IEC TS 62736:2023 is available as IEC TS 62736:2023 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC TS 62736:2023 specifies requirements and methods for periodic testing of the quality of diagnostic medical ultrasound systems using reflection-mode (pulse-echo) imaging. Image measurement and interpretation workstations are included. This document includes minimum sets of such tests intended for frequent users of medical ultrasound systems, for quality assurance professionals in their organizations, or those hired from other quality-control and/or service-provider organizations. The procedures are for a wide range of more common diagnostic ultrasound systems, currently operating from 1 MHz to 40 MHz, although available phantoms meet the specifications only from 1 MHz to 23 MHz.
The tests are defined in three levels, with the simplest and most cost-effective performed most frequently:
- Level 1 comprises five quick tests/observations to be performed daily to monthly by those normally operating the systems.
- Level 2 includes one necessary test for all systems in addition to those of Level 1, two Level 1 tests performed more rigorously, two tests that are for special situations or equipment, and one that is just optional, included because it is highly developed. Level 2 tests are performed annually by those with meaningful quality assurance training.
- Level 3 extends the two special situations tests to all systems, adds one optional test and includes a periodic review of the QA programme.
Frequent distance-measurement accuracy tests are recommended in this document only for certain classes of position encoding that are not now known to be highly stable and without bias. QA in all dimensions is recommended in this document as the first test for such systems.
The test methodology is applicable for transducers operating in the 1 MHz to 23 MHz frequency range. The types of transducers used with these scanners include
a) electronic phased arrays,
b) linear arrays,
c) convex arrays,
d) mechanical transducers,
e) two-dimensional arrays operated in a 2D imaging mode,
f) transducers operating in 3D imaging mode for a limited number of sets of reconstructed 2D images, and
g) three-dimensional scanning transducers based on a combination of the above types.
All tests on scanners considered here evaluate basic pulse-echo techniques and might detect most failures in other modes. Dedicated Doppler systems, or other systems for detection of blood motion, are excluded from this scope as specialized equipment is required to test them. Such test equipment can be specific to the intended application of the Doppler system. This document includes definition of terms and specifies methods for measuring the maximum relative depth of penetration of real-time ultrasound B MODE scanners, though this penetration measure is listed as less frequently applied.
IEC TS 62736:2023 cancels and replaces the first edition published in 2016. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) expansion of the applicable types of transducers and the frequency range of application;
b) extension of test protocols and image assessments, including for very-low-echo spheres;
c) revision of phantom designs and their acoustic properties, consistent with the second edition of IEC TS 62791;
d) inclusion of luminance tests for system-image display consistency at scanner and remote monitors;
e) addition of special considerations for 3D-imaging transducers (Annex D) and workbook examples (Annex E).

  • Technical specification
    66 pages
    English language
    sale 15% off

IEC TR 61390:2022 describes representative methods of measuring the performance of complete real-time medical ultrasonic imaging equipment in the frequency range 0,5 MHz to 23 MHz.
This document is relevant for real-time ultrasonic scanners based on the pulse-echo principle, for the types listed below:
- mechanical sector scanner;
- electronic phased array sector scanner;
- electronic linear array scanner;
-electronic curved array sector scanner;
- water-bath scanner based on any of the above four scanning mechanisms;
- plane-wave/fast imaging scanners;
- combination of several of the above methods (e.g. a linear array phased at the edge to produce a sector there to enlarge the field of view.
The methods described are based on evaluation of:
- sonograms obtained by scanning of tissue mimicking objects (phantoms);
- sonograms obtained by scanning of artificial, low- or highly reflective targets in suitable environments;
- parameters of the ultrasound field transmitted by the measured scanner.
This document does not relate to methods for measuring electrical parameters of the scanner’s electronic systems.
IEC TR 61390:2022 cancels and replaces the first edition published in 1996. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) Several additional phantom designs are included in the main body of the document;
b) Several additional transducer types are included in the Scope;
c) Methods of analysis are presented in new Annex B.

  • Technical report
    55 pages
    English language
    sale 15% off

IEC TS 62791:2022 defines terms and specifies methods for quantifying detailed imaging performance of real-time, ultrasound B-mode scanners. Detail is assessed by imaging phantoms containing small, low-echo spherical targets in a tissue-mimicking background and analysing sphere detectability. Specifications are given for phantom properties. In addition, procedures are described for acquiring images, conducting qualitative analysis of sphere detectability, and carrying out quantitative analysis by detecting sphere locations and computing their contrast-to-noise ratios. With appropriate choices in design, results can be applied, for example:
• to assess the relative ability of scanner configurations (scanner make and model, scan head and console settings) to delineate the boundary of a tumour or identify specific features of tumours;
• to choose scanner control settings, such as frequency or the number and location of transmit foci, which maximize spatial resolution;
• to detect defects in probes causing enhanced sidelobes and spurious echoes.
The types of transducers used with these scanners include:
a) phased arrays,
b) linear arrays,
c) convex arrays,
d) mechanical sector scanners,
e) 3-D probes operating in 2-D imaging mode, and
f) 3-D probes operating in 3-D imaging mode for a limited number of sets of reconstructed 2 D images.
The test methodology is applicable for transducers operating in the 1 MHz to 23 MHz frequency range.
IEC TS 62791:2022 cancels and replaces the first edition published in 2015. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition.
a) It introduces necessary corrections to the analysis methods; these have been published in the literature.
b) It increases the range of contrast levels of low-echo spheres in phantoms that meet this Technical Specification. Previous specification was -20 dB, but two additional levels, -6 dB and either -30 dB or, if possible, -40 dB, are now specified.
c) It includes a wider range of uses of the methodology, including testing the effectiveness of scanner pre-sets for specific clinical tasks and detecting flaws in transducers and in beamforming.
d) It decreases the manufacturing cost by decreasing phantoms' dimensions and numbers of low-echo, backscattering spheres embedded in each phantom.

  • Technical specification
    73 pages
    English language
    sale 15% off

Describes methods of calibrating the spatial measurement facilities and point-spread function of ultrasonic imaging equipment in the ultrasonic frequency range 0,5 MHz to 15 MHz. This standard is relevant for ultrasonic scanners based on the pulse echo principle of the types listed below: - mechanical sector scanners; - electronic phased-array sector scanners; - electronic linear-array scanners; - electronic curved-array sector scanners; - water bath scanners based on any of the above four scanning mechanisms; - 3D-volume reconstruction systems.

  • Standard
    91 pages
    English and French language
    sale 15% off

IEC TS 62736:2016(E) specifies requirements and methods for periodic testing of the quality of diagnostic medical ultrasound systems with linear array, curved linear array, single element, annular array, phased array, matrix linear array transducers and two-dimensional arrays.

  • Technical specification
    38 pages
    English language
    sale 15% off

IEC TS 62791:2015(E) defines terms and specifies methods for quantifying the imaging performance of real-time, ultrasound B-mode scanners. The test methodology is applicable for transducers operating in the 2 MHz to 15 MHz frequency range.

  • Technical specification
    60 pages
    English language
    sale 15% off

IEC/TS 62558:2011(E) specifies essential characteristics of a phantom and method for the measurement of void-detectability ratio for medical ultrasound systems and related transducers. It is restricted to the aspect of long-term reproducibility of testing results. Medical diagnostic ultrasound systems and related transducers need periodic testing as the quality of medical decisions based on ultrasonic images may decrease over time due to progressive degradation of essential systems characteristics. The TMM (Tissue Mimicking Material) phantom is intended to be used to measure and to enable documentation of changes in void-detectability ratio in periodic tests over years of use. This technical specification establishes:
- Important characteristics and requirements for a TMM 3D artificial cyst phantom using anechoic voids
- A design example of a 3D artificial cyst phantom, the necessary test equipment and use of relevant computer software algorithms.
This technical specification is currently applicable for linear array transducers. A uniformity test prior to void-detectability ratio (VDR) measurement is recommended.

  • Technical specification
    49 pages
    English language
    sale 15% off

IEC 61391-2:2010 defines terms and specifies methods for measuring the maximum depth of penetration and the local dynamic range of real time ultrasound B MODE scanners. The types of transducers used with these scanners include:
- mechanical probes;
- electronic phased arrays;
- linear arrays;
- curved arrays;
- two-dimensional arrays;
- three-dimensional scanning probes based on a combination of the above types.
All scanners considered are based on pulse-echo techniques. The test methodology is applicable for transducers operating in the 1 MHz to 15 MHz frequency range operating both in fundamental mode and in harmonic modes that extend to 15 MHz. However, testing of harmonic modes above 15 MHz is not covered by this standard.

  • Standard
    74 pages
    English and French language
    sale 15% off