasonic surgical systems in which an acoustic wave is conducted by means of a specifically designed wave guide to deliver energy to the surgical site. This document is not applicable to: – lithotripsy equipment which uses extracorporeally induced pressure pulses, focused through liquid conducting media and the soft tissues of the body; – surgical systems used as part of the therapeutic process (hyperthermia systems); – surgical systems whose mechanism of action is through frictional heat generated by tissue in contact with the wave guide, e.g. clamp coagulators or clamping vibrational cutters; – surgical systems whose mechanism of action is through focused ultrasound for either thermal degradation (high intensity focused ultrasound – HIFU or HITU) or cavitation erosion (Histotripsy) of tissue remote from the ultrasound transducer; – surgical systems whose mechanism of action is through erosion of hard tissues in contact with the applicator tip, e.g. bone cutting or drilling. This document does not deal with the effectiveness or safety of ultrasonic surgical systems. This document does not deal with airborne noise from the systems, which can affect operators and patients. IEC 61847:2025 cancels and replaces the first edition published in 1998. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The upper frequency covered by this document has been raised from 60 kHz to 120 kHz. b) The hydrophone method of measuring ultrasound power is now normative. Because of difficulties in using the calorimetry method of measuring ultrasound power, it is no longer the primary approach. c) It is recognised that some systems can have more than one mode of vibration under user control, and the measurement techniques and declarations have been updated to address this. d) The high-frequency component, which relates to cavitation developed at the applicator tip and the vibration amplitude at which cavitation occurs is addressed. e) Specific requirements for measurement at excursion levels where no cavitation is present, and extrapolation to maximum excursion level(s) are described. f) Guidance is provided to adapt the methodology described to more complex designs and vibration patterns, excursion directions, and their output characteristics. g) Guidance is provided with respect to measurement tank arrangements for different types of systems. h) The list of ultrasound methods and systems not covered by this document was extended to incorporate recent developments. i) Definitions for cavitation related terms were added. j) Requirements for the measurement of directivity characteristics of the applicator tip were changed. k) Annex A was modified and Figure A.1 wa

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

DEN/ERM-TGAERO-31-1

  • Standard
    45 pages
    English language
    sale 15% off
  • Standard
    45 pages
    English language
    sale 15% off
  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The present document specifies technical requirements, limits and test methods for Short Range Devices in the non-
specific category operating in the frequency range 25 MHz to 1 000 MHz.
The non specific SRD category is defined by the EU Commission Decision 2019/1345/EU [i.3] as:
"The non-specific short-range device category covers all kinds of radio devices, regardless of the application or the
purpose, which fulfil the technical conditions as specified for a given frequency band. Typical uses include telemetry,
telecommand, alarms, data transmissions in general and other applications".
These radio equipment types are capable of transmitting up to 500 mW effective radiated power and operating indoor or
outdoor.
NOTE: The relationship between the present document and the essential requirements of article 3.2 of
Directive 2014/53/EU [i.2] is given in Annex A

  • Standard
    107 pages
    English language
    sale 15% off
  • Standard
    107 pages
    English language
    sale 15% off
  • Standard
    107 pages
    English language
    sale 10% off
    e-Library read for
    1 day

DEN/ERM-TG28-561

  • Standard
    100 pages
    English language
    sale 15% off
  • Standard
    100 pages
    English language
    sale 15% off
  • Standard
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

  • Standard
    1 page
    English and French language
    sale 15% off

IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.

  • Technical report
    29 pages
    English language
    sale 15% off

IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.

  • Technical report
    184 pages
    English language
    sale 15% off

IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.

  • Technical report
    39 pages
    English language
    sale 15% off

IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.

  • Technical specification
    44 pages
    English language
    sale 15% off

IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).

  • Technical specification
    74 pages
    English language
    sale 15% off

IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.

  • Standard
    50 pages
    English and French language
    sale 15% off

ISO/IEC TR 30189-1:2025 describes a framework for the use of IoT technology for management of tangible cultural heritage assets, which includes the associated functional entities and information flows.

  • Technical report
    21 pages
    English language
    sale 15% off

IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

  • Standard
    98 pages
    English and French language
    sale 15% off

IEC 61000-4-2: 2025 relates to the immunity requirements and test methods for electrical and electronic equipment subjected to static electricity discharges from operators directly and from personnel to adjacent objects. It additionally specifies ranges of test levels which relate to different environmental, and installation conditions and establishes test procedures. The objective of this document is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment when subjected to electrostatic discharges. In addition, it includes electrostatic discharges which can occur from personnel to objects near the equipment. This document specifies:
- ideal waveform of the discharge current;
- range of test levels;
- test equipment;
- test setup;
- test procedure;
- calibration procedure;
- measurement uncertainty.
This document gives specifications for tests performed in laboratories and guidance to post-installation tests. This document is not intended to specify the tests to be applied to particular apparatus or systems. The main aim is to give a general basic reference to all concerned product committees. The product committees remain responsible for the appropriate choice of the tests and the severity level to be applied to their equipment. This document excludes tests intended to evaluate the ESD sensitivity of devices during handling and packaging. It is not intended for use in characterizing the performance of ESD protection circuit IEC Guide 107.
This document forms Part 4-2 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107. This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) added a calibration requirement for ESD generators with air discharge tip;
b) added a normative annex for test setups for particular kind of equipment (see Annex I);
c) added an informative annex for wearable devices (see Annex J);
d) added an informative annex on how to select test points and give guidance on how to specify the number of pulses for direct contact discharges (see Annex E);
e) moved Clause 9 into a new informative annex (see Annex K);
f) improvement of the current calibration procedure;
g) improvement of the measurement uncertainty considerations with examples of uncertainty budgets;
h) because post-installation tests cannot be performed in a controlled environment, this test method has been moved into a new informative Annex G.

  • Standard
    163 pages
    English and French language
    sale 15% off

REN/MSG-TFES-15-3

  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 10% off
    e-Library read for
    1 day

SIGNIFICANCE AND USE
5.1 The edgewise compressive strength of short sandwich construction specimens provides a basis for judging the load-carrying capacity of the construction in terms of developed facing stress.  
5.2 This test method provides a standard method of obtaining sandwich edgewise compressive strengths for panel design properties, material specifications, research and development applications, and quality assurance.  
5.3 The reporting section requires items that tend to influence edgewise compressive strength to be reported; these include materials, fabrication method, facesheet lay-up orientation (if composite), core orientation, results of any nondestructive inspections, specimen preparation, test equipment details, specimen dimensions and associated measurement accuracy, environmental conditions, speed of testing, failure mode, and failure location.
SCOPE
1.1 This test method covers the compressive properties of structural sandwich construction in a direction parallel to the sandwich facing plane. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off

ABSTRACT
This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure. The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose. Types used to identify the principal polymer component of the sheet include: type I - ethylene propylene diene terpolymer, and type II - butyl. The sheet shall be formulated from the appropriate polymers and other compounding ingredients. The thickness, tensile strength, elongation, tensile set, tear resistance, brittleness temperature, and linear dimensional change shall be tested to meet the requirements prescribed. The water absorption, factory seam strength, water vapour permeance, hardness durometer, resistance to soil burial, resistance to heat aging, and resistance to puncture shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure.  
1.2 The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off

ABSTRACT
This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces. Different tests shall be conducted in order to determine the following physical properties of coal tar primer: water content, consistency, specific gravity, matter insoluble in benzene, distillation, and coke residue content.
SCOPE
1.1 This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Motor O.N. correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation.  
5.2 Motor O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-octane number determinations.  
5.2.2 Motor O.N., in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the road octane ratings for many vehicles, is posted on retail dispensing pumps in the United States, and is referred to in vehicle manuals.
This is more commonly presented as:
5.3 Motor O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Motor O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.  
5.5 Motor O.N. is utilized to determine, by correlation equation, the Aviation method O.N. or performance number (lean-mixture aviation rating) of aviation spark-ignition engine fuel.7
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number.  
1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pounds units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3(6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8. ...

  • Standard
    59 pages
    English language
    sale 15% off
  • Standard
    59 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The force required to separate a metallic coating from its plastic substrate is determined by the interaction of several factors: the generic type and quality of the plastic molding compound, the molding process, the process used to prepare the substrate for electroplating, and the thickness and mechanical properties of the metallic coating. By holding all others constant, the effect on the peel strength by a change in any one of the above listed factors may be noted. Routine use of the test in a production operation can detect changes in any of the above listed factors.  
4.2 The peel test values do not directly correlate to the adhesion of metallic coatings on the actual product.  
4.3 When the peel test is used to monitor the coating process, a large number of plaques should be molded at one time from a same batch of molding compound used in the production moldings to minimize the effects on the measurements of variations in the plastic and the molding process.
SCOPE
1.1 This test method gives two procedures for measuring the force required to peel a metallic coating from a plastic substrate.2 One procedure (Procedure A) utilizes a universal testing machine and yields reproducible measurements that can be used in research and development, in quality control and product acceptance, in the description of material and process characteristics, and in communications. The other procedure (Procedure B) utilizes an indicating force instrument that is less accurate and that is sensitive to operator technique. It is suitable for process control use.  
1.2 The tests are performed on standard molded plaques. This method does not cover the testing of production electroplated parts.  
1.3 The tests do not necessarily measure the adhesion of a metallic coating to a plastic substrate because in properly prepared test specimens, separation usually occurs in the plastic just beneath the coating-substrate interface rather than at the interface. It does, however, reflect the degree that the process is controlled.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation.  
5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1,  k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations.  
5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals.
This is more commonly presented as:
5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States.  
5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N.  
1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Gu...

  • Standard
    48 pages
    English language
    sale 15% off
  • Standard
    48 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method is useful in characterizing certain petroleum products, as one element in establishing uniformity of shipments and sources of supply.  
5.2 See Guide D117 for applicability to mineral oils used as electrical insulating oils.  
5.3 The Saybolt Furol viscosity is approximately one tenth the Saybolt Universal viscosity, and is recommended for characterization of petroleum products such as fuel oils and other residual materials having Saybolt Universal viscosities greater than 1000 s.  
5.4 Determination of the Saybolt Furol viscosity of bituminous materials at higher temperatures is covered by Test Method E102/E102M.
SCOPE
1.1 This test method covers the empirical procedures for determining the Saybolt Universal or Saybolt Furol viscosities of petroleum products at specified temperatures between 21 and 99 °C [70 and 210 °F]. A special procedure for waxy products is indicated.  
Note 1: Test Methods D445 and D2170/D2170M are preferred for the determination of kinematic viscosity. They require smaller samples and less time, and provide greater accuracy. Kinematic viscosities may be converted to Saybolt viscosities by use of the tables in Practice D2161. It is recommended that viscosity indexes be calculated from kinematic rather than Saybolt viscosities.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Coefficients of linear thermal expansion are used, for example, for design purposes and to determine if failure by thermal stress may occur when a solid body composed of two different materials is subjected to temperature variations.  
5.2 This test method is comparable to Test Method D3386 for testing electrical insulation materials, but it covers a more general group of solid materials and it defines test conditions more specifically. This test method uses a smaller specimen and substantially different apparatus than Test Methods E228 and D696.  
5.3 This test method may be used in research, specification acceptance, regulatory compliance, and quality assurance.
SCOPE
1.1 This test method determines the technical coefficient of linear thermal expansion of solid materials using thermomechanical analysis techniques.  
1.2 This test method is applicable to solid materials that exhibit sufficient rigidity over the test temperature range such that the sensing probe does not produce indentation of the specimen.  
1.3 The recommended lower limit of coefficient of linear thermal expansion measured with this test method is 5 μm/(m·°C). The test method may be used at lower (or negative) expansion levels with decreased accuracy and precision (see Section 12).  
1.4 This test method is applicable to the temperature range from −120 °C to 900 °C. The temperature range may be extended depending upon the instrumentation and calibration materials used.  
1.5 SI units are the standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The carbon residue value of burner fuel serves as a rough approximation of the tendency of the fuel to form deposits in vaporizing pot-type and sleeve-type burners. Similarly, provided alkyl nitrates are absent (or if present, provided the test is performed on the base fuel without additive) the carbon residue of diesel fuel correlates approximately with combustion chamber deposits.  
5.2 The carbon residue value of motor oil, while at one time regarded as indicative of the amount of carbonaceous deposits a motor oil would form in the combustion chamber of an engine, is now considered to be of doubtful significance due to the presence of additives in many oils. For example, an ash-forming detergent additive may increase the carbon residue value of an oil yet will generally reduce its tendency to form deposits.  
5.3 The carbon residue value of gas oil is useful as a guide in the manufacture of gas from gas oil, while carbon residue values of crude oil residuums, cylinder and bright stocks, are useful in the manufacture of lubricants.
SCOPE
1.1 This test method covers the determination of the amount of carbon residue (Note 1) left after evaporation and pyrolysis of an oil, and is intended to provide some indication of relative coke-forming propensities. This test method is generally applicable to relatively nonvolatile petroleum products which partially decompose on distillation at atmospheric pressure. Petroleum products containing ash-forming constituents as determined by Test Method D482 or IP Method 4 will have an erroneously high carbon residue, depending upon the amount of ash formed (Note 2 and Note 4).  
Note 1: The term carbon residue is used throughout this test method to designate the carbonaceous residue formed after evaporation and pyrolysis of a petroleum product under the conditions specified in this test method. The residue is not composed entirely of carbon, but is a coke which can be further changed by pyrolysis. The term carbon residue is continued in this test method only in deference to its wide common usage.
Note 2: Values obtained by this test method are not numerically the same as those obtained by Test Method D524. Approximate correlations have been derived (see Fig. X1.1), but need not apply to all materials which can be tested because the carbon residue test is applied to a wide variety of petroleum products.
Note 3: The test results are equivalent to Test Method D4530, (see Fig. X1.2).
Note 4: In diesel fuel, the presence of alkyl nitrates such as amyl nitrate, hexyl nitrate, or octyl nitrate causes a higher residue value than observed in untreated fuel, which can lead to erroneous conclusions as to the coke forming propensity of the fuel. The presence of alkyl nitrate in the fuel can be detected by Test Method D4046.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Prin...

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    7 pages
    English language
    sale 15% off

DEN/ERM-TGAERO-31-2

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document covers internal arc-fault control devices, hereinafter referred to as IACD, which are intended to: - detect internal arc-faults in low-voltage switchgear and controlgear assemblies, by processing (at a minimum) the optical effect of an internal arc-fault, and - operate mitigation device (either external or combined) in order to minimize the effects of the internal arc-fault (see Figure 1). For the purpose of this document the terms "light" or "optical" covers more than visible spectra. They may cover also, for example, infrared or ultraviolet electromagnetic radiations (see Annex D). For combined-type IACD, this document is considered in addition to the relevant product standard for internal arc-fault mitigation devices (IARD per IEC TS 63107:2020). Compliance to the relevant product standard is mandatory and cannot be claimed by testing to this document alone. NOTE 1 Low-voltage switchgear and controlgear assemblies are usually described by IEC 61439 series. [Figure 1] Therefore, this document covers the following: - internal arc-fault control device (stand-alone, multifunction or combined); - one or more associated sensor(s) used to detect optical effect of the internal arc-fault; - sensor(s), sensing another physical effect, to confirm the fault; - associated or combined mitigation device. An IACD is not intended to trigger under normal operation of low-voltage switchgear and controlgear (i.e. absence of internal arc-fault), including normal arcing associated with operation of disconnecting and switching devices. This document only covers the following methods: - optical detection of the light caused by an internal arc-fault; - optional confirmation of internal arc-fault by line current measurement. Many different conductive materials could be used in LV assemblies (e.g. steel, copper, aluminium). Nevertheless, tests specified in this document are deemed to represent the most critical and challenging conditions for arc-detection and cover all combinations of conductive materials. NOTE 2 Compared to other materials (e.g. steel, aluminium), copper leads to a lower optical radiation energy. The rated voltage of the assembly in which an IACD is installed does not exceed 1 000 V AC. Such devices are designed to be operated and maintained by skilled persons only. This document does not cover: - DC internal arc-fault detection and control; - overcurrent relays; - AFDD (arc-fault detection devices) as defined by IEC 62606; - guidance on installation within assemblies; NOTE 3 The integration of an IACD into an assembly is described in IEC TS 63107. - use with additional measures needed for installation and operation within explosive atmospheres. These are given in IEC 60079 series documents; - requirements for embedded software and firmware design rules; for this subject, the manufacturer is responsible for taking additional safety measures; NOTE 4 IEC TR 63201 describes rules for firmware and embedded software development preventing errors in software. - cybersecurity aspects; for this subject, the manufacturer is responsible for taking additional safety measures; NOTE 5 See IEC TS 63208. - mobile applications. NOTE 6 Even when addressing internal arc-fault mitigation devices, this document does not supersede any other relevant product standard (e.g. IEC 60947-2 or IEC 60947-9-1). NOTE 7 DC arcing fault phenomena are under consideration. Further investigation is needed to comprehend DC arcing phenomena and required sensing.

  • Standard
    90 pages
    English language
    sale 10% off
    e-Library read for
    1 day