Plain bearings — Hydrodynamic plain thrust pad bearings under steady-state conditions — Part 1: Calculation of thrust pad bearings

The aim of this part of ISO 12131 is to achieve designs of plain bearings that are reliable in operation, by the application of a calculation method for oil-lubricated hydrodynamic plain bearings with complete separation of the thrust collar and plain bearing surfaces by a film of lubricant [1]. This part of ISO 12131 applies to plain thrust bearings with incorporated wedge and supporting surfaces having any ratio of wedge surface length lwed to length of one pad L. It deals with the value lwed/L = 0,75 as this value represents the optimum ratio [2]. The ratio of width to length of one pad can be varied in the range B/L = 0,5 to 2. The calculation method described in this part of ISO 12131 can be used for other incorporated gap shapes, e.g. plain thrust bearings with integrated baffle, when for these types the numerical solutions of Reynolds' differential equation are known. The calculation method serves for designing and optimizing plain thrust bearings e.g. for fans, gear units, pumps, turbines, electrical machines, compressors and machine tools. It is limited to steady-state conditions, i.e. load and angular speed of all rotating parts are constant under continuous operating conditions. Dynamic operating conditions are not included.

Paliers lisses — Butées hydrodynamiques à patins géométrie fixe fonctionnant en régime stationnaire — Partie 1: Calcul des butées à segments

L'objet de la présente partie de l'ISO 12131 est de réaliser des modèles de paliers lisses qui soient fiables en fonctionnement par l'application d'une méthode de calcul pour les paliers lisses hydrodynamiques lubrifiés à l'huile avec séparation complète du collet de butée et des surfaces du palier lisse par un film de lubrifiant [1]. La présente partie de l'ISO 12131 s'applique aux paliers de butée lisses à cale intégrée et surfaces d'appui, qui ont un rapport de longueur de surface de cale lwed et de longueur de patin L quelconque. Elle traite de préférence de la valeur lwed/L = 0,75 dans la mesure où cette valeur représente le rapport optimum [2]. Le rapport de la largeur et de la longueur d'un patin peut varier dans la plage B/L = 0,5 à 2. La méthode de calcul décrite dans la présente partie de l'ISO 12131 peut être utilisée pour d'autres formes de jeu intégré, par exemple paliers de butée lisses avec déflecteur intégré, lorsqu'il existe des solutions numériques de l'équation différentielle de Reynolds pour ces types de formes. La méthode de calcul permet de concevoir et d'optimiser les paliers de butée lisses, par exemple pour les ventilateurs, groupes d'engrenages, pompes, turbines, machines électriques, compresseurs et machines-outils. Elle se limite aux conditions de régime permanent, c'est-à-dire que la charge et la vitesse angulaire de toutes les parties tournantes sont constantes dans des conditions de fonctionnement continu. Les conditions de fonctionnement dynamique ne sont pas incluses.

Drsni ležaji - Aksialni hidrodinamični drsni ležaji z nepomičnimi blazinicami - 1. del: Preračun blazinic

General Information

Status
Withdrawn
Publication Date
24-Apr-2001
Withdrawal Date
24-Apr-2001
Current Stage
9599 - Withdrawal of International Standard
Start Date
13-Jul-2020
Completion Date
13-Jul-2020

RELATIONS

Buy Standard

Standard
ISO 12131-1:2001 - Plain bearings -- Hydrodynamic plain thrust pad bearings under steady-state conditions
English language
25 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 12131-1:2002
English language
25 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 12131-1:2001 - Paliers lisses -- Butées hydrodynamiques a patins géométrie fixe fonctionnant en régime stationnaire
French language
25 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (sample)

INTERNATIONAL ISO
STANDARD 12131-1
First edition
2001-04-15
Plain bearings — Hydrodynamic plain
thrust pad bearings under steady-state
conditions
Part 1:
Calculation of thrust pad bearings
Paliers lisses — Paliers de butées hydrodynamiques à patins géométrie
fixe fonctionnant en régime stationnaire
Partie 1: Calcul des butées à segments
Reference number
ISO 12131-1:2001(E)
ISO 2001
---------------------- Page: 1 ----------------------
ISO 12131-1:2001(E)
PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not

be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this

file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this

area.
Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters

were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event

that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic

or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body

in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2001 – All rights reserved
---------------------- Page: 2 ----------------------
ISO 12131-1:2001(E)
Contents Page

Foreword.....................................................................................................................................................................iv

1 Scope ..............................................................................................................................................................1

2 Normative references ....................................................................................................................................1

3 Fundamentals, assumptions and premises................................................................................................1

4 Symbols and units.........................................................................................................................................3

5 Calculation procedure...................................................................................................................................6

5.1 Loading operations........................................................................................................................................6

5.2 Load carrying capacity..................................................................................................................................8

5.3 Frictional power .............................................................................................................................................8

5.4 Lubricant flow rate .........................................................................................................................................9

5.5 Heat balance.................................................................................................................................................10

5.6 Minimum lubricant film thickness and specific bearing load ...................................................................13

5.7 Operating conditions ...................................................................................................................................13

5.8 Further influence factors .............................................................................................................................13

Annex A (normative) Examples of calculation.......................................................................................................15

Bibliography..............................................................................................................................................................25

© ISO 2001 – All rights reserved iii
---------------------- Page: 3 ----------------------
ISO 12131-1:2001(E)
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO

member bodies). The work of preparing International Standards is normally carried out through ISO technical

committees. Each member body interested in a subject for which a technical committee has been established has

the right to be represented on that committee. International organizations, governmental and non-governmental, in

liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical

Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.

Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 12131 may be the subject of

patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 12131-1 was prepared by Technical Committee ISO/TC 123, Plain bearings,

Subcommittee SC 4, Methods of calculation of plain bearings.

ISO 12131 consists of the following parts, under the general title Plain bearings — Hydrodynamic plain thrust pad

bearings under steady-state conditions:
� Part 1: Calculation of thrust pad bearings
� Part 2: Functions for the calculation of thrust pad bearings
� Part 3: Guide values for the calculation of thrust pad bearings
Annex A forms a normative part of this part of ISO 12131.
iv © ISO 2001 – All rights reserved
---------------------- Page: 4 ----------------------
INTERNATIONAL STANDARD ISO 12131-1:2001(E)
Plain bearings — Hydrodynamic plain thrust pad bearings under
steady-state conditions
Part 1:
Calculation of thrust pad bearings
1 Scope

The aim of this part of ISO 12131 is to achieve designs of plain bearings that are reliable in operation, by the

application of a calculation method for oil-lubricated hydrodynamic plain bearings with complete separation of the

[1]
thrust collar and plain bearing surfaces by a film of lubricant .

This part of ISO 12131 applies to plain thrust bearings with incorporated wedge and supporting surfaces having

any ratio of wedge surface length l to length of one pad L. It deals with the value l /L=0,75 asthisvalue

wed wed
[2]

represents the optimum ratio . The ratio of width to length of one pad can be varied in the range B/L=0,5 to 2.

The calculation method described in this part of ISO 12131 can be used for other incorporated gap shapes, e.g.

plain thrust bearings with integrated baffle, when for these types the numerical solutions of Reynolds' differential

equation are known.

The calculation method serves for designing and optimizing plain thrust bearings e.g. for fans, gear units, pumps,

turbines, electrical machines, compressors and machine tools. It is limited to steady-state conditions, i.e. load and

angular speed of all rotating parts are constant under continuous operating conditions. Dynamic operating

conditions are not included.
2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of

this part of ISO 12131. For dated references, subsequent amendments to, or revisions of, any of these publications

do not apply. However, parties to agreements based on this part of ISO 12131 are encouraged to investigate the

possibility of applying the most recent editions of the normative documents indicated below. For undated

references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain

registers of currently valid International Standards.
ISO 3448:1992, Industrial liquid lubricants — ISO viscosity classification

ISO 12131-2:2001, Plain bearings — Hydrodynamic plain thrust pad bearings under steady-state conditions —

Part 2: Functions for the calculation of thrust pad bearings

ISO 12131-3, Plain bearings — Hydrodynamic plain thrust pad bearings under steady-state conditions — Part 3:

Guide values for the calculation of thrust pad bearings
3 Fundamentals, assumptions and premises

The calculation is always carried out with the numerical solutions of Reynolds' differential equation for sliding

surfaces with finite width, taking into account the physically correct boundary conditions for the generation of

pressure.
© ISO 2001 – All rights reserved 1
---------------------- Page: 5 ----------------------
ISO 12131-1:2001(E)
��pp� � �h
�� � �
+= 6���U� (1)
�� � �
�� � �
��xx �z �z �x
[1] [2]

See for the derivation of Reynolds' differential equation and for the numerical solution.

For the solution of equation (1), the following idealizing assumptions and premises are used, the reliability of which

[3]
has been sufficiently confirmed by experiment and in practice .
a) The lubricant corresponds to a Newtonian fluid.
b) All lubricant flows are laminar.
c) The lubricant adheres completely to the sliding surfaces.
d) The lubricant is incompressible.
e) The lubrication clearance gap is completely filled with lubricant.

f) Inertia effects and gravitational and magnetic forces of the lubricant are negligible.

g) The components forming the lubrication clearance gap are rigid or their deformation is negligible; their surfaces

are completely even.

h) The lubricant film thickness in the radial direction (z-coordinate) is constant.

i) Fluctuations in pressure within the lubricant film normal to the sliding surfaces (y-coordinate) are negligible.

j) There is no motion normal to the sliding surfaces (y-coordinate).
k) The lubricant is isoviscous over the entire lubrication clearance gap.

l) The lubricant is fed in at the widest lubrication clearance gap; the magnitude of the lubricant feed pressure is

negligible as compared to the lubricant film pressures themselves.
m) The pad shape of the sliding surfaces is replaced by rectangles.

The boundary conditions for the solution of Reynolds' differential equation are the following.

1) The gauge pressure of the lubricant at the feeding point is p(x =0, z)=0.

2) The feeding of the lubricant is arranged in such a way that it does not interfere with the generation of

pressure in the lubrication clearance gap.

3) The gauge pressure of the lubricant at the lateral edges of the plain bearing is p(x, z=0,5 B)=0.

4) The gauge pressure of the lubricant is p(x = L, z) = 0 at the end of the pressure field.

The application of the principle of similarity in hydrodynamic plain bearing theory results in dimensionless

parameters of similarity for such characteristics as load carrying capacity, friction behaviour and lubricant flow rate.

The use of parameters of similarity reduces the number of necessary numerical solutions of Reynolds' differential

equation which are compiled in ISO 12131-2. In principle, other solutions are also permitted provided they satisfy

the conditions given in this part of ISO 12131 and have the corresponding numerical accuracy.

ISO 12131-3, contains guide values according to which the calculation result is to be oriented in order to ensure the

functioning of the plain bearings.

In special cases, guide values deviating from ISO 12131-3, may be agreed for specific applications.

2 © ISO 2001 – All rights reserved
---------------------- Page: 6 ----------------------
ISO 12131-1:2001(E)
4 Symbols and units
See Table 1 and Figure 1.
Table 1 — Symbols and units
Symbol Designation Unit
A Heat emitting surface of the bearing housing m
B Width of one pad m
c Specific heat capacity of the lubricant (p = constant) J/(kg�K)
C Wedge depth m
wed
D Mean sliding diameter (diameter of thrust bearing ring) m
D Inside diameter of thrust bearing ring m
D Outside diameter of thrust bearing ring m
f * Characteristic value of friction 1
f * Characteristic value of friction for thrust pad bearing 1
F Bearing force (nominal load) N
F* Characteristic value of load carrying capacity 1
F * Characteristic value of load carrying capacity for thrust pad bearing 1
F Bearing force (load) under stationary conditions N
h Local lubricant film thickness (clearance gap height) m
h Minimum permissible lubricant film thickness during operation m
lim

h Minimum permissible lubricant film thickness in the transition into mixed lubrication m

lim, tr
h Minimum lubricant film thickness (minimum clearance gap height) m
min
k Heat transfer coefficient related to the product B � L � Z W/(m �K)
k External heat transfer coefficient (reference surface A)W/(m �K)
l Wedge length m
wed
L Length of one pad in circumferential direction m
M Mixing factor 1
N Rotational frequency (speed) of thrust collar s
p Local lubricant film pressure Pa
p Specific bearing load p = F/(B� L� Z)Pa
P Frictional power in the bearing or heat flow rate generated by it W
p Maximum permissible specific bearing load Pa
lim
P Heat flow rate to the environment W
th, amb
P Heat flow rate in the lubricant W
th, L
Q Lubricant flow rate m /s
Q* Characteristic value of lubricant flow rate m /s
Q Relative lubricant flow rate Q = B � h � U � Z m /s
0 min

Q Lubricant flow rate at the inlet of the clearance gap (circumferential direction) m /s

Q* Characteristic value of lubricant flow rate at the inlet of the clearance gap 1

© ISO 2001 – All rights reserved 3
---------------------- Page: 7 ----------------------
ISO 12131-1:2001(E)
Table 1 — (continued)
Symbol Designation Unit

Lubricant flow rate at the outlet of the clearance gap (circumferential direction) m /s

* *

Q* Characteristic value of lubricant flow rate Q � Q at the outlet of the clearance gap 1

1 3

Lubricant flow rate at the sides (perpendicular to circumferential direction) m /s

Q* Characteristic value of lubricant flow rate at the sides 1
Re Reynolds number 1
Rz Average peak-to-valley roughness height of thrust collar �m
T Ambient temperature �C
amb
T Bearing temperature �C
T Effective lubricant film temperature �C
eff
T Lubricant temperature at the inlet of the bearing �C
T Lubricant temperature at the outlet of the bearing �C
Maximum permissible bearing temperature �C
lim
T Lubricant temperature at the inlet of the clearance gap �C
T Lubricant temperature at the outlet of the clearance gap �C
U Sliding velocity relative to mean diameter of bearing ring m/s
w Velocity of air surrounding the bearing housing m/s
amb
Coordinate in direction of motion (circumferential direction) m
y Coordinate in direction of lubrication clearance gap (axial) m
z Coordinate perpendicular to the direction of motion (radial) m
Z Number of pads 1
� Dynamic viscosity of the lubricant Pa�s
� Effective dynamic viscosity of the lubricant Pa�s
eff
Density of the lubricant kg/m
4 © ISO 2001 – All rights reserved
---------------------- Page: 8 ----------------------
ISO 12131-1:2001(E)
Key
1 Wedge surface
2 Thrust collar
3 Supporting surface
4 Lubrication groove
5 Thrust bearing ring

Figure 1 — Schematic view of a thrust pad bearing (bearing with incorporated wedge

and supporting surfaces)
© ISO 2001 – All rights reserved 5
---------------------- Page: 9 ----------------------
ISO 12131-1:2001(E)
5 Calculation procedure
5.1 Loading operations
5.1.1 General

Calculation means the mathematical determination of the correct functioning using operational parameters (see

Figure 2) which can be compared with guide values. Thereby, the operational parameters determined under

varying operation conditions shall be permissible as compared to the guide values. For this purpose, all continuous

operating conditions shall be investigated.
5.1.2 Wear

Safety against wear is given if complete separation of the mating bearing parts is achieved by the lubricant.

Continuous operation in the mixed lubrication range results in premature loss of functioning. Short-time operation in

the mixed lubrication range such as starting up and running down machines with plain bearings, is unavoidable and

can result in bearing damage after frequent occurrence. When subjected to heavy load, an auxiliary hydrostatic

arrangement may be necessary for starting up or running down at a low speed. Running-in and adaptive wear to

compensate for surface geometry deviations from the ideal geometry are permissible as long as these are limited in

time and locality and occur without overload effects. In certain cases, a specific running-in procedure may be

beneficial. This can also be influenced by the selection of the material. Attention is drawn to the fact that in the case

of this bearing design, wear can lead to a rapid decrease in the load carrying capacity.

5.1.3 Mechanical loading

The limits of mechanical loading are given by the strength of the bearing material. Slight permanent deformation is

permissible as long as it does not impair correct functioning of the plain bearing.

5.1.4 Thermal loading

The limits of thermal loading result not only from the thermal stability of the bearing material but also from the

viscosity-temperature relationship and the ageing tendency of the lubricant.
5.1.5 Outside influences

Calculation of correct functioning of plain bearings presupposes that the operating conditions are known for all

cases of continuous operation. In practice, however, additional disturbing influences frequently occur which are

unknown at the design stage and cannot always be computed. Therefore, the application of an appropriate safety

margin between the operational parameters and the permissible guide values is recommended. Disturbing

influences are, e.g.:
� spurious forces (out-of-balance, vibrations, etc.);

� deviations from the ideal geometry (machining tolerances, deviations during assembly, etc.);

� lubricants contaminated by solid, liquid and gaseous foreign matters;
� corrosion, electric erosion, etc.
Information as to further influence factors is given in 5.8.

The applicability of this part of ISO 12131 for which laminar flow in the lubrication clearance gap is a necessary

condition, is to be checked by the Reynolds' number:
���Uh
min
Re = u (2)
eff
6 © ISO 2001 – All rights reserved
---------------------- Page: 10 ----------------------
ISO 12131-1:2001(E)
Figure 2 — Scheme of calculation (flow chart)
© ISO 2001 – All rights reserved 7
---------------------- Page: 11 ----------------------
ISO 12131-1:2001(E)

For wedge-shaped gaps with h /C = 0,8 a critical Reynolds' number of Re =600 canbeassumedas guide

min wed
[4]
value according to .

Starting from the known bearing dimensions and operating data the plain bearing calculation comprises:

� the relationship between load carrying capacity and lubricant film thickness;
� the frictional power;
� the lubricant flow rate;
� the heat balance.

These shall be interdependent. The solution is obtained using an iterative method, the sequence of which is

summarized in the calculation flow chart in Figure 2.

For optimization of individual parameters, parameter variation can be performed; modification of the calculation

sequence is possible.
5.2 Load carrying capacity

The parameter for the load carrying capacity is the dimensionless characteristic value of load carrying capacity F*:

Fh�
min
= (3)
UL��� �B�Z
eff

Firstly, the minimum lubricant film thickness h as well as the effective viscosity � are still unknown in

min eff

equation (3). In order to avoid a double iteration via the minimum lubricant film thickness h and the effective

min
* [5]

bearing temperature T , the characteristic value of load carrying capacity F according to is modified as follows

eff

to be the characteristic value of load carrying capacity for the calculation of thrust pad bearings:

wed
= � (4)
min
[6]

The function =fB(/ ; /)L is explained in ISO 12131-2 on the basis of the findings in . Approximate

F hC
B min wed
functions are also given there.
5.3 Frictional power

The losses due to friction in a hydrodynamic plain thrust bearing are given by the characteristic value of friction f *

which is defined as follows:
* min
f = � (5)
��� BL� �Z
eff

The characteristic value of friction f * is also modified as follows to be the characteristic value of friction for thrust

[5]
pad bearings f according to :
** wed
ff= � (6)
min
8 © ISO 2001 – All rights reserved
---------------------- Page: 12 ----------------------
ISO 12131-1:2001(E)
Thus the frictional power is calculated as follows:
��� BL� �Z
* eff
= f � (7)
wed

The characteristic value of friction for thrust pad bearings f can be taken from ISO 12131-2 as a function of the

film thickness ratio h /C and of the ratio B/L and with this, the frictional power loss P can be calculated.

min wed f
5.4 Lubricant flow rate

The lubricant fed to the bearing forms a solid lubricant film separating the sliding surfaces. At the same time, the

lubricant has the task to dissipate the frictional heat developing in the bearing. See Figure 3.

Key
1 Wedge surface
2 Supporting surface
Figure 3 — Schematic view of the lubricant balance and heat balance of one pad

Due to the rotational motion of the thrust collar, the lubricant is carried, with increasing pressure, in the direction of

the converging clearance gap. Thereby part of the lubricant is forced out at the sides of each pad. It is assumed

that the lateral portions approximately have the same size.
In Figure 3:
Q = Q + Q (8)
1 2 3
with
Q = Q � Q (9)
1 1 0
Q = Q � Q (10)
3 3 0
Q = Q – Q (11)
2 1 3
Q = B� h � U� Z (12)
min
* *

The relative values of Q = Q /Q and Q = Q /Q can be taken from ISO 12131-2 as a function of the geometry

1 1 0 3 3 0

(B/L and l /L = 0,75) and the arising relative lubricant film thickness h /C . Approximate functions are also

wed min wed
given there.
© ISO 2001 – All rights reserved 9
---------------------- Page: 13 ----------------------
ISO 12131-1:2001(E)

It is assumed that the lubricant forced out at the sides of the pads, Q , has the temperature (T + T )/2 and the

3 1 2
lubricant forced out at the ends, Q , has the temperature T .
2 2
5.5 Heat balance
5.5.1 General
The thermal condition of the plain bearing results from the heat balance.

The heat flow P arising from the frictional power P in the bearing is dissipated via the bearing housing to the

th, f f

environment and via the lubricant emerging from the bearing. In practical applications, one of the two kinds of heat

dissipation is predominant. Additional safety is given to the design by neglecting the other kind of heat dissipation.

The following assumptions can be made.

a) With pressureless lubricated bearings (self-lubrication, natural cooling) heat dissipation to the environment

mostly takes place by convection:
P = P
f th, amb

b) With pressure-lubricated bearings (recirculating lubrication) heat dissipation mostly takes place via the

lubricant (recooling):
P = P
f th, L
5.5.2 Heat dissipation by convection

Heat dissipation by convection [5.5.1 a)] takes place by thermal conduction and lubricant recirculation in the

bearing housing and subsequently by radiation and convection from the surface of the housing to the environment.

[7]

According to the complex processes during the heat dissipation can be summarized as follows:

P = k � A� (T � T ) (13)
th, amb A B amb
with
2 2
k =15W/(m ����K) to 20 W/(m ����K)

or when the bearing housing is subjected to an air-flow at a velocity of w � 1,2 m/s

amb
=7 + 12 (14)
A amb
where w is expressed in m/s and k in W/(m ����K).
amb A

NOTE Thereby, the factor k accounts for the thermal conduction in the bearing housing as well as for the convection and

radiation from the bearing housing to the environment. That part of the frictional heat arising in the bearing, which is dissipated via

the shaft, is neglected here due to its very small amount in most cases.
By equating P from equation (7) and P from equation (13) and with
f th, amb
kA�
k= (15)
BL��Z
10 © ISO 2001 – All rights reserved
---------------------- Page: 14 ----------------------
ISO 12131-1:2001(E)
the effective bearing temperature is obtained as follows
* eff
=+� (16)
eff amb
k �
wed
In this case, the bearing temperature is
T = T (17)
B eff

If the heat-emitting surface A of the bearing housing is not known exactly, the following can be substituted as an

approximation:
for cylindrical housings
A��2 �DD�� B (18)
HHH
for bearings in the machine structure
A =(15to20)� B� L� Z (19)
where
B is the axial housing width, in metres;
D is the housing outside diameter, in metres.
5.5.3 Heat dissipation by recirculating lubrication

In case of recirculating lubrication, heat dissipation takes place via the lubricant [5.5.1 b)].

P =�� c � Q(T � T ) (20)
th, L p ex en
For mineral lubricants, the volume specific heat capacity amounts to
6 3
�� c = 1,8� 10 J/(m ����K)
Mixing processes in the lubrication recess.

Since a thrust pad bearing consists of a certain number of separate pads it is necessary to consider not only the

lubricant flow rate of one single pad but also the lubricant flow rate of the complete bearing and thus the mutual

influence of the lubricant flow rate. The lubricant forced out at the end of the pads Q (accordingtoFigure3) is

mixed with newly fed lubricant in the following oil recess, i.e. the lubricant temperature T at the inlet of the

lubrication clearance gap is higher by �T than that of the newly fed lubricant with temperature T (see Figure 4).

1 en
When determining the temperature difference
�T = T � T (21)
1 1 en

an empirical factor shall be introduced because a purely theoretical consideration of this mixing problem has not yet

led to satisfying results.
© ISO 2001 – All rights reserved 11
---------------------- Page: 15 ----------------------
ISO 12131-1:2001(E)

A mixing factor M can be introduced as follows in order to achieve conformity with the experience gathered up to

[5]
now (see ):
�TT� ��= ��T (22)
12 2
MQ��(1�M)� Q
M+��QQ(1M)�
for QW Q and Q*W Q* respectively.
3 3

Figure 4 — Graphical representation of the temperature distribution in the lubricant film

To explain the mixing factor we shall examine at the limiting values. A mixing factor M = 0 means that there is no

mixing in the lubrication recesses, i.e. the lubricant flow rate Q forced out of the lubrication clearance gaps

completely enters the following lubrication clearance gap. With this assumption a high lubricant flow rate Q would

be ineffective as the largest part of this newly fed lubricant would flow out of the lubrication recesses in a radial

direction without influencing the operational parameters. A mixing factor M=1 means “complete” mixing in the

lubrication precesses. 0,4 u Mu 0,6 can be introduced as an empirical value. It is a function of the design and

cannot be definitely indicated.

The total amount of lubricant to be fed to the thrust bearing can be determined from a given amount of heating

�T = T – T (23)
ex en
f *
Q= =QQ� (24)
��� �T
By experience the value for�T is chosen in the range of 10 K to 30 K.
With
�T = T � T (25)
2 2 1
itcanbewritten:
P = c ��� (Q + 0,5� Q )��T (26)
th, L p 2 3 2

The following relationship is the product of equations (24) and (26) for the temperature rise in the lubrication

clearance gap:
��TTQQ��
��== (27)
*** *
QQ+0,5��Q 0,5�Q
231 3
12 © ISO 2001 – All rights reserved
---------------------- Page: 16 ----------------------
ISO 12131-1:2001(E)
with�T= the effective bearing temperature can be determined as follows:
T = T +�T + 0,5��T = T + (�T +0,5)��T (28)
eff en 1 2 en 2
The bearing temperature is in this case
T = T = T +�T + �T = T +(�T +1)��T (29)
B 2 en 1 2 en 2

The permissibility of the values calculated for T and T in accordance with 5.5.1 and 5.5.2 shall be checked by

B 2
comparison with the guide values T in accordance with ISO 12131-3.
lim
5.6 Minimum lubricant film thickness and specific bearing load

After calculation of the thermal steady-state condition, the minimum lubricant film thickness h can be calculated

min
using the characteristic value of load carrying capacity F .

The permissibility of this value for h shall be checked by comparison with the guide value h in accordance with

min lim
ISO 12131-3.
The permissibility of the specific bearing load
p= (30)
BL��Z

shall be checked by comparison with the guide values p in accordance with ISO 12131-3.

lim
5.7 Operating conditions

If the plain bearing is to be operated under several varying operating conditions over a longer period of time, then

those operating conditions under which p, h and T are most unfavourable shall be checked. First it shall be

min B

decided whether the bearing can be lubricated without pressure and whether heat dissipation by convection only is

sufficient. For this purpose, the most unfavourable thermal case has to be investigated which, as a rule,

corresponds to an operating condition at high rotational frequency and simultaneous high load. If, at pure

convection, excessive bearing temperatures arise which even by increasing the dimensions of the bearing or of the

surface area of the housing within the given range cannot be lowered to permissible values, then recirculating

lubrica
...

SLOVENSKI STANDARD
SIST ISO 12131-1:2002
01-marec-2002

'UVQLOHåDML$NVLDOQLKLGURGLQDPLþQLGUVQLOHåDML]QHSRPLþQLPLEOD]LQLFDPL

GHO3UHUDþXQEOD]LQLF

Plain bearings -- Hydrodynamic plain thrust pad bearings under steady-state conditions -

- Part 1: Calculation of thrust pad bearings

Paliers lisses -- Butées hydrodynamiques à patins géométrie fixe fonctionnant en régime

stationnaire -- Partie 1: Calcul des butées à segments
Ta slovenski standard je istoveten z: ISO 12131-1:2001
ICS:
21.100.10 Drsni ležaji Plain bearings
SIST ISO 12131-1:2002 en

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST ISO 12131-1:2002
---------------------- Page: 2 ----------------------
SIST ISO 12131-1:2002
INTERNATIONAL ISO
STANDARD 12131-1
First edition
2001-04-15
Plain bearings — Hydrodynamic plain
thrust pad bearings under steady-state
conditions
Part 1:
Calculation of thrust pad bearings
Paliers lisses — Paliers de butées hydrodynamiques à patins géométrie
fixe fonctionnant en régime stationnaire
Partie 1: Calcul des butées à segments
Reference number
ISO 12131-1:2001(E)
ISO 2001
---------------------- Page: 3 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not

be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this

file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this

area.
Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters

were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event

that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic

or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body

in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2001 – All rights reserved
---------------------- Page: 4 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
Contents Page

Foreword.....................................................................................................................................................................iv

1 Scope ..............................................................................................................................................................1

2 Normative references ....................................................................................................................................1

3 Fundamentals, assumptions and premises................................................................................................1

4 Symbols and units.........................................................................................................................................3

5 Calculation procedure...................................................................................................................................6

5.1 Loading operations........................................................................................................................................6

5.2 Load carrying capacity..................................................................................................................................8

5.3 Frictional power .............................................................................................................................................8

5.4 Lubricant flow rate .........................................................................................................................................9

5.5 Heat balance.................................................................................................................................................10

5.6 Minimum lubricant film thickness and specific bearing load ...................................................................13

5.7 Operating conditions ...................................................................................................................................13

5.8 Further influence factors .............................................................................................................................13

Annex A (normative) Examples of calculation.......................................................................................................15

Bibliography..............................................................................................................................................................25

© ISO 2001 – All rights reserved iii
---------------------- Page: 5 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO

member bodies). The work of preparing International Standards is normally carried out through ISO technical

committees. Each member body interested in a subject for which a technical committee has been established has

the right to be represented on that committee. International organizations, governmental and non-governmental, in

liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical

Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.

Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 12131 may be the subject of

patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 12131-1 was prepared by Technical Committee ISO/TC 123, Plain bearings,

Subcommittee SC 4, Methods of calculation of plain bearings.

ISO 12131 consists of the following parts, under the general title Plain bearings — Hydrodynamic plain thrust pad

bearings under steady-state conditions:
� Part 1: Calculation of thrust pad bearings
� Part 2: Functions for the calculation of thrust pad bearings
� Part 3: Guide values for the calculation of thrust pad bearings
Annex A forms a normative part of this part of ISO 12131.
iv © ISO 2001 – All rights reserved
---------------------- Page: 6 ----------------------
SIST ISO 12131-1:2002
INTERNATIONAL STANDARD ISO 12131-1:2001(E)
Plain bearings — Hydrodynamic plain thrust pad bearings under
steady-state conditions
Part 1:
Calculation of thrust pad bearings
1 Scope

The aim of this part of ISO 12131 is to achieve designs of plain bearings that are reliable in operation, by the

application of a calculation method for oil-lubricated hydrodynamic plain bearings with complete separation of the

[1]
thrust collar and plain bearing surfaces by a film of lubricant .

This part of ISO 12131 applies to plain thrust bearings with incorporated wedge and supporting surfaces having

any ratio of wedge surface length l to length of one pad L. It deals with the value l /L=0,75 asthisvalue

wed wed
[2]

represents the optimum ratio . The ratio of width to length of one pad can be varied in the range B/L=0,5 to 2.

The calculation method described in this part of ISO 12131 can be used for other incorporated gap shapes, e.g.

plain thrust bearings with integrated baffle, when for these types the numerical solutions of Reynolds' differential

equation are known.

The calculation method serves for designing and optimizing plain thrust bearings e.g. for fans, gear units, pumps,

turbines, electrical machines, compressors and machine tools. It is limited to steady-state conditions, i.e. load and

angular speed of all rotating parts are constant under continuous operating conditions. Dynamic operating

conditions are not included.
2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of

this part of ISO 12131. For dated references, subsequent amendments to, or revisions of, any of these publications

do not apply. However, parties to agreements based on this part of ISO 12131 are encouraged to investigate the

possibility of applying the most recent editions of the normative documents indicated below. For undated

references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain

registers of currently valid International Standards.
ISO 3448:1992, Industrial liquid lubricants — ISO viscosity classification

ISO 12131-2:2001, Plain bearings — Hydrodynamic plain thrust pad bearings under steady-state conditions —

Part 2: Functions for the calculation of thrust pad bearings

ISO 12131-3, Plain bearings — Hydrodynamic plain thrust pad bearings under steady-state conditions — Part 3:

Guide values for the calculation of thrust pad bearings
3 Fundamentals, assumptions and premises

The calculation is always carried out with the numerical solutions of Reynolds' differential equation for sliding

surfaces with finite width, taking into account the physically correct boundary conditions for the generation of

pressure.
© ISO 2001 – All rights reserved 1
---------------------- Page: 7 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
��pp� � �h
�� � �
+= 6���U� (1)
�� � �
�� � �
��xx �z �z �x
[1] [2]

See for the derivation of Reynolds' differential equation and for the numerical solution.

For the solution of equation (1), the following idealizing assumptions and premises are used, the reliability of which

[3]
has been sufficiently confirmed by experiment and in practice .
a) The lubricant corresponds to a Newtonian fluid.
b) All lubricant flows are laminar.
c) The lubricant adheres completely to the sliding surfaces.
d) The lubricant is incompressible.
e) The lubrication clearance gap is completely filled with lubricant.

f) Inertia effects and gravitational and magnetic forces of the lubricant are negligible.

g) The components forming the lubrication clearance gap are rigid or their deformation is negligible; their surfaces

are completely even.

h) The lubricant film thickness in the radial direction (z-coordinate) is constant.

i) Fluctuations in pressure within the lubricant film normal to the sliding surfaces (y-coordinate) are negligible.

j) There is no motion normal to the sliding surfaces (y-coordinate).
k) The lubricant is isoviscous over the entire lubrication clearance gap.

l) The lubricant is fed in at the widest lubrication clearance gap; the magnitude of the lubricant feed pressure is

negligible as compared to the lubricant film pressures themselves.
m) The pad shape of the sliding surfaces is replaced by rectangles.

The boundary conditions for the solution of Reynolds' differential equation are the following.

1) The gauge pressure of the lubricant at the feeding point is p(x =0, z)=0.

2) The feeding of the lubricant is arranged in such a way that it does not interfere with the generation of

pressure in the lubrication clearance gap.

3) The gauge pressure of the lubricant at the lateral edges of the plain bearing is p(x, z=0,5 B)=0.

4) The gauge pressure of the lubricant is p(x = L, z) = 0 at the end of the pressure field.

The application of the principle of similarity in hydrodynamic plain bearing theory results in dimensionless

parameters of similarity for such characteristics as load carrying capacity, friction behaviour and lubricant flow rate.

The use of parameters of similarity reduces the number of necessary numerical solutions of Reynolds' differential

equation which are compiled in ISO 12131-2. In principle, other solutions are also permitted provided they satisfy

the conditions given in this part of ISO 12131 and have the corresponding numerical accuracy.

ISO 12131-3, contains guide values according to which the calculation result is to be oriented in order to ensure the

functioning of the plain bearings.

In special cases, guide values deviating from ISO 12131-3, may be agreed for specific applications.

2 © ISO 2001 – All rights reserved
---------------------- Page: 8 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
4 Symbols and units
See Table 1 and Figure 1.
Table 1 — Symbols and units
Symbol Designation Unit
A Heat emitting surface of the bearing housing m
B Width of one pad m
c Specific heat capacity of the lubricant (p = constant) J/(kg�K)
C Wedge depth m
wed
D Mean sliding diameter (diameter of thrust bearing ring) m
D Inside diameter of thrust bearing ring m
D Outside diameter of thrust bearing ring m
f * Characteristic value of friction 1
f * Characteristic value of friction for thrust pad bearing 1
F Bearing force (nominal load) N
F* Characteristic value of load carrying capacity 1
F * Characteristic value of load carrying capacity for thrust pad bearing 1
F Bearing force (load) under stationary conditions N
h Local lubricant film thickness (clearance gap height) m
h Minimum permissible lubricant film thickness during operation m
lim

h Minimum permissible lubricant film thickness in the transition into mixed lubrication m

lim, tr
h Minimum lubricant film thickness (minimum clearance gap height) m
min
k Heat transfer coefficient related to the product B � L � Z W/(m �K)
k External heat transfer coefficient (reference surface A)W/(m �K)
l Wedge length m
wed
L Length of one pad in circumferential direction m
M Mixing factor 1
N Rotational frequency (speed) of thrust collar s
p Local lubricant film pressure Pa
p Specific bearing load p = F/(B� L� Z)Pa
P Frictional power in the bearing or heat flow rate generated by it W
p Maximum permissible specific bearing load Pa
lim
P Heat flow rate to the environment W
th, amb
P Heat flow rate in the lubricant W
th, L
Q Lubricant flow rate m /s
Q* Characteristic value of lubricant flow rate m /s
Q Relative lubricant flow rate Q = B � h � U � Z m /s
0 min

Q Lubricant flow rate at the inlet of the clearance gap (circumferential direction) m /s

Q* Characteristic value of lubricant flow rate at the inlet of the clearance gap 1

© ISO 2001 – All rights reserved 3
---------------------- Page: 9 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
Table 1 — (continued)
Symbol Designation Unit

Lubricant flow rate at the outlet of the clearance gap (circumferential direction) m /s

* *

Q* Characteristic value of lubricant flow rate Q � Q at the outlet of the clearance gap 1

1 3

Lubricant flow rate at the sides (perpendicular to circumferential direction) m /s

Q* Characteristic value of lubricant flow rate at the sides 1
Re Reynolds number 1
Rz Average peak-to-valley roughness height of thrust collar �m
T Ambient temperature �C
amb
T Bearing temperature �C
T Effective lubricant film temperature �C
eff
T Lubricant temperature at the inlet of the bearing �C
T Lubricant temperature at the outlet of the bearing �C
Maximum permissible bearing temperature �C
lim
T Lubricant temperature at the inlet of the clearance gap �C
T Lubricant temperature at the outlet of the clearance gap �C
U Sliding velocity relative to mean diameter of bearing ring m/s
w Velocity of air surrounding the bearing housing m/s
amb
Coordinate in direction of motion (circumferential direction) m
y Coordinate in direction of lubrication clearance gap (axial) m
z Coordinate perpendicular to the direction of motion (radial) m
Z Number of pads 1
� Dynamic viscosity of the lubricant Pa�s
� Effective dynamic viscosity of the lubricant Pa�s
eff
Density of the lubricant kg/m
4 © ISO 2001 – All rights reserved
---------------------- Page: 10 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
Key
1 Wedge surface
2 Thrust collar
3 Supporting surface
4 Lubrication groove
5 Thrust bearing ring

Figure 1 — Schematic view of a thrust pad bearing (bearing with incorporated wedge

and supporting surfaces)
© ISO 2001 – All rights reserved 5
---------------------- Page: 11 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
5 Calculation procedure
5.1 Loading operations
5.1.1 General

Calculation means the mathematical determination of the correct functioning using operational parameters (see

Figure 2) which can be compared with guide values. Thereby, the operational parameters determined under

varying operation conditions shall be permissible as compared to the guide values. For this purpose, all continuous

operating conditions shall be investigated.
5.1.2 Wear

Safety against wear is given if complete separation of the mating bearing parts is achieved by the lubricant.

Continuous operation in the mixed lubrication range results in premature loss of functioning. Short-time operation in

the mixed lubrication range such as starting up and running down machines with plain bearings, is unavoidable and

can result in bearing damage after frequent occurrence. When subjected to heavy load, an auxiliary hydrostatic

arrangement may be necessary for starting up or running down at a low speed. Running-in and adaptive wear to

compensate for surface geometry deviations from the ideal geometry are permissible as long as these are limited in

time and locality and occur without overload effects. In certain cases, a specific running-in procedure may be

beneficial. This can also be influenced by the selection of the material. Attention is drawn to the fact that in the case

of this bearing design, wear can lead to a rapid decrease in the load carrying capacity.

5.1.3 Mechanical loading

The limits of mechanical loading are given by the strength of the bearing material. Slight permanent deformation is

permissible as long as it does not impair correct functioning of the plain bearing.

5.1.4 Thermal loading

The limits of thermal loading result not only from the thermal stability of the bearing material but also from the

viscosity-temperature relationship and the ageing tendency of the lubricant.
5.1.5 Outside influences

Calculation of correct functioning of plain bearings presupposes that the operating conditions are known for all

cases of continuous operation. In practice, however, additional disturbing influences frequently occur which are

unknown at the design stage and cannot always be computed. Therefore, the application of an appropriate safety

margin between the operational parameters and the permissible guide values is recommended. Disturbing

influences are, e.g.:
� spurious forces (out-of-balance, vibrations, etc.);

� deviations from the ideal geometry (machining tolerances, deviations during assembly, etc.);

� lubricants contaminated by solid, liquid and gaseous foreign matters;
� corrosion, electric erosion, etc.
Information as to further influence factors is given in 5.8.

The applicability of this part of ISO 12131 for which laminar flow in the lubrication clearance gap is a necessary

condition, is to be checked by the Reynolds' number:
���Uh
min
Re = u (2)
eff
6 © ISO 2001 – All rights reserved
---------------------- Page: 12 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
Figure 2 — Scheme of calculation (flow chart)
© ISO 2001 – All rights reserved 7
---------------------- Page: 13 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)

For wedge-shaped gaps with h /C = 0,8 a critical Reynolds' number of Re =600 canbeassumedas guide

min wed
[4]
value according to .

Starting from the known bearing dimensions and operating data the plain bearing calculation comprises:

� the relationship between load carrying capacity and lubricant film thickness;
� the frictional power;
� the lubricant flow rate;
� the heat balance.

These shall be interdependent. The solution is obtained using an iterative method, the sequence of which is

summarized in the calculation flow chart in Figure 2.

For optimization of individual parameters, parameter variation can be performed; modification of the calculation

sequence is possible.
5.2 Load carrying capacity

The parameter for the load carrying capacity is the dimensionless characteristic value of load carrying capacity F*:

Fh�
min
= (3)
UL��� �B�Z
eff

Firstly, the minimum lubricant film thickness h as well as the effective viscosity � are still unknown in

min eff

equation (3). In order to avoid a double iteration via the minimum lubricant film thickness h and the effective

min
* [5]

bearing temperature T , the characteristic value of load carrying capacity F according to is modified as follows

eff

to be the characteristic value of load carrying capacity for the calculation of thrust pad bearings:

wed
= � (4)
min
[6]

The function =fB(/ ; /)L is explained in ISO 12131-2 on the basis of the findings in . Approximate

F hC
B min wed
functions are also given there.
5.3 Frictional power

The losses due to friction in a hydrodynamic plain thrust bearing are given by the characteristic value of friction f *

which is defined as follows:
* min
f = � (5)
��� BL� �Z
eff

The characteristic value of friction f * is also modified as follows to be the characteristic value of friction for thrust

[5]
pad bearings f according to :
** wed
ff= � (6)
min
8 © ISO 2001 – All rights reserved
---------------------- Page: 14 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
Thus the frictional power is calculated as follows:
��� BL� �Z
* eff
= f � (7)
wed

The characteristic value of friction for thrust pad bearings f can be taken from ISO 12131-2 as a function of the

film thickness ratio h /C and of the ratio B/L and with this, the frictional power loss P can be calculated.

min wed f
5.4 Lubricant flow rate

The lubricant fed to the bearing forms a solid lubricant film separating the sliding surfaces. At the same time, the

lubricant has the task to dissipate the frictional heat developing in the bearing. See Figure 3.

Key
1 Wedge surface
2 Supporting surface
Figure 3 — Schematic view of the lubricant balance and heat balance of one pad

Due to the rotational motion of the thrust collar, the lubricant is carried, with increasing pressure, in the direction of

the converging clearance gap. Thereby part of the lubricant is forced out at the sides of each pad. It is assumed

that the lateral portions approximately have the same size.
In Figure 3:
Q = Q + Q (8)
1 2 3
with
Q = Q � Q (9)
1 1 0
Q = Q � Q (10)
3 3 0
Q = Q – Q (11)
2 1 3
Q = B� h � U� Z (12)
min
* *

The relative values of Q = Q /Q and Q = Q /Q can be taken from ISO 12131-2 as a function of the geometry

1 1 0 3 3 0

(B/L and l /L = 0,75) and the arising relative lubricant film thickness h /C . Approximate functions are also

wed min wed
given there.
© ISO 2001 – All rights reserved 9
---------------------- Page: 15 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)

It is assumed that the lubricant forced out at the sides of the pads, Q , has the temperature (T + T )/2 and the

3 1 2
lubricant forced out at the ends, Q , has the temperature T .
2 2
5.5 Heat balance
5.5.1 General
The thermal condition of the plain bearing results from the heat balance.

The heat flow P arising from the frictional power P in the bearing is dissipated via the bearing housing to the

th, f f

environment and via the lubricant emerging from the bearing. In practical applications, one of the two kinds of heat

dissipation is predominant. Additional safety is given to the design by neglecting the other kind of heat dissipation.

The following assumptions can be made.

a) With pressureless lubricated bearings (self-lubrication, natural cooling) heat dissipation to the environment

mostly takes place by convection:
P = P
f th, amb

b) With pressure-lubricated bearings (recirculating lubrication) heat dissipation mostly takes place via the

lubricant (recooling):
P = P
f th, L
5.5.2 Heat dissipation by convection

Heat dissipation by convection [5.5.1 a)] takes place by thermal conduction and lubricant recirculation in the

bearing housing and subsequently by radiation and convection from the surface of the housing to the environment.

[7]

According to the complex processes during the heat dissipation can be summarized as follows:

P = k � A� (T � T ) (13)
th, amb A B amb
with
2 2
k =15W/(m ����K) to 20 W/(m ����K)

or when the bearing housing is subjected to an air-flow at a velocity of w � 1,2 m/s

amb
=7 + 12 (14)
A amb
where w is expressed in m/s and k in W/(m ����K).
amb A

NOTE Thereby, the factor k accounts for the thermal conduction in the bearing housing as well as for the convection and

radiation from the bearing housing to the environment. That part of the frictional heat arising in the bearing, which is dissipated via

the shaft, is neglected here due to its very small amount in most cases.
By equating P from equation (7) and P from equation (13) and with
f th, amb
kA�
k= (15)
BL��Z
10 © ISO 2001 – All rights reserved
---------------------- Page: 16 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
the effective bearing temperature is obtained as follows
* eff
=+� (16)
eff amb
k �
wed
In this case, the bearing temperature is
T = T (17)
B eff

If the heat-emitting surface A of the bearing housing is not known exactly, the following can be substituted as an

approximation:
for cylindrical housings
A��2 �DD�� B (18)
HHH
for bearings in the machine structure
A =(15to20)� B� L� Z (19)
where
B is the axial housing width, in metres;
D is the housing outside diameter, in metres.
5.5.3 Heat dissipation by recirculating lubrication

In case of recirculating lubrication, heat dissipation takes place via the lubricant [5.5.1 b)].

P =�� c � Q(T � T ) (20)
th, L p ex en
For mineral lubricants, the volume specific heat capacity amounts to
6 3
�� c = 1,8� 10 J/(m ����K)
Mixing processes in the lubrication recess.

Since a thrust pad bearing consists of a certain number of separate pads it is necessary to consider not only the

lubricant flow rate of one single pad but also the lubricant flow rate of the complete bearing and thus the mutual

influence of the lubricant flow rate. The lubricant forced out at the end of the pads Q (accordingtoFigure3) is

mixed with newly fed lubricant in the following oil recess, i.e. the lubricant temperature T at the inlet of the

lubrication clearance gap is higher by �T than that of the newly fed lubricant with temperature T (see Figure 4).

1 en
When determining the temperature difference
�T = T � T (21)
1 1 en

an empirical factor shall be introduced because a purely theoretical consideration of this mixing problem has not yet

led to satisfying results.
© ISO 2001 – All rights reserved 11
---------------------- Page: 17 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)

A mixing factor M can be introduced as follows in order to achieve conformity with the experience gathered up to

[5]
now (see ):
�TT� ��= ��T (22)
12 2
MQ��(1�M)� Q
M+��QQ(1M)�
for QW Q and Q*W Q* respectively.
3 3

Figure 4 — Graphical representation of the temperature distribution in the lubricant film

To explain the mixing factor we shall examine at the limiting values. A mixing factor M = 0 means that there is no

mixing in the lubrication recesses, i.e. the lubricant flow rate Q forced out of the lubrication clearance gaps

completely enters the following lubrication clearance gap. With this assumption a high lubricant flow rate Q would

be ineffective as the largest part of this newly fed lubricant would flow out of the lubrication recesses in a radial

direction without influencing the operational parameters. A mixing factor M=1 means “complete” mixing in the

lubrication precesses. 0,4 u Mu 0,6 can be introduced as an empirical value. It is a function of the design and

cannot be definitely indicated.

The total amount of lubricant to be fed to the thrust bearing can be determined from a given amount of heating

�T = T – T (23)
ex en
f *
Q= =QQ� (24)
��� �T
By experience the value for�T is chosen in the range of 10 K to 30 K.
With
�T = T � T (25)
2 2 1
itcanbewritten:
P = c ��� (Q + 0,5� Q )��T (26)
th, L p 2 3 2

The following relationship is the product of equations (24) and (26) for the temperature rise in the lubrication

clearance gap:
��TTQQ��
��== (27)
*** *
QQ+0,5��Q 0,5�Q
231 3
12 © ISO 2001 – All rights reserved
---------------------- Page: 18 ----------------------
SIST ISO 12131-1:2002
ISO 12131-1:2001(E)
with�T= the effective bearing temperature can be determined as follows:
T = T +�T + 0,5��T = T + (�T +0,5)��T (28)
eff en 1 2 en 2
The bearing temperature is in this case
T = T = T +�T + �T = T +(�T +1)��T (29)
B 2 en 1 2 en 2

The permissibility of the values calculated for T and T in accordance with 5.5.1 and 5.5.2 shall be checked by

B 2
comparison with the guide values T in accordance with ISO 12131-3.
lim
5.6 Minimum lubricant film thickness and specific bearing load
After calculation of the thermal steady-state condition, the minim
...

NORME ISO
INTERNATIONALE 12131-1
Première édition
2001-04-15
Paliers lisses — Butées hydrodynamiques
à patins géométrie fixe fonctionnant en
régime stationnaire
Partie 1:
Calcul des butées à segments
Plain bearings — Hydrodynamic plain thrust pad bearings under
steady-state conditions
Part 1: Calculation of thrust pad bearings
Numéro de référence
ISO 12131-1:2001(F)
ISO 2001
---------------------- Page: 1 ----------------------
ISO 12131-1:2001(F)
PDF – Exonération de responsabilité

Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier peut

être imprimé ou visualisé, mais ne doit pas être modifiéà moins que l'ordinateur employéà cet effet ne bénéficie d'une licence autorisant

l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées acceptent de fait la

responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute responsabilité en la

matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.

Les détails relatifs aux produits logiciels utilisés pour la créationduprésent fichier PDF sont disponibles dans la rubrique General Info du

fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir l'exploitation de

ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation, veuillez en informer le

Secrétariat central à l'adresse donnée ci-dessous.
© ISO 2001

Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque

forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l’ISO à

l’adresse ci-aprèsouducomité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Imprimé en Suisse
ii © ISO 2001 – Tous droits réservés
---------------------- Page: 2 ----------------------
ISO 12131-1:2001(F)
Sommaire Page

Avant-propos..............................................................................................................................................................iv

1 Domaine d'application...................................................................................................................................1

2Références normatives .................................................................................................................................1

3 Principes fondamentaux, hypothèses et suppositions .............................................................................2

4 Symboles et unités ........................................................................................................................................3

5Méthode de calcul..........................................................................................................................................6

5.1 Opérations de charge....................................................................................................................................6

5.2 Portance..........................................................................................................................................................8

5.3 Puissance de frottement ...............................................................................................................................8

5.4 Débit de lubrifiant ..........................................................................................................................................9

5.5 Bilan thermique............................................................................................................................................10

5.6 Épaisseur minimale du film d'huile et charge spécifique du palier........................................................13

5.7 Conditions de fonctionnement...................................................................................................................13

5.8 Autres facteurs d'influence.........................................................................................................................14

Annexe A (normative) Exemples de calcul.............................................................................................................15

Bibliographie .............................................................................................................................................................25

© ISO 2001 – Tous droits réservés iii
---------------------- Page: 3 ----------------------
ISO 12131-1:2001(F)
Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de

normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiéeaux

comités techniques de l'ISO. Chaque comité membre intéressé par une étude aledroit de fairepartie ducomité

technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en

liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission

électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.

Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 3.

Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour

vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités

membres votants.

L’attention est appelée sur le fait que certains des éléments delaprésente partie de l’ISO 12131 peuvent faire

l’objet de droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable de

ne pas avoir identifié de tels droits de propriété et averti de leur existence.

La Norme internationale ISO 12131-1 a étéélaborée par le comité technique ISO/TC 123, Paliers lisses, sous-

comité SC 4, Méthodes de calcul des paliers lisses.

L'ISO 12131 comprend les parties suivantes, présentées sous le titre général Paliers lisses — Butées

hydrodynamiques à patins géométrie fixe fonctionnant en régime stationnaire:
� Partie 1: Calcul des butées à segments
� Partie 2: Fonctions pour le calcul des butées à segments

� Partie 3: Paramètres opérationnels admissibles pour le calcul des butées à segments

L’annexe A constitue un élément normatif de la présentepartiedel’ISO 12131.
iv © ISO 2001 – Tous droits réservés
---------------------- Page: 4 ----------------------
NORME INTERNATIONALE ISO 12131-1:2001(F)
Paliers lisses — Butées hydrodynamiques à patins géométrie fixe
fonctionnant en régime stationnaire
Partie 1:
Calcul des butées à segments
1 Domaine d'application

L'objet de la présente partie de l’ISO 12131 est de réaliser des modèles de paliers lisses qui soient fiables en

fonctionnement par l'application d'une méthode de calcul pour les paliers lisses hydrodynamiques lubrifiés à l'huile

[1]

avec séparation complète du collet de butée et des surfaces du palier lisse par un film de lubrifiant .

La présente partie de l’ISO 12131 s'applique aux paliers de butée lisses à cale intégrée et surfaces d'appui, qui ont

un rapport de longueur de surface de cale l et de longueur de patin L quelconque. Elle traite de préférencedela

wed
[2]

valeur l /L = 0,75 dans la mesure où cette valeur représente le rapport optimum . Le rapport de la largeur et de

wed
la longueur d'un patin peut varier dans la plage B/L=0,5 à 2.

La méthode de calcul décritedanslaprésentepartiede l’ISO 12131 peut être utilisée pour d'autres formes de jeu

intégré, par exemple paliers de butée lissesavecdéflecteur intégré, lorsqu'il existe des solutions numériques de

l'équation différentielle de Reynolds pour ces types de formes.

La méthode de calcul permet de concevoir et d'optimiser les paliers de butée lisses, par exemple pour les

ventilateurs, groupes d'engrenages, pompes, turbines, machines électriques, compresseurs et machines-outils.

Elle se limite aux conditions de régime permanent, c'est-à-dire que la charge et la vitesse angulaire de toutes les

parties tournantes sont constantes dans des conditions de fonctionnement continu. Les conditions de

fonctionnement dynamique ne sont pas incluses.
2Références normatives

Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite,

constituent des dispositions valables pour la présente partie de l'ISO 12131. Pour les références datées, les

amendements ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes

aux accords fondés sur la présente partie de l'ISO 12131 sont invitées à rechercher la possibilité d'appliquer les

éditions les plus récentes des documents normatifs indiqués ci-après. Pour les références non datées, la dernière

édition du document normatif en référence s’applique. Les membres de l'ISO et de la CEI possèdent le registre des

Normes internationales en vigueur.

ISO 3448:1992, Lubrifiants liquides industriels — Classification ISO selon la viscosité

ISO 12131-2:2001, Paliers lisses — Butées hydrodynamiques à patins géométrie fixe fonctionnant en régime

stationnaire — Partie 2: Fonctions pour le calcul des butées à segments

ISO 12131-3, Paliers lisses — Butées hydrodynamiques à patins géométrie fixe fonctionnant en régime

stationnaire — Partie 3: Paramètres opérationnels admissibles pour le calcul des butées à segments

© ISO 2001 – Tous droits réservés 1
---------------------- Page: 5 ----------------------
ISO 12131-1:2001(F)
3 Principes fondamentaux, hypothèses et suppositions

Le calcul est toujours effectué avec les solutions numériques de l'équation différentielle de Reynolds pour les

surfaces glissantes à largeur finie, en tenant compte des conditions aux limites physiquement correctes pour la

génération de la pression.
��pp� � �h
�� ��
hh�� 6���U� (1)
�� ��
�� ��
��xx �z �z �x
[1] [2]

Il est fait référence par exemple à pour la dérivation de l'équation différentielle de Reynolds et à pour la

solution numérique.

Pour la solution de l'équation (1), on utilise les hypothèses et suppositions idéales suivantes, dont la fiabilité est

[3]
suffisamment confirmée par l'expérience et la pratique :
a) le lubrifiant correspond à un fluide newtonien;
b) tous les écoulements de lubrifiant sont laminaires;
c) le lubrifiant adhère complètement aux surfaces de glissement;
d) le lubrifiant est incompressible;
e) le jeu de lubrification est entièrement rempli de lubrifiant;

f) les effets d'inertie, les forces de gravitation et magnétiques du lubrifiant sont négligeables;

g) les composants constituant le jeu de lubrification sont rigides ou leur déformation est négligeable; leurs

surfaces sont entièrement à niveau;
h) l'épaisseur du film d'huile dans le sens radial (coordonnée z) est constante;

i) les variations de pression du film d'huile perpendiculaire aux surfaces de glissement (coordonnée y) sont

négligeables;

j) absence de déplacement perpendiculairement aux surfaces de glissement (coordonnée y);

k) le lubrifiant est isovisqueux sur tout le jeu de lubrification;

l) le lubrifiant est injecté dans le jeu de lubrification le plus grand; la grandeur de la pression d'alimentation du

lubrifiant est négligeable par comparaison aux pressions du film d'huile;

m) la forme du patin des surfaces de glissement est remplacée par des rectangles.

Les conditions aux limites pour la résolution de l'équation différentielle de Reynolds sont les suivantes:

1) la pression au manomètre du lubrifiant au point d'alimentation est p(x=0, z)=0;

2) l'introduction du lubrifiant s'effectue de sorte qu'il n'interfère pas sur la génération de la pression dans le

jeu de lubrification

3) la pression au manomètre du lubrifiant au niveau des bords latéraux du palier lisse est p(x, z=0,5 B)=0;

4) la pression au manomètre du lubrifiant est p(x = L, z)=0 à l'extrémité du champ de pression.

L'application du principe de similarité dans la théorie des paliers lisses hydrodynamiques produit des paramètres

de similarité non dimensionnés pour des caractéristiques telles que la portance, le comportement au frottement et

le débit de lubrifiant.
2 © ISO 2001 – Tous droits réservés
---------------------- Page: 6 ----------------------
ISO 12131-1:2001(F)

L'utilisation des paramètres de similarité réduit le nombre de solutions numériques nécessaires de l'équation

différentielle de Reynolds, compilées dans l'ISO 12131-2. En principe, d'autres solutions sont également admises

lorsqu'elles satisfont les conditions données dans la présente partie de l’ISO 12131 et ont la précision numérique

correspondante.

L'ISO 12131-3 contient les valeurs indicatives selon lesquelles le résultat des calculs doit être orienté afin de

garantir le fonctionnement des paliers lisses.

Dans les cas particuliers, les valeurs indicatives qui s'écartent de l'ISO 12131-3 peuvent faire l'objet d'un accord

pour les applications spécifiques.
4 Symboles et unités
Voir Tableau 1 et Figure 1.
Tableau 1 — Symboles et unités
Symbole Terme Unité
A Surface émettrice de chaleur du corps du palier m
B Largeur d'un patin m
c .
Chaleur massique du lubrifiant (p = constante)
J/(kg K)
wed Profondeur de la cale m
D Diamètre moyen de glissement (diamètredelabaguedupalierdebutée) m
Diamètre intérieur de la bague du palier de butéem
Diamètre extérieur de la bague du palier de butéem
f * Valeur caractéristique de frottement 1
f *
Valeur caractéristique de frottement du palier de butée à patin 1
F Force du palier (charge nominale) N
F* Valeur caractéristique de la portance 1
F *
Valeur caractéristique de la portance du palier de butée à patin 1
Force du palier (charge) dans des conditions de régime stationnaire N
Épaisseur locale du film d'huile (hauteur de jeu) m
Épaisseur minimale admissible du film d'huile en cours de fonctionnement m
lim

Épaisseur minimale admissible du film d'huile dans la transition vers une lubrification mixte m

lim, tr
Épaisseur minimale du film d'huile (hauteur minimale de jeu) m
min
k Coefficient de transmission thermique lié au produit B � L � Z 2.
W/(m K)
A Coefficient de transmission thermique externe (surface de référence A)
W/(m K)
Longueur de la cale m
wed
Longueur d'un patin dans le sens périphérique m
M Facteur de mélange 1
© ISO 2001 – Tous droits réservés 3
---------------------- Page: 7 ----------------------
ISO 12131-1:2001(F)
Tableau 1 — (Suite)
Symbole Terme Unité
� 1
N Fréquence de rotation (vitesse) du collet de butée
p Pression locale du film d'huile Pa
p Charge spécifique du palier p = F/(B � L � Z) Pa
Puissance de frottement sur le palier ou flux thermique engendré par celle-ci W
p Charge spécifique maximale admissible du palier Pa
lim
th, amb Flux thermique dans l'environnement W
Flux thermique dans le lubrifiant W
th, L
Q Débit de lubrifiant m /s
Q* Valeur caractéristique du débit de lubrifiant m /s
m /s
0 Débit relatif de lubrifiantQB��h �U�Z
0min
Débit de lubrifiant à l'entrée du jeu (sens périphérique) m /s
Valeur caractéristique du débit de lubrifiant à l'entréedu jeu 1
Débit de lubrifiant à la sortie du jeu (sens périphérique) m /s
Valeur caractéristique du débit de lubrifiantQQ– à la sortie du jeu
Débit de lubrifiant sur les côtés (perpendiculaire au sens périphérique) m /s
Valeur caractéristique du débit de lubrifiant sur les côtés1
Re Nombre de Reynolds 1
Rz Hauteur de la rugosité moyenne crête-à-creux du collet de butée �m
Température ambiante °C
amb
Température du palier °C
Température effective du film d'huile °C
eff
en Température du lubrifiant à l'entréedupalier °C
Température du lubrifiant à la sortie du palier °C
Température maximale admissible du palier °C
lim
1 Température du lubrifiant à l'entréedujeu °C
Température du lubrifiant à la sortie de jeu °C
U Vitesse de glissement par rapport au diamètre moyen de la bague du palier m/s
Vitesse de l'air environnant le corps du palier m/s
amb
x Coordonnée dans le sens du mouvement (sens périphérique) m
y Coordonnée dans le sens du jeu de lubrification (sens axial) m
z Coordonnée perpendiculaire au sens du mouvement (sens radial) m
Nombre de patins 1
Viscosité dynamique du lubrifiant Pa�s
� Viscosité dynamique effective du lubrifiant Pa�s
eff
Masse volumique du lubrifiant kg/m
4 © ISO 2001 – Tous droits réservés
---------------------- Page: 8 ----------------------
ISO 12131-1:2001(F)
Légende
1 Surface de la cale
2 Collet de butée
3 Surface d'appui
4 Rainure de lubrification
5 Bague de palier de butée

Figure 1 — Représentation schématique d'un palier de butée à patin (palier à cale intégrée

et surfaces d'appui)
© ISO 2001 – Tous droits réservés 5
---------------------- Page: 9 ----------------------
ISO 12131-1:2001(F)
5Méthode de calcul
5.1 Opérations de charge
5.1.1 Généralités

Le calcul signifie la détermination mathématique du bon fonctionnement à l'aide des paramètres de fonctionnement

(voir Figure 2) qui peuvent être comparés aux valeurs indicatives. De ce fait, l'utilisation des paramètres de

fonctionnement déterminés dans des conditions de fonctionnement variables doit être admise par comparaison aux

valeurs indicatives. À cet effet, toutes les conditions de fonctionnement continu doivent être analysées.

5.1.2 Usure

La sécurité contre l'usure est obtenue si le lubrifiant assure une séparation complète des parties conjuguées du

palier. Un fonctionnement continu dans la plage de lubrification mixte entraîne une perte prématuréede

fonctionnement. Un fonctionnement de courte durée dans la plage de lubrification mixte tel que le démarrage et le

ralentissement de machines à paliers lisses, est inévitable et peut entraîner un endommagement du palier aprèsde

fréquentes utilisations. Lorsqu'il est soumis à une lourde charge, un dispositif hydrostatique auxiliaire peut s'avérer

nécessaire pour un démarrage ou une décélération à faible vitesse. Le rodage et une usure adaptative pour

compenser les écarts géométriques de surface par rapport à une géométrie idéale sont admis dans la mesure où

ils sont limités dans le temps et dans l'espace et se produisent sans effets de surcharge. Dans certains cas, une

procédure spécifique de rodage peut être bénéfique. Ceci peut également être influencé par la sélection du

matériau. Il convient d'attirer l'attention sur le fait que dans le cas de ce type de palier, l'usure peut entraîner une

chute rapide de la portance.
5.1.3 Charge mécanique

Les limites de la charge mécanique sont données par la résistance du matériau pour palier. Les déformations

légères permanentes sont admises dans la mesure où elles n'altèrent pas le bon fonctionnement du palier lisse.

5.1.4 Charge thermique

Les limites de la charge thermique sont dues à la stabilité thermique du matériau pour palier mais également à la

relation viscosité-température ainsi qu'à la tendance au vieillissement du lubrifiant.

5.1.5 Influences extérieures

Le calcul du bon fonctionnement des paliers lisses présuppose de connaître les conditions de fonctionnement pour

tous les cas de fonctionnement continu. Toutefois, dans la pratique, d'autres influences perturbatrices, qui ne sont

pas connues au moment de la conception, et qui ne peuvent pas toujours être calculées,sontfréquentes. Par

conséquent, l'application d'une marge de sécurité appropriée entre les paramètres de fonctionnement et les

valeurs indicatives admissibles est recommandée. Les influences perturbatrices sont, par exemple:

� les forces parasites (balourd, vibrations, etc.);

� les écarts par rapport à une géométrie idéale (tolérances d'usinage, écarts lors du montage, etc.);

� les lubrifiants contaminés par des corps étrangers solides, liquides et gazeux;

� la corrosion, l'érosion électrique, etc.

Les informations telles que celles relatives à d'autres facteurs d'influence sont données en 5.8.

6 © ISO 2001 – Tous droits réservés
---------------------- Page: 10 ----------------------
ISO 12131-1:2001(F)
Figure 2 — Plan de calcul (organigramme)
© ISO 2001 – Tous droits réservés 7
---------------------- Page: 11 ----------------------
ISO 12131-1:2001(F)

L'applicabilité de la présente partie de l’ISO 12131 pour laquelle l'écoulement laminaire dans le jeu de lubrification

est une condition nécessaire, doit être vérifiée par le nombre de Reynolds:
���Uh
min
Re = u (2)
eff

Pour les jeux à coin avec h /C = 0,8, un nombre de Reynolds critique de Re = 600 peut être pris comme

min wed cr
[4]
valeur indicative selon .

Le calcul du palier lisse comprend, en commençant par les dimensions du palier et les données de fonctionnement

connues:
� la relation entre la portance et l'épaisseur du film d'huile;
� la puissance de frottement;
� le débit de lubrifiant;
� le bilan thermique.

Tous ces éléments sont interdépendants. On obtient la solution en utilisant une méthode par itération, dont la

séquence est résumée dans l'organigramme de calcul de la Figure 2.

Pour l'optimisation des paramètres individuels, on peut varier les paramètres et il est possible de modifier la

séquence de calcul.
5.2 Portance

Le paramètre de portance est la valeur caractéristique non dimensionnéedelaportance F*:

Fh�
min
= (3)
UL��� �B�Z
eff

La valeur de l'épaisseur minimale du film d'huile h ainsi que celle de la viscosité effective � ne sont pas

min eff

connues dans l'équation (3). Pour éviter toute double itération par l'épaisseur minimale du film d'huile h et la

min
[5]

température effective du palier T , la valeur caractéristique de la portance F* selon est modifiéedela manière

eff

suivante afin d'êtrelavaleurcaractéristique de la portance pour le calcul des paliers de butée à patin:

wed
= � (4)
��h
min
[6]

La fonction =(fB/ ; /L) est expliquée sur la base de dans l'ISO 12131-2. Les fonctions

F hC
B min wed
approchées y sont également données.
5.3 Puissance de frottement

Les pertes dues au frottement sur un palier de butée lisse hydrodynamique sont données par la valeur

caractéristique de frottement f définiede lamanière suivante:
min
f =P � (5)
��BL� �Z
eff

La valeur caractéristique de frottement f est également modifiée delamanière suivante afin d'être la valeur

[5]
caractéristique de frottement pour les paliers de butée à patin selon .
8 © ISO 2001 – Tous droits réservés
---------------------- Page: 12 ----------------------
ISO 12131-1:2001(F)
wed
ff= � (6)
min
Ainsi, la puissance de frottement est calculéedelamanière suivante:
��� BL� �Z
* eff
= � (7)
wed

La valeur caractéristique de frottement pour les paliers de butée à patin peut être celle donnéedans

l'ISO 12131-2 en fonction du rapport d'épaisseur du film h /C et du rapport B/L, et ainsi la perte de puissance

min wed
de frottement P peut être calculée.
5.4 Débit de lubrifiant

Le lubrifiant injecté dans le palier forme un film d'huile solide séparant les surfaces de glissement. En même temps,

le lubrifiant doit dissiper la chaleur de frottement qui se développe dans le palier. Voir Figure 3.

Légende
1 Surface de la cale
2 Surface d'appui

Figure 3 — Représentation schématique de l'équilibre du lubrifiant et du bilan thermique d'un patin

En raison du mouvement de rotation du collet de butée, le lubrifiant est dirigé, avec augmentation de la pression,

vers le jeu convergent. Ainsi, une partie du lubrifiant est expulsée dechaquecôté des patins. On suppose que les

parties latérales ont approximativement la même dimension.
À la Figure 3:
QQQ�� (8)
12 3
avec
QQ��Q (9)
11 0
(10)
QQ��Q
33 0
QQ��Q (11)
21 3
QB��h �U�Z (12)
0min
© ISO 2001 – Tous droits réservés 9
---------------------- Page: 13 ----------------------
ISO 12131-1:2001(F)
* *

Les valeurs relatives de Q = Q /Q et Q = Q / Q peuvent être celles données dans l'ISO 12131-2 en fonction

1 1 0 3 3 0

de la géométrie (B/L et l /L = 0,75) et de l'épaisseur relative toujours plus grande du film d'huile h /C .Les

wed min wed
fonctions approchées y sont également données.

Il est supposé que le lubrifiant expulsé de chaque côté des patins, Q ,a la température (T + T )/2 et que le

3 1 2
lubrifiant expulsé aux extrémités, Q ,alatempérature T .
2 2
5.5 Bilan thermique
5.5.1 Généralités
L'état thermique du palier lisse découle du bilan thermique.

Le flux thermique P dûà la puissance de frottement P sur le palier est dissipé dans l'environnement par

th, f f

l'intermédiaire du corps de palier et par le lubrifiant provenant du palier. Dans les applications pratiques, l'un des

deux types de dissipation thermique est prédominant. Une sécurité supplémentaire est garantie pour la conception,

en ne tenant pas compte de l'autre type de dissipation thermique. Les hypothèses suivantes peuvent être émises:

a) avec les paliers lubrifiés sans pression (autolubrification, refroidissement naturel) la dissipation thermique dans

l'environnement se produit la plupart du temps par convection:
P = P
f th, amb

b) avec les paliers lubrifiés sous pression (lubrification par recirculation), la dissipation thermique se produit la

plupart du temps par le lubrifiant (nouveau refroidissement):
P = P
f th, L
5.5.2 Dissipation thermique par convection

La dissipation thermique par convection [5.5.1 a)] se produit par conduction thermique et recirculation du lubrifiant

dans le corps du palier, puis par rayonnement et convection à partir de la surface du logement vers

[7]

l'environnement. Selon , les processus complexes intervenant au cours de la dissipation thermique peuvent être

résumés delamanière suivante:
P = k � A � (T � T ) (13)
th, amb A B amb
avec
2 2
k =15W/(m ��K) à 20 W/(m ��K)
�� ��

ou lorsque le corps du palier est soumis à un débit d'air à une vitesse de w � 1,2 m/s

amb
k =7 +12 w (14)
A amb
où w est exprimé en m/s et k en W/(m ����K).
amb A

NOTE Ainsi, le facteur k tient compte de la conduction thermique dans le corps du palier ainsi que de la convection et du

rayonnement du corps du palier dans l'environnement. Cette partie de la chaleur de frottement dans le palier, qui est dissipée

par l'intermédiaire de l'arbre, est négligée dans ce cas en raison de son très faible volume dans la plupart des cas.

En égalisant P de l'équation (7) et P de l'équation (13) et avec
f th, amb
kA�
k= (15)
BL��Z
10 © ISO 2001 – Tous droits réservés
---------------------- Page: 14 ----------------------
ISO 12131-1:2001(F)
on obtient la température effective du palier
* eff
=+f � (16)
eff amb
kC�
wed
Dans ce cas, la température du palier est la suivante:
T = T (17)
B eff

Si la surface émettrice de chaleur A du corps du palier n'est pas connue de manière précise, la formule suivante

peut être substituée comme calcul approché:
pour les logements cylindriques:
A��2 �DD�� B (18)
HHH
pour les paliers dans la structure de la machine
A =(15 à 20) � B � L � Z (19)
B est la largeur axiale du logement, en mètres;
D est le diamètre extérieur du logement, en mètres.
5.5.3 Dissipation thermique par recirculation de lubrification

Dans le cas de la lubrification par recirculation, la dissipation thermique se produit par l'intermédiaire du lubrifiant

[5.5.1 b)].
P =�� c � Q(T � T ) (20)
th, L p ex en
Pour les lubrifiants minéraux, la chaleur massique en volume équivaut à
6 3.
�� c = 1,8 � 10 J/(m K)
Processus de mélange dans la retraite de lubrification.

Dans la mesure où un palier de butée à patin comprend un certain nombre de patins séparés, il s'avère nécessaire

de prendre en compte le débit de lubrifiant d'un seul patin ainsi que le débit de lubrifiant du palier complet, et donc

l'influence mutuelle du débit de lubrifiant. Le lubrifiant expulséà l'extrémité des patins Q (selon la Figure 3) est

mélangéà un lubrifiant récemment injecté dans la retraite d'huile suivante, c'est-à-dire que la température du

lubrifiant T à l'entrée du jeu de lubrification est supérieuredelavaleur �T à la température du lubrifiant

1 1
récemment injecté avec la température T (voir Figure 4).
© ISO 2001 – Tous droits réservés 11
---------------------- Page: 15 ----------------------
ISO 12131-1:2001(F)

Figure 4 — Représentation schématique de la répartition de la température dans le film d'huile

Pour déterminer la différence de température
�T = T � T (21)
1 1 en

un facteur empirique doit être introduit dans la mesure où une considération purement théorique du mélange n'a

pas encore produit de résultats satisfaisants.

Le facteur de mélange M peut être introduit de la manière suivante afin d'être en conformité avec l'expérience

[5]
acquise jusqu'à présent (voir ):
��T= �T = ��T (22)
12 2
MQ��+��1 M� Q
M+��QQ�1M ��
* *
pour QW Q et Q W Q respectivement.
3 3

Pour expliquer le facteur de mélange, regardons les valeurs limites. Un facteur de mélange M = 0 signifie qu'il ne

se produit aucun mélange dans les retraites de lubrification, c'est-à-dire que le débit de lubrifiant Q expulsé des

jeux de lubrification pénètre entièrement dans le jeu de lubrification suivant. Avec cette hypothèse, un débit de

lubrifiant élevé Q serait inefficace dans la mesure où la plus grande partie de ce lubrifiant nouvellement injecté

s'écoulerait hors des retraites de lubrification dans le sens radial sans exercer aucune influence sur les paramètres

de fonctionnement. Un facteur de mélange M = 1 signifie une lubrification «complète» dans les retraites de

lubrification. Un facteur 0,4 u Mu 0,6 peut être introduit comme valeur empirique. Il est fonction du modèle en

présence et ne peut être indiqué de manière certaine.

La quantité totale de lubrifiant devant être injectée dans le palier de butéepeut être déterminée à partir d'une

...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.