ISO/IEC 16022:2000/Cor 1:2004
(Corrigendum)Information technology — International symbology specification — Data Matrix — Technical Corrigendum 1
Information technology — International symbology specification — Data Matrix — Technical Corrigendum 1
Technologies de l'information — Spécification internationale des symboles — Data Matrix — Rectificatif technique 1
General Information
Relations
Standards Content (Sample)
INTERNATIONAL STANDARD ISO/IEC 16022:2000
TECHNICAL CORRIGENDUM 1
Published 2004-05-15
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION • МЕЖДУНАРОДНАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМИССИЯ • COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
Information technology — International symbology
specification — Data matrix
TECHNICAL CORRIGENDUM 1
Technologies de l'information — Spécification internationale des symboles — Matrice de données
RECTIFICATIF TECHNIQUE 1
Technical Corrigendum 1 to ISO/IEC 16022 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 31, Automatic
...
This May Also Interest You
ISO/IEC 15416:2016: - specifies the methodology for the measurement of specific attributes of bar code symbols; - defines a method for evaluating these measurements and deriving an overall assessment of symbol quality; and - provides information on possible causes of deviation from optimum grades to assist users in taking appropriate corrective action. ISO/IEC 15416:2016 applies to those symbologies for which a reference decode algorithm has been defined, and which are intended to be read using linear scanning methods, but its methodology can be applied partially or wholly to other symbologies.
- Standard36 pagesEnglish languagesale 15% off
- 04-Dec-2016
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
ISO/IEC 18004:2015 defines the requirements for the symbology known as QR Code. It specifies the QR Code symbology characteristics, data character encoding methods, symbol formats, dimensional characteristics, error correction rules, reference decoding algorithm, production quality requirements, and user-selectable application parameters.
- Standard117 pagesEnglish languagesale 15% off
- Standard117 pagesFrench languagesale 15% off
- 15-Feb-2015
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
The GS1 DataBar family contains three types of linear symbologies to be used with the GS1 system. The first type has four variations (GS1 DataBar Omnidirectional, GS1 DataBar Truncated, GS1 DataBar Stacked and GS1 DataBar Stacked Omnidirectional). The stacked variations are two-row symbols. The second type comprises only one variation, namely GS1 DataBar Limited. The third type has two variations, a single row variation (GS1 DataBar Expanded) and a multi-row stacked variation (GS1 DataBar Expanded Stacked). The use of GS1 DataBar is intended to comply with the GS1 application guidelines as defined in the GS1 General Specifications. GS1 DataBar Omnidirectional and GS1 DataBar Stacked Omnidirectional encode a 14-digit GS1 item identification (often referred to as a Global Trade Item Number, or GTIN) in a linear symbol that can be scanned omnidirectionally by suitably programmed point-of-sale scanners. GS1 DataBar Truncated and GS1 DataBar Stacked encode a 14-digit GS1 item identification in a linear symbol and are not suitable for omnidirectional scanning. GS1 DataBar Limited encodes a 14-digit GS1 item identification with a leading digit of zero or one in a linear symbol for use on small items that will not be scanned at the point-of-sale. GS1 DataBar Expanded encodes GS1 item identification plus supplementary application identifier element strings such as weight and "best before" date in a linear symbol that can be scanned omnidirectionally by suitably programmed point-of-sale scanners. Any member of the GS1 DataBar family can be printed as a stand-alone linear symbol or as part of a GS1 Composite symbol with an accompanying two-dimensional (2D) component printed above the GS1 DataBar linear component. GS1 DataBar symbols are intended for encoding identification numbers and data supplementary to the identification. The administration of the numbering system by GS1 ensures that identification codes assigned to particular items are unique worldwide and that they and the associated supplementary data are defined in a consistent way. The major benefit for the users of the GS1 system is the availability of uniquely defined identification codes and supplementary data formats for use in their trading transactions. ISO/IEC 24724:2011 defines the requirements for the GS1 DataBar symbology family. It specifies the characteristics of the GS1 DataBar symbology family, data character encodation, symbol formats, dimensions, print quality requirements, error detection, and decoding algorithms. For GS1 Composite symbols, ISO/IEC 24723 defines the 2D component. GS1 DataBar was formerly known as "Reduced Space Symbology (RSS)" and is renamed to align with the name of the GS1 organization.
- Standard73 pagesEnglish languagesale 15% off
- 28-Mar-2011
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
Composite symbologies are a class of bar code symbology, the principal distinguishing feature of which is that they comprise two, or more, components, each of which is a distinct symbol, but which contain a set of related data. Typically one component is a linear symbol containing primary data, which can be read on its own in some areas of the application. The other component(s) is a two-dimensional symbol containing supplementary data which qualifies the primary message, and requiring all components to be read to extract the complete message. The GS1 Composite symbology is one such symbology. The use of the symbology is intended to comply with the GS1 General Specifications. A GS1 Composite symbol consists of a linear component (encoding the item's primary identification) associated with an adjacent 2D component (encoding supplementary data, such as a batch number or expiration date). The GS1 Composite symbol always includes a linear component so that the primary identification is readable by all scanning technologies, and so that 2D imagers can use the linear component as a finder pattern for the adjacent 2D component. The GS1 Composite symbol always includes a multi-row 2D component, for compatibility with linear and 2D imagers, and with linear and rastering laser scanners. GS1 Composite symbols are intended for encoding identification numbers and data supplementary to the identification in accordance with the GS1 General Specifications. The administration of the numbering system by GS1 ensures that identification codes assigned to particular items are unique world-wide and that they and the associated supplementary data are defined in a consistent way. ISO/IEC 24723:2010 defines the requirements for the GS1 Composite symbology. It specifies the GS1 Composite symbology characteristics, data character encodation, symbol formats, dimensions and print quality requirements, error correction rules, and reference decoding algorithms. For those linear and 2D components of GS1 Composite symbols with published symbology specifications, those published specifications apply, except as specifically noted in ISO/IEC 24723:2010.
- Standard45 pagesEnglish languagesale 15% off
- 27-Jul-2010
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
Manufacturers of bar code equipment and users of bar code technology require publicly available standard symbology specifications to which they can refer when developing equipment and software. ISO/IEC 15420:2009 specifies the requirements for the bar code symbology known as EAN/UPC. It specifies EAN/UPC symbology characteristics, data character encodation, dimensions, tolerances, decoding algorithms and parameters to be defined by applications. It specifies the Symbology Identifier prefix strings for EAN/UPC symbols. Data content and the rules governing the use of this symbology are outside the scope of ISO/IEC 15420:2009; they are defined in the GS1 General Specifications.
- Standard39 pagesEnglish languagesale 15% off
- 14-Dec-2009
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
The need exists to identify the data carrier a reader detects in autodiscrimination environments. The Symbology Identifier concept provides a standardized way for a device receiving data from a reader to differentiate between the data carriers. ISO/IEC 15424:2008 deals mostly with bar code symbologies; the terms Symbology Identifier, symbology, and bar code are therefore used throughout ISO/IEC 15424:2008 although they are intended to apply to other data carriers as well. This identification is achieved by the addition of an optional feature to readers enabling the reader to prefix a standard string of characters to data messages. This preamble contains information about the decoded symbol (or other data carrier) and any processing the reader has done. The information is not encoded or otherwise explicitly or implicitly represented in the symbol, except that the presence of some optional features may be detected by the reading equipment, whereas others require the reader to be expressly configured to implement them. ISO/IEC 15424:2008 should be read in conjunction with the relevant symbology specifications. ISO/IEC 15424:2008 applies to automatic identification device communication conventions and standardizes the reporting of data carriers from bar code readers and other automatic identification equipment. It specifies a preamble message generated by the reader and interpretable by the receiving system, which indicates the bar code symbology or other origin of transmitted data, together with details of certain specified optional processing features associated with the data message.
- Standard16 pagesEnglish languagesale 15% off
- 06-Jul-2008
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
ISO/IEC 16390:2007 specifies the requirements for the bar code symbology known as Interleaved 2 of 5; it specifies Interleaved 2 of 5 symbology characteristics, data character encodation, dimensions, tolerances, decoding algorithms and parameters to be defined by applications. It specifies the Symbology Identifier prefix strings for Interleaved 2 of 5 symbols.
- Standard17 pagesEnglish languagesale 15% off
- 11-Jun-2007
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
The technology of bar coding is based on the recognition of patterns encoded in bars and spaces of defined dimensions. There are numerous methods of encoding information in bar code form, known as symbologies. Code 128 is one such symbology. The rules defining the translation of characters into bar and space patterns, and other essential features of each symbology, are known as the symbology specification. In the past, symbology specifications were developed and published by a number of organizations, resulting in certain instances in conflicting requirements for certain symbologies. Manufacturers of bar code equipment and users of bar code technology require publicly available standard symbology specifications to which they can refer when developing equipment and software. ISO/IEC 15417:2007 specifies the requirements for the bar code symbology known as Code 128. It specifies Code 128 symbology characteristics, data character encodation, dimensions, decoding algorithms and the parameters to be defined by applications. It specifies the symbology identifier prefix strings for Code 128 symbols.
- Standard25 pagesEnglish languagesale 15% off
- 30-May-2007
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
ISO/IEC 16022:2006 defines the requirements for the symbology known as Data Matrix. It specifies the Data Matrix symbology characteristics, data character encodation, symbol formats, dimensions and print quality requirements, error correction rules, decoding algorithm, and user-selectable application parameters. It applies to all Data Matrix symbols produced by any printing or marking technology. Data Matrix is a two-dimensional matrix symbology which is made up of nominally square modules arranged within a perimeter finder pattern. Though primarily shown and described in ISO/IEC 16022:2006 as a dark symbol on light background, Data Matrix symbols can also be printed to appear as light on dark. Manufacturers of bar code equipment and users of the technology require publicly available standard symbology specifications to which they can refer when developing equipment and application standards. The publication of standardized symbology specifications is designed to achieve this.
- Standard132 pagesEnglish languagesale 15% off
- 05-Sep-2006
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
Users of bar code systems have experienced problems with poor read rates. These read rate problems can sometimes be attributed to spectral gloss from either the substrate or the image or both. In many bar code applications, the position and orientation of the scanner relative to the bar code symbol can be directly controlled by the operator. In these applications, the presentation of the bar code symbol to the reader will usually be manipulated by the operator to achieve optimal performance. However, in bar code applications using fixed position automated reading systems, the ability to control bar code symbol presentation to the reader and achieve optimised performance is diminished. Due to the very high volume of bar code marked items in today's supply chain, even a small reduction in read rate can represent significant logistics problems. Traditional gloss measurements are made at the angle that maximises specular reflection and do not provide results that can be used to predict performance at other angles. Moreover, many laser scanners use a retro-collective optical system that would correspond to a gloss meter using a zero degree angle of incidence, which is not commonly available. Present international bar code quality standards, such as ISO/IEC 15416, do not factor the impact of gloss from either the bar code image or substrate into quality grade ratings. Thus a Grade '4' label may be high gloss or low gloss. Low gloss labels and images tend to work well in all scanning systems, while high gloss labels and images may not. In the absence of industry specifications, users have no convenient reference to use when requesting suppliers to provide labels that will work well in their systems. ISO/IEC TR 19782:2006 provides a method for the measurement of gloss that will permit users to judge if the bar code symbol and substrate are suitably matched for the reading system used in their application. Low opacity of the substrate can degrade system performance because it may reduce the apparent contrast of the bar code symbol. ISO/IEC TR 19782:2006 therefore provides means for measuring the substrate opacity. The test method described in ISO/IEC TR 19782:2006 provides a means for the production of reproducible measurements. In specific applications, it may be necessary to correlate these measurements to practical performance. For example, a substrate backed by dark liquid may exhibit lower opacity than when measured dry. ISO/IEC TR 19782:2006 gives guidelines to deal with the effects of substrate gloss and/or low opacity on the performance of bar code symbols when scanned by reading and verification systems. It defines methods of measurement for gloss and opacity; it identifies conditions and values that present a risk of reading problems and provides recommendations to users on the specification of substrates and the set-up of scanning systems to minimize these problems. It also addresses the relationship between verification results and read performance when either or both of the factors are present. ISO/IEC TR 19782:2006 is intended for those who specify or implement labelling systems and those involved in the reading of bar code symbols on packages, components and other carriers of bar code symbols.
- Technical report17 pagesEnglish languagesale 15% off
- 31-May-2006
- 01.080.50
- 35.040
- 35.040.50
- ISO/IEC JTC 1/SC 31
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.