ASTM D5779-95a(2001)
(Test Method)Standard Test Method for Field Determination of Apparent Specific Gravity of Rock and Manmade Materials for Erosion Control
Standard Test Method for Field Determination of Apparent Specific Gravity of Rock and Manmade Materials for Erosion Control
SIGNIFICANCE AND USE
Specific gravity is one factor used to determine the required mass of individual particles used as gabion-fill, riprap, armor stone, breakwater stone, or other types of rock products used for erosion control applications, and acceptibility of these materials for their intended use.
SCOPE
1.1 This test method covers the determination of the specific gravity of rock for erosion control. This test method can be used for all types of materials, both naturally occurring or manmade.
1.2 This is a field test method to measure apparent specific gravity. For laboratory determination of bulk specific gravity see Test Methods C97.
1.3 The values stated in SI units are to be regarded as the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
General Information
Relations
Standards Content (Sample)
NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
Designation: D 5779 – 95a (Reapproved 2001)
Standard Test Method for
Field Determination of Apparent Specific Gravity of Rock
and Manmade Materials for Erosion Control
This standard is issued under the fixed designation D 5779; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
1. Scope 3.1.1 field apparent specific gravity—the ratio of the weight
in air of a unit volume of impermeable rock or manmade
1.1 Thistestmethodcoversthedeterminationofthespecific
material, to the weight of an equal volume of water. This is
gravity of rock for erosion control. This test method can be
similar to the definition of apparent specific gravity in Termi-
used for all types of materials, both naturally occurring or
nologyD 653exceptthatnon-distilledwaterisusedforthetest
manmade.
and the test can be run under a variety of temperatures.
1.2 This is a field test method to measure apparent specific
gravity. For laboratory determination of bulk specific gravity
4. Summary of Test Method
see Test Methods C 97.
4.1 A specimen (block, chunk, slab, or piece) of rock or
1.3 The values stated in SI units are to be regarded as the
manmade material is weighed in air and then weighed again
standard.
while immersed in water. Using the weights, the field specific
1.4 This standard does not purport to address all of the
gravity is calculated. The determined specific gravity can then
safety concerns, if any, associated with its use. It is the
be used to determine a mass per unit volume.
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
5. Significance and Use
bility of regulatory limitations prior to use.
5.1 Specific gravity is one factor used to determine the
2. Referenced Documents requiredmassofindividualparticlesusedasgabion-fill,riprap,
armor stone, breakwater stone, or other types of rock products
2.1 ASTM Standards:
used for erosion control applications, and acceptibility of these
C 97 Test Methods for Absorption and Bulk Specific Grav-
2 materials for their intended use.
ity of Dimension Stone
C 670 Practice for Preparing Precision and Bias Statements
6. Apparatus
for Test Methods for Construction Materials
6.1 Balance—Abalance or scale conforming to the require-
D 653 Terminology Relating to Soil, Rock, and Contained
ments of Specification D 4753 readable (with no estimation) to
Fluids
1 % or better of the mass of the test specimen. For masses over
D 4753 Specification for Evaluating, Selecting, and Speci-
50 kg a load-cell, spring scale, or some other device accurate
fying Balances and Scales for Use in Soil, Rock, and
3 to within 1 % of the mass may be used.
Related Construction Materials Testing
6.2 Specimen Container—A wire basket or sling or pan
D 4992 Practice for Evaluation of Rock to be Used for
4,5 capable of holding a specimen of rock and suspending it in
Erosion Control
water.
3. Terminology 6.3 Water—A volume of water large enough to submerge
the specimen and its container.
3.1 Definitions:
7. Sampling
7.1 A source of rock to be sampled shall be guided by
ThistestmethodisunderthejurisdictionofASTMCommitteeD18onSoiland
Practice D 4992. A source that is macroscopically uniform in
Rock and is the direct responsibility of Subcommittee D18.17 on Rock for Erosion
color, texture, mineralogy, or some other visual property shall
Control.
be represented by a sample consisting of a minimum of five
Current edition approved Dec. 10, 1995. Published March 1996. Originally
published as D 5779 – 95. Last previous edition D 5779 – 95.
specimens of rock.Amacroscopically nonuniform source shall
Annual Book of ASTM Standards, Vol 04.07.
be represented by a minimum of eight samples of rock. Rock
Annual Book of ASTM Standards, Vol 04.02.
types that comprise less than 5 % of the total source, as
Annual Book of ASTM Standards, Vol 04.08.
Annual Book of ASTM Standards, Vol 04.09. determined from their macroscopic properties, may be ignored,
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
D 5779
average apparent summation of specific gravities
unless their presence will greatly affect the test results and
5 (2)
specific gravity number of samples tested
subsequent proposed use of the rock. Sample the rock types in
their approximate proportion to the types that occur at the
NOTE 5—The average specific gravity shall be calculated for a speci-
source.
men of combined small pieces. The specific gravity of individual pieces
7.2 Spec
...
This May Also Interest You
SIGNIFICANCE AND USE
5.1 Impact Value, as determined using the standard 4.5 kg (10 lbm) hammer, has direct application to design and construction of pavements and a general application to earthworks compaction control and evaluation of strength characteristics of a wide range of materials, such as soils, soil aggregates and stabilized soil. Impact Value is one of the properties used to evaluate the strength of a layer of soil up to about 150 mm (6 in.) in thickness using a 50 mm (2 in.) diameter hammer or up to 380 mm (15 in.) in thickness using a 130 mm (5 in.) diameter hammer, and by inference to indicate the compaction condition of this layer. Impact Value reflects and responds to changes in physical characteristics that influence strength. It is a dynamic force-penetration property and may be used to set a strength parameter.
5.2 This test method provides immediate results in terms of IV and may be used for the process control of pavement or earthfill activities where the avoidance of delays is important and where there is a need to determine variability when statistically based quality assurance procedures are being used.
5.3 This test method does not provide results directly as a percentage of compaction but rather as a strength index value from which compaction may be inferred for the particular moisture conditions. From observations, strength either remains constant along the dry side of the compaction curve or else reaches a peak and, for both cases, declines rapidly with increase in water content beyond a point slightly dry of optimum water content, at approximately 0.5 percent. This is generally between 95 and 98 % maximum dry density (see Fig. 1 and Fig. 2). An as-compacted target strength in terms of IV may be designated from laboratory testing or field trials as a strength to achieve in the field as the result of a compaction process for a desired density and water content. If testing is performed after compaction when conditions are such that the water content has c...
SCOPE
1.1 These test methods cover the determination of the Impact Value (IV) of a soil either in the field or a test mold, as follows:
1.1.1 Field Procedure A—Determination of IV alone, in the field.
1.1.2 Field Procedure B—Determination of IV and water content, in the field.
1.1.3 Field Procedure C—Determination of IV, water content and dry density, in the field.
1.1.4 Mold Procedure—Determination of IV of soil compacted in a mold, in the lab.
1.2 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.3 The standard test method, using a 4.5 kg (10 lbm) hammer, is suitable for, but not limited to, evaluating the strength of an unsaturated compacted fill, in particular pavement materials, soils, and soil-aggregates having maximum particle sizes less than 37.5 mm (1.5 in.).
1.4 By using a lighter 0.5 kg (1.1 lbm) or 2.25 kg (5 lbm) hammer, this test method is applicable for evaluating lower strength soils such as fine grained cohesionless, highly organic, saturated, or highly plastic soils having a maximum particle size less than 9.5 mm (0.375 in.), or natural turfgrass.
1.5 By using a heavier 10 kg (22 lbm) or 20 kg (44 lbm) hammer, this test method is applicable for evaluating harder materials at the top end the scales or beyond the ranges of the standard and lighter impact soil testers.
1.6 By performing laboratory test correlations for a particular soil using the 4.5 kg (10 lbm) hammer, IV may be correlated with an unsoaked California Bearing Ratio (CBR) or may be used to infer percentage compaction. The IV of the 0.5 kg (1.1 lbm) and 2.25 kg (5 lbm) hammers may be independently correlated to an unsoaked CBR or used to infer the percentage compaction for lower strength soils...
- Standard11 pagesEnglish languagesale 15% off
- Standard11 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The parameters obtained from Methods A and B are in terms of undrained total stress. However, there are some cases where either the rock type or the loading condition of the problem under consideration will require the effective stress or drained parameters be determined.
5.2 Method C, uniaxial compressive strength of rock is used in many design formulas and is sometimes used as an index property to select the appropriate excavation technique. Deformation and strength of rock are known to be functions of confining pressure. Method A, triaxial compression test, is commonly used to simulate the stress conditions under which most underground rock masses exist. The elastic constants (Methods B and D) are used to calculate the stress and deformation in rock structures.
5.3 The deformation and strength properties of rock cores measured in the laboratory usually do not accurately reflect large-scale in situ properties because the latter are strongly influenced by joints, faults, inhomogeneity, weakness planes, and other factors. Therefore, laboratory values for intact specimens shall be employed with proper judgment in engineering applications.
Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means for evaluating some of those factors.
SCOPE
1.1 These four test methods cover the determination of the strength of intact rock core specimens in uniaxial and triaxial compression. Methods A and B determine the triaxial compressive strength at different pressures and Methods C and D determine the unconfined, uniaxial strength.
1.2 Methods A and B can be used to determine the angle of internal friction, angle of shearing resistance, and cohesion intercept.
1.3 Methods B and D specify the apparatus, instrumentation, and procedures for determining the stress-axial strain and the stress-lateral strain curves, as well as Young's modulus, E, and Poisson's ratio, υ. These methods do not make provisions for pore pressure measurements and specimens are undrained (platens are not vented). Thus, the strength values determined are in terms of total stress and are not corrected for pore pressures. These test methods do not include the procedures necessary to obtain a stress-strain curve beyond the ultimate strength.
1.4 Option A allows for testing at different temperatures and can be applied to any of the test methods, if requested.
1.5 This standard replaces and combines the following Standard Test Methods: D2664 Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements; D5407 Elastic Moduli of Undrained Rock Core Specimens in Triaxial Compression Without Pore Pressure Measurements; D2938 Unconfined Compressive Strength of Intact Rock Core Specimens; and D3148 Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression. The original four standards are now referred to as Methods in this standard.
1.5.1 Method A—Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements.
1.5.1.1 Method A requires strength determination only. Strain measurements and a stress-strain curve are not required.
1.5.2 Method B—Elastic Moduli of Undrained Rock Core Specimens in Triaxial Compression Without Pore Pressure Measurements.
1.5.3 Method C—Uniaxial Compressive Strength of Intact Rock Core Specimens.
1.5.3.1 Method C requires strength determination only. Strain measurements and a stress-strain curve are not required.
1.5.4 Method D—Elastic Moduli of Intact Rock Core Specimens in Uniax...
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The test method described is useful as a rapid, nondestructive technique for in-place measurements of wet density and water content of soil and soil-aggregate and the determination of dry density.
4.2 The test method is used for quality control and acceptance testing of compacted soil and soil-aggregate mixtures as used in construction and also for research and development. The nondestructive nature allows repetitive measurements at a single test location and statistical analysis of the results.
4.3 Density—The fundamental assumptions inherent in the methods are that Compton scattering is the dominant interaction and that the material is homogeneous.
4.4 Water Content—The fundamental assumptions inherent in the test method are that the hydrogen ions present in the soil or soil-aggregate are in the form of water as defined by the water content derived from Test Methods D2216, and that the material is homogeneous. (See 5.2)
Note 1: The quality of the result produced by this standard test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This test method describes the procedures for measuring in-place density and moisture of soil and soil-aggregate by use of nuclear equipment (hereafter referred to as “gauge”). The density of the material may be measured by direct transmission, backscatter, or backscatter/air-gap ratio methods. Measurements for water (moisture) content are taken at the surface in backscatter mode regardless of the mode being used for density.
1.1.1 For limitations see Section 5 on Interferences.
1.2 The total or wet density of soil and soil-aggregate is measured by the attenuation of gamma radiation where, in direct transmission, the source is placed at a known depth up to 300 mm (12 in.) and the detector(s) remains on the surface (some gauges may reverse this orientation); or in backscatter or backscatter/air-gap the source and detector(s) both remain on the surface.
1.2.1 The density of the test sample in mass per unit volume is calculated by comparing the detected rate of gamma radiation with previously established calibration data.
1.2.2 The dry density of the test sample is obtained by subtracting the water mass per unit volume from the test sample wet density (Section 11). Most gauges display this value directly.
1.3 The gauge is calibrated to read the water mass per unit volume of soil or soil-aggregate. When divided by the density of water and then multiplied by 100, the water mass per unit volume is equivalent to the volumetric water content. The water mass per unit volume is determined by the thermalizing or slowing of fast neutrons by hydrogen, a component of water. The neutron source and the thermal neutron detector are both located at the surface of the material being tested. The water content most prevalent in engineering and construction activities is known as the gravimetric water content, w, and is the ratio of the mass of the water in pore spaces to the total mass of solids, expressed as a percentage.
1.4 Two alternative procedures are provided.
1.4.1 Procedure A describes the direct transmission method in which the probe extends through the base of the gauge into a pre-formed hole to a desired depth. The direct transmission is the preferred method.
1.4.2 Procedure B involves the use of a dedicated backscatter gauge or the probe in the backscatter position. This places the gamma and neutron sources and the detectors in the same plane.
1.4.3 Mark the test area ...
- Standard11 pagesEnglish languagesale 15% off
- Standard11 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The thermal conductivity of intact soil specimens, reconstituted soil specimens, and rock specimens is used to analyze and design systems involving underground transmission lines, oil and gas pipelines, radioactive waste disposal, geothermal applications, and solar thermal storage facilities, among others. Measurements can be made on site (in situ), or samples can be tested in a lab environment.
Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 This test method presents a procedure for determining the thermal conductivity (λ) of soil and rock using a transient heat method. This test method is applicable for both intact specimens of soil and rock and reconstituted soil specimens, and is effective in the lab and in the field. This test method is most suitable for homogeneous materials, but can also give a representative average value for non-homogeneous materials.
1.2 This test method is applicable to dry, unsaturated or saturated materials that can sustain a hole for the sensor. It is valid over temperatures ranging from 100°C, depending on the suitability of the thermal needle probe construction to temperature extremes. However, care must be taken to prevent significant error from: (1) redistribution of water due to thermal gradients resulting from heating of the needle probe; (2) redistribution of water due to hydraulic gradients (gravity drainage for high degrees of saturation or surface evaporation); (3) phase change of water in specimens with temperatures near 0°C or 100°C.
1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurements are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
1.4.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.
Note 1: This test method is also applicable and commonly used for determining thermal conductivity of a variety of engineered porous materials of geologic origin including concrete, Fluidized Thermal Backfill (FTB), and thermal grout.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The test method is used to assess the compaction effort of compacted materials. The number of drops required to drive the cone a distance of 83 mm [3.25 in.] is used as a criterion to determine the pass or fail in terms of soil percent compaction.
5.2 The device does not measure soil compaction directly and requires determining the correlation between the number of drops and percent compaction in similar soil of known percent compaction and water content.
5.3 The number of drops is dependent on the soil water content. Calibration of the device should be performed at a water content equal to the water content expected in the field.
5.4 There are other DCPs with different dimensions, hammer weights, cone sizes, and cone geometries. Different test methods exist for these devices (such as D6951) and the correlations of the 5-lbm DCP with soil percent compaction are unique to this device.
5.5 The 5-lbm DCP is a simple device, capable of being handled and operated by a single operator in field conditions. It is typically used as Quality Control (QC) of layer-by-layer compaction by construction crew in roadway pavement, backfill compaction in confined cuts and trenches, and utility pavement restoration work.
Note 1: The quality of results produced by this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of these factors.
SCOPE
1.1 This test method covers the procedure for the determination of the number of drops required for a dynamic cone penetrometer with a 2.3-kg [5-lbm] drop hammer falling 508 mm [20 in.] to penetrate a certain depth in compacted backfill.
1.2 The device is used in the compaction verification of fine- and coarse-grained soils, granular materials, and weak stabilized or modified material used in subgrade, base layers, and backfill compaction in confined cuts and trenches at shallow depth.
1.3 The test method is not applicable to highly stabilized and cemented materials or granular materials containing a large percentage of aggregates greater than 37 mm [1.5 in.].
1.4 The method is dependent upon knowing the field water content and the user having performed calibration tests to determine cone penetration resistance of various compaction levels and water contents.
1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text of this standard, SI units appear first followed by the inch-pound [or other non-SI] units in brackets. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.6 It is common practice in the engineering profession to concurrently use pounds to represent both a unit of mass [lbm] and a force [lbf]. This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. This standard has been written using the absolute system of units when dealing with the inch-pound system. In this system, the pound [lbf] represents a unit of force (weight). However, the use of balances or scales recording pounds of mass [lbm] or the reading of density in lbm/ft3 shall not be regarded as a nonconformance with this standard.
1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding...
- Standard9 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The ring shear test is suited to the relatively rapid determination of drained residual shear strength because of the short drainage path through the thin specimen, the constant cross-sectional area of the shear surface during shear, unlimited rotational displacement in one direction, and the capability of testing one specimen under different effective normal stresses to obtain clay particles that are oriented parallel to the direction of shear to obtain residual shear strength envelope.
5.2 The apparatus allows a reconstituted specimen to be overconsolidated and presheared prior to drained shearing. Overconsolidation and preshearing of the reconstituted specimen significantly reduces the horizontal displacement required to reach a residual condition, and therefore, reduces soil extrusion, wall friction, and other problems (Stark and Eid, 1993)3. This simulates a preexisting shear surface along which the drained residual strength can be mobilized.
5.3 The ring shear test specimen is annular so the angular displacement differs from the inner edge to the outer edge. At the residual condition, the shear strength is constant across the specimen so the difference in shear stress between the inner and outer edges of the specimen is negligible.
Note 1: Notwithstanding the statements on precision and bias contained in this test method: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent testing. Users of this test method are cautioned that compliance with Practice D3740 does not ensure reliable testing. Reliable testing depends on several factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 Fine-grained soils in this Test Method are restricted to soils containing no more than 15 % fine sand (100 % passing the 425 μm (No. 40) sieve and no more than 15 % retained on the 75 μm (No. 200) sieve).A Summary of Changes section appears at the end of this standard.
1.2 This test method provides a procedure for performing a torsional ring shear test under a drained condition to determine the residual shear strength of fine-grained soils. This test method is performed by shearing a reconstituted, overconsolidated, presheared specimen at a controlled displacement rate until the constant drained shear resistance is established on a single shear surface determined by the configuration of the apparatus.
1.3 In this test, the specimen rotates in one direction until the constant or residual shear resistance is established. The amount of rotation is converted to displacement using the average radius of the specimen and multiplying it by numbers of degrees traveled and 0.0174.
1.4 An intact specimen or a specimen with a natural shear surface can be used for testing. However, obtaining a natural slip surface specimen, determining the direction of field shearing, and trimming and aligning the usually non-horizontal shear surface in the ring shear apparatus is difficult. As a result, this test method focuses on the use of a reconstituted specimen to determine the residual strength. An unlimited amount of continuous shear displacement can be achieved to obtain a residual strength condition in a ring shear device.
1.5 A shear stress-displacement relationship may be obtained from this test method. However, a shear stress-strain relationship or any associated quantity, such as modulus, cannot be determined from this test method because the height of the shear zone unknown, so an accurate or representative shear strain cannot be determined.
1.6 The selection of effective normal stresses and determination of the shear strength parameters for design analyses are the responsibility of the professional or office requesting the test. Generally, three or more effective normal s...
- Standard8 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The method described determines wet density and gravimetric water content by correlating complex impedance measurement data to an empirically developed model. The empirical model is generated by comparing the electrical properties of typical soils encountered in civil construction projects to their wet densities and gravimetric water contents determined by other accepted methods.
5.2 The test method described is useful as a rapid, non-destructive technique for determining the in-place total density and gravimetric water content of soil and soil-aggregate mixtures and the determination of dry density.
5.3 This method may be used for quality control and acceptance of compacted soil and soil-aggregate mixtures as used in construction and also for research and development. The non-destructive nature allows for repetitive measurements at a single test location and statistical analysis of the results.
Note 2: The quality of the result produced by this standard test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the requirements of Practice D3740 are generally considered capable of competent and objective sampling/testing/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluation some of those factors.
SCOPE
1.1 This test method covers the procedures for determining in-place properties of non-frozen, unbound soil and soil aggregate mixtures such as total density, gravimetric water content and relative compaction by measuring the intrinsic impedance of the compacted soil.
1.1.1 The method and device described in this test method are intended for in-process quality control of earthwork projects. Site or material characterization is not an intended result.
1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.2.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight) while the unit for mass is slugs. The rationalized slug unit is not given in this standard.
1.2.2 In the engineering profession, it is customary practice to use, interchangeably, units representing both mass and force, unless dynamic calculations are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravimetric system. It is undesirable to combine the use of two separate systems within a single standard. The use of balances or scales recording pounds of mass (lbm), or the recording of density in lbm/ft3 should not be regarded as nonconformance with this standard.
1.3 All observed and calculated values shall conform to the Guide for Significant Digits and Rounding established in Practice D6026.
1.3.1 The procedures used to specify how data is collected, recorded, and calculated in this standard are regarded as industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or decrease the number of significant digits of reported data commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in the analysis methods for engineering design.
1.4 This standard does not purport to address all of the safety concerns, if any,...
- Standard17 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Particle-size distribution (gradation) is a descriptive term referring to the proportions by dry mass of a soil distributed over specified particle-size ranges. The gradation curve generated using this method yields the distribution of silt and clay size fractions present in the soil based on size definitions, not mineralogy or Atterberg limit classification.
5.2 Unless the sedimentation sample is representative of the entire sample, the sedimentation results must be combined with a sieve analysis to obtain the complete particle size distribution.
5.3 The clay size fraction is material finer than 2 µm. The clay size fraction is used in combination with the Plasticity Index (Test Methods D4318) to compute the activity, which provides an indication of the mineralogy of the clay fraction.
5.4 The gradation of the silt and clay size fractions is an important factor in determining the susceptibility of fine-grained soils to frost action.
5.5 The gradation of a soil is an indicator of engineering properties such as hydraulic conductivity, compressibility, and shear strength. However, soil behavior for engineering and other purposes is dependent upon many factors, such as effective stress, mineral type, structure, plasticity, and geological origin, and cannot be based solely upon gradation.
5.6 Some types of soil require special treatment in order to correctly determine the particle sizes. For example, chemical cementing agents can bond clay particles together and should be treated in an effort to remove the cementing agents when possible. Hydrogen peroxide and moderate heat can digest organics. Hydrochloric acid can remove carbonates by washing and Dithionite-Citrate-Bicarbonate extraction can be used to remove iron oxides. Leaching with test water can be used to reduce salt concentration. All of these treatments, however, add significant time and effort when performing the sedimentation test and are allowable but outside the scope of this test method. ...
SCOPE
1.1 This test method covers the quantitative determination of the distribution of particle sizes of the fine-grained portion of soils. The sedimentation by hydrometer method is used to determine the particle-size distribution (gradation) of the material that is finer than the No. 200 (75-µm) sieve and larger than about 0.2-µm. The test is performed on material passing the No. 10 (2.0-mm) or finer sieve and the results are presented as the mass percent finer of this fraction versus the log of the particle diameter.
1.2 This method can be used to evaluate the fine-grained fraction of a soil with a wide range of particle sizes by combining the sedimentation results with results from a sieve analysis using D6913 to obtain the complete gradation curve. The method can also be used when there are no coarse-grained particles or when the gradation of the coarse-grained material is not required or not needed.
Note 1: The significant digits recorded in this test method preclude obtaining the grain size distribution of materials that do not contain a significant amount of fines. For example, clean sands will not yield detectable amounts of silt and clay sized particles, and therefore should not be tested with this method. The minimum amount of fines in the sedimentation specimen is 15 g.
1.3 When combining the results of the sedimentation and sieve tests, the procedure for obtaining the material for the sedimentation analysis and calculations for combining the results will be provided by the more general test method, such as Test Methods D6913 (Note 2).
Note 2: Subcommittee D18.03 is currently developing a new test method “Test Method for Particle-Size Analysis of Soils Combining the Sieve and Sedimentation Techniques.”
1.4 The terms “soil” and “material” are used interchangeably throughout the standard.
1.5 The sedimentation analysis is based on the concept that larger particles will fall through a fluid faster than...
- Standard27 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 CIMI measurements as described in this Standard Test Method are applicable to measurements of compacted soils intended for roads and foundations.
5.2 The test method is used for estimating in-place values of density and water content of soils and soil-aggregates based on electrical measurements.
5.3 The test method may be used for quality control and acceptance testing of compacted soil and soil aggregate mixtures as used in construction and also for research and development. The minimal disturbance nature of the methodology allows repetitive measurements in a single test location and statistical analysis of the results.
5.4 Limitations:
5.4.1 This test method provides an overview of the CIMI measurement procedure using a controlling console connected to a soil sensor unit which applies a 3.0 MHz RF voltage to an in-place soil via metallic probes that are driven into the soil at a prescribed distance apart. This test method does not discuss the details of the CIMI electronics, computer, or software that utilize on-board algorithms for estimating the soil density and water content
5.4.2 It is difficult to address an infinite variety of soils in this standard. However, data presented in X3.1 provides a list of soil types that are applicable for the CIMI use.
5.4.3 The procedures used to specify how data are collected, recorded, or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures prescribed in this standard do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.
Note 1: Notwithstanding th...
SCOPE
1.1 Purpose and Application—This test method describes the procedure, equipment, and interpretation methods for estimating in-place soil dry density and water content using a Complex-Impedance Measuring Instrument (CIMI).
1.1.1 The purpose and application of this test method is for testing porous material such as used in roadway base or building foundations that may be deployed in the field at various test sites. The test apparatus includes electrodes that contact the porous material under test and a sensor unit that supplies electromagnetic signals to the porous material. Response signals reveal electrical parameters such as complex impedance which can be equated to material properties such as density and moisture content.
1.1.2 CIMI measurements as described in this test method are applicable to measurements of compacted soils intended for roads and foundations.
1.1.3 This test method describes the procedure for estimating in-place density and water content of soils and soil-aggregates by use of a CIMI. The electrical properties of the soil are measured using a radio frequency (RF) voltage source connected to soil electrical probes driven into the soils and soil-aggregates to be tested, in a prescribed pattern and depth. Certain algorithms of these properties are related to wet density and water content. This correlation between electrical measurements, and density and water content is accomplished using a calibration methodology. In the calibration methodology, density and water content are determined by other ASTM Test Standards that measure soil density and water content, thereafter correlating the corresponding measured electrical properties to the soil physical properties.
1.2 Units—The values stated in SI units are to be regarded as standard. The inch-pound units given in parentheses are mathematical conversions which are provided for information purposes only and are not considered standard.
1.2.1...
- Standard14 pagesEnglish languagesale 15% off
- Standard14 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The crumb test provides a simple, quick method for field or laboratory identification of a dispersive clayey soil. The internal erosion failures of a number of homogeneous earth dams, erosion along channel or canal banks, and rainfall erosion of earthen structures have been attributed to colloidal erosion along cracks or other flow channels formed in masses of dispersive clay (5).
5.2 The crumb test, as originally developed by Emerson (6), was called the aggregate coherence test and had seven different categories of soil-water reactions. Sherard (5) later simplified the test by combining some soil-water reactions so that only four categories, or grades, of soil dispersion are observed during the test. The crumb test is a relatively accurate positive indicator of the presence of dispersive properties in a soil. The crumb test, however, is not a completely reliable negative indicator that soils are not dispersive. The crumb test can seldom be relied upon as a sole test method for determining the presence of dispersive clays. The double-hydrometer test (Test Method D4221) and pinhole test (Test Method D4647/D4647M) are test methods that provide valuable additional insight into the probable dispersive behavior of clay soils.
Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depends on several factors; Practice D3740 provides a means of evaluating some of those factors.
SCOPE
1.1 Two test methods are provided to give a qualitative indication of the natural dispersive characteristics of clayey soils: Method A and Method B.
1.1.1 Method A—Procedure for Natural Soil Crumbs described in 10.1.
1.1.2 Method B—Procedure for Remolded Soil Crumbs described in 10.2.
1.2 The crumb test, while a good, quick indication of dispersive soil, should usually be run in conjunction with a pinhole test and a double hydrometer test, Test Methods D4647/D4647M and D4221, respectively. Since this test method may not identify all dispersive clay soils, other tests such as, pinhole dispersion (Test Methods D4647/D4647M), double hydrometer (Test Method D4221) and the analysis of pore water extraction (Test Methods D4542) may be performed individually or used together to help verify dispersion.
1.3 The crumb test has some limitations in its usefulness as an indicator of dispersive soil. A dispersive soil may sometimes give a non-dispersive reaction in the crumb test. Soils containing kaolinite with known field dispersion problems, have shown non-dispersive reactions in the crumb test (1).2 However, if the crumb test indicates dispersion, the soil is probably dispersive.
1.4 These test methods are applicable only to soils where the position of the plasticity index versus liquid limit plots (Test Methods D4318) falls on or above the “A” line (Practice D2487) and more than 12 % of the soil fraction is finer than 2-μm as determined in accordance with Test Method D7928.
1.5 Oven-dried soil should not be used to prepare crumb test specimens, as irreversible changes could occur to the soil pore-water physicochemical properties responsible for dispersion (2).
Note 1: In some cases, the results of the pinhole, crumb, and double-hydrometer test methods may disagree. The crumb test is a better indicator of dispersive soils than of non-dispersive soils (3).
1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding establish...
- Standard8 pagesEnglish languagesale 15% off
- Standard8 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.