ASTM C1059/C1059M-99e1
(Specification)Standard Specification for Latex Agents for Bonding Fresh To Hardened Concrete
Standard Specification for Latex Agents for Bonding Fresh To Hardened Concrete
SCOPE
1.1 This specification covers latex bonding agents, suitable for brush, broom, or spray application, to bond fresh concrete to hardened concrete.
1.2 These bonding agents are intended for bonding new concrete to old concrete such as interior surfaces, floors, roadways, bridge decks, ramps, runways, walks, and curbs.
1.3 The values stated in either inch-pound units or SI units shall be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents, therefore, each system must be used independently of the other without combining values in any way.
General Information
Relations
Standards Content (Sample)
NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information.
e1
Designation: C 1059/C 1059M – 99
Standard Specification for
1
Latex Agents for Bonding Fresh To Hardened Concrete
This standard is issued under the fixed designation C 1059/C 1059M; the number immediately following the designation indicates the
year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last
reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
1
e NOTE—The designation was changed editorially to agree with the existing values statement in the Scope in March 2008.
1. Scope 4.1.1 The number of this specification and the required type,
and
1.1 This specification covers latex bonding agents, suitable
4.1.2 Supplementary requirements if necessary.
for brush, broom, or spray application, to bond fresh concrete
to hardened concrete.
5. Physical Properties
1.2 These bonding agents are intended for bonding new
5.1 The material shall conform to the requirements of Table
concrete to old concrete such as interior surfaces, floors,
1 when tested in accordance with Test Method C 1042.
roadways, bridge decks, ramps, runways, walks, and curbs.
1.3 The values stated in either inch-pound units or SI units
6. Sampling
shall be regarded separately as standard. Within the text, the SI
6.1 For sampling of bulk quantities, a batch or lot shall be
units are shown in brackets. The values stated in each system
considered a unit of manufacture as prepared for shipment or
may not be exact equivalents, therefore, each system must be
may consist of a blend of two or more production runs of
used independently of the other without combining values in
material. A composite sample shall be taken and it shall
any way.
provide a volume of at least 1 gal [4 L].
2. Referenced Documents 6.2 When the bonding agent to be sampled is in containers,
the sample shall be obtained by taking a portion out of the
2.1 ASTM Standards:
containers that is equal in number to the next integer larger
C 1042 Test Method for Bond Strength of Latex Systems
2 than the cube root of the total number of containers in the lot.
Used With Concrete
Grab samples shall be taken from each container and they shall
1
3. Classification and Use have a volume of at least ⁄2 pt. [0.25 L].
6.3 All the sample containers shall be sealed to prevent
3.1 This specification provides for the classification of the
leakage or dilution and shall be properly marked for identifi-
latex bonding agents in accordance with use.
cation and correlation.
3.1.1 Type I (Redispersable), is restricted for use in interior
work not subject to water immersion or high humidity.
7. Rejection
3.1.2 Type II (Non-red
...
This May Also Interest You
ABSTRACT
This specification covers the requirements for latex bonding agents suitable for use in brushes, brooms, or sprays. The bonding agents are intended for use in bonding fresh concrete to hardened concrete such as in interior surfaces, floors, roadways, bridge decks, ramps, runways, walks, and curbs. Each material should comply with the specified bond strength requirement for either of the two types of latex.
SCOPE
1.1 This specification covers latex bonding agents, suitable for brush, broom, or spray application, to bond fresh concrete to hardened concrete.
1.2 These latex bonding agents are intended for bonding new concrete to old concrete such as interior surfaces, floors, roadways, bridge decks, ramps, runways, walks, and curbs.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.4 The text of this specification refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this specification.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
- Technical specification2 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the performance requirements for membrane-forming liquids suitable for use as curing compounds and sealers for fresh and hardened concrete. Each membrane should have good alkali resistance, acid resistance, adhesion-promoting qualities, and resistance to degradation by UV light. The materials are limited to clear or translucent and white pigmented materials, all of which are classified into non-yellowing, moderately yellowing, or yellows or darkens unrestrictedly.
SCOPE
1.1 This specification provides requirements for membrane-forming liquids suitable for use as curing compounds and sealers on freshly placed concrete and as sealers on hardened concrete. These membranes have special properties, such as, alkali resistance, acid resistance, adhesion-promoting qualities, and resistance to degradation by UV light.
Note 1: For liquid membrane-forming curing compounds specified primarily by their ability to retain water in newly placed concrete (and by drying time, and for white pigmented products, reflectance), see Specification C309.
1.2 This is a performance specification. The allowable composition of products covered by this specification is limited by various local, regional, and national regulations. Issues related to air quality (solvent emission), worker exposure, and other hazards are not addressed here. It is the responsibility of the producers and users of these materials to comply with pertinent regulations.
Warning—Some VOC exempt solvents used to meet the regulations are extremely flammable with low auto ignition temperatures and rapid evaporation rates. Consult the manufacturer's product information sheet for important application and safety information.
1.3 The values stated in SI units are to be regarded as the standard. (Inch pound units are shown in parentheses).
1.4 The following precautionary caveat pertains only to the test methods portion, Section 9, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification5 pagesEnglish languagesale 15% off
- Technical specification5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Sampling is as important as testing, and precautions shall be taken to obtain samples to show the true nature and condition of the materials.
4.2 Samples are taken for either of the following two purposes:
4.2.1 To represent as nearly as possible an average of the bulk of the materials sampled, or
4.2.2 To ascertain the maximum variation in characteristics which the material possesses.
SCOPE
1.1 This practice applies to the sampling of asphalt materials at points of manufacture, storage, or delivery.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method can be used to determine whether the amount of draindown measured for a given asphalt mixture is within specified acceptable levels. The test provides an evaluation of the draindown potential of an asphalt mixture during mixture design and/or during field production. This test is primarily used for mixtures with high coarse aggregate content such as porous asphalt (open-graded friction course) and stone matrix asphalt (SMA).
Note 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.
SCOPE
1.1 This test method covers the determination of the amount of draindown in an uncompacted asphalt mixture sample when the sample is held at elevated temperatures comparable to those encountered during the production, storage, transport, and placement of the mixture. The test is particularly applicable to mixtures such as porous asphalt (open-graded friction course) and stone matrix asphalt (SMA).
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers asphalt plank used for bridge decks as well as for industrial floors. Asphalt planks shall be classified according to usage: Type Ia; Type Ib; and Type II. Asphalt plank shall be formed from a mixture of asphalt, fibers, modifiers, or a combination thereof, and mineral filler in such a manner as to produce a uniformly dense mass. The following test methods shall be intended to measure those attributes necessary to measure the ability of asphalt plank to provide a reasonably long and satisfactory service: absorption; brittleness; dimensions; and hardness.
SCOPE
1.1 This specification covers asphalt plank used for bridge decks as well as for industrial floors.
1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification3 pagesEnglish languagesale 15% off
- Technical specification3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
3.1 The compression resistance perpendicular to the faces, the resistance to the extrusion during compression, and the ability to recover after release of the load are indicative of a joint filler's ability to continuously fill a concrete expansion joint and thereby prevent damage that might otherwise occur during thermal expansion. The asphalt content is a measure of the fiber-type joint filler's durability and life expectancy. In the case of cork-type fillers, the resistance to water absorption and resistance to boiling hydrochloric acid are relative measures of durability and life expectancy.
Note 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.
SCOPE
1.1 These test methods cover the physical properties associated with preformed expansion joint fillers. The test methods include:
Property
Section
Expansion in Boiling Water
7.1
Recovery and Compression
7.2
Extrusion
7.3
Boiling in Hydrochloric Acid
7.4
Asphalt Content
7.5
Water Absorption
7.6
Density
7.7
Note 1: Specific test methods are applicable only to certain types of joint fillers, as stated herein.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 Geomembranes are used as impermeable barriers to prevent liquids from leaking from landfills, ponds, and other containment facilities. The liquids may contain contaminants that, if released, can cause damage to the environment. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose. For these reasons, it is desirable that the geomembrane have as little leakage as practical.
4.2 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness.
4.3 The most significant causes of leaks in geomembranes that are covered with only water are related to construction activities, including pumps and equipment placed on the geomembrane, accidental punctures, and punctures caused by traffic over rocks or debris on the geomembrane or in the subgrade.
4.4 The most significant cause of leaks in geomembranes covered with earthen materials is construction damage caused by machinery that occurs while placing the earthen material on the geomembrane. Such damage also can breach additional layers of the lining system such as geosynthetic clay liners.
4.5 Electrical leak location methods are used to detect and locate leaks for repair. These practices can achieve a zero-leak condition at the conclusion of the survey(s). If any of the requirements for survey area preparation and testing procedures is not adhered to, then leaks could remain in the geomembrane after the survey. Not all of the survey area requirements are possible to achieve at some sites, but the closer the site can come to the ideal condition, the more successful the method will be.
SCOPE
1.1 These practices describe standard procedures for using electrical methods to locate leaks in geomembranes covered with liquid or earthen materials, or both.
1.2 These practices are intended to ensure that leak location surveys are performed to the highest technical capability of electrical methods, which should result in complete liquid containment (no leaks in geomembrane).
1.3 Not all sites will be easily amenable to this method, but some preparation can be performed in order to enable this method at nearly any site as outlined in Section 6. If ideal testing conditions cannot be achieved, the method can still be performed, but any issues with site conditions are documented.
1.4 Leak location surveys can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other sufficiently electrically insulating materials.
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6 The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures should be taken to protect the leak location operators, as well as other people at the site. A current limiter of no greater than 290 mA should be used for all direct current power sources used to conduct the survey.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides...
- Standard6 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The use of geomembranes as barrier materials to restrict liquid migration from one location to another in soil and rock has created a need for a standard test method to evaluate the quality of geomembrane seams produced by thermo-fusion methods. In the case of geomembranes, it has become evident that geomembrane seams can exhibit separation in the field under certain conditions. Although this is an index-type test method used for quality assurance and quality control purposes, it is also intended to provide the quality assurance engineer with sufficient seam peel and shear data to evaluate seam quality. Recording and reporting data, such as separation that occurs during the peel test and elongation during the shear test, will allow the quality assurance engineer to take measures necessary to ensure the repair of inferior seams during facility construction, and therefore, minimize the potential for seam separation in service.
SCOPE
1.1 This test method describes destructive quality control and quality assurance tests used to determine the integrity of geomembrane seams produced by thermo-fusion methods. This test method presents the procedures used for determining the quality of nonbituminous bonded seams subjected to both peel and shear tests. These test procedures are intended for nonreinforced geomembranes only.
1.2 The types of thermal field seaming techniques used to construct geomembrane seams include the following:
1.2.1 Hot Air—This technique introduces high-temperature air or gas between two geomembrane surfaces to facilitate melting. Pressure is applied to the top or bottom geomembrane, forcing together the two surfaces to form a continuous bond.
1.2.2 Hot Wedge (or Knife)—This technique melts the two geomembrane surfaces to be seamed by running a hot metal wedge between them. Pressure is applied to the top or bottom geomembrane, or both, to form a continuous bond. Some seams of this kind are made with dual bond tracks separated by a nonbonded gap. These seams are sometimes referred to as dual hot wedge seams or double-track seams.
1.2.3 Extrusion—This technique encompasses extruding molten resin between two geomembranes or at the edge of two overlapped geomembranes to effect a continuous bond.
1.3 The types of materials covered by this test method include the following:
1.3.1 Very low-density polyethylene (VLDPE).
1.3.2 Linear low-density polyethylene (LLDPE).
1.3.3 Very flexible polyethylene (VFPE).
1.3.4 Linear medium-density polyethylene (LMDPE).
1.3.5 High-density polyethylene (HDPE).
1.3.6 Polyvinyl chloride (PVC).
1.3.7 Flexible polypropylene (fPP).
Note 1: The polyethylene identifiers presented in 1.3.1 – 1.3.5 describe the types of materials typically tested using this test method. These are industry-accepted trade descriptions and are not technical material classifications based upon material density.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
3.1 The use of geomembranes as barrier materials to restrict liquid migration from one location to another in soil and rock, and the large number of seam methods and types used in joining these geomembrane sheets, has created a need for standard tests by which the various seams can be compared and the quality of the seam systems can be nondestructively evaluated. This practice is intended to meet such a need.
3.2 The geomembrane sheet material shall be formulated from the appropriate polymers and compounding ingredients to form a plastic or elastomer sheet material that meets all specified requirements for the end use of the product. The sheet material (reinforced or nonreinforced) shall be capable of being bonded to itself by one of the methods described in 1.2, in accordance with the sheet manufacturer's recommendations and instructions.
SCOPE
1.1 This practice is intended for use as a summary of nondestructive quality control test methods for determining the integrity of seams used in the joining of flexible sheet materials in a geotechnical application. This practice outlines the test procedures available for determining the quality of bonded seams. Any one or combination of the test methods outlined in this practice can be incorporated into a project specification for quality control. These test methods are applicable to manufactured flexible polymeric membrane linings that are scrim reinforced or nonreinforced. This practice is not applicable to destructive testing. For destructive test methods, look at other ASTM standards and practices.
1.2 The types of seams covered by this practice include the following: thermally bonded seams, hot air, hot wedge (or knife), extrusion, solvent-bonded seams, bodied solvent-bonded seams, adhesive-bonded or cemented seams, taped seams, and waterproofed sewn seams.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard2 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The maximum specific gravities and densities of asphalt mixtures are intrinsic properties whose values are influenced by the composition of the mixture in terms of types and amounts of aggregates and asphalt materials.
5.1.1 They are used to calculate values for percent air voids in compacted asphalt mixtures.
5.1.2 They provide target values for the compaction of asphalt mixtures.
5.1.3 They are essential when calculating the amount of asphalt binder absorbed by the internal porosity of the individual aggregate particles in an asphalt mixture.
Note 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.
SCOPE
1.1 This test method covers the determination of maximum specific gravity and density of uncompacted asphalt mixtures at 25 °C [77 °F].
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.