ASTM D7275-06
(Test Method)Standard Test Method for Tensile Properties of Bituminous Geomembranes (BGM)
Standard Test Method for Tensile Properties of Bituminous Geomembranes (BGM)
SCOPE
1.1 This test method is used to measure the tensile properties of bituminous geomembranes (BGM) using a dumbbell shape specimen.
1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
General Information
Relations
Standards Content (Sample)
NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
Designation:D7275–06
Standard Test Method for
Tensile Properties of Bituminous Geomembranes (BGM)
This standard is issued under the fixed designation D 7275; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
1. Scope 4.2 This test method uses a dumbbell specimen. The shape
and dimensions of the specimen are defined in this standard.
1.1 This test method is used to measure the tensile proper-
No other shape or dimensions are allowed. Other mechanical
ties of bituminous geomembranes (BGM) using a dumbbell
properties of BGM may be measured using different test
shape specimen.
methods. Refer to Guide D 6455.
1.2 The values stated in SI units are to be regarded as
4.3 The reported properties are the tensile strength at break
standard. The values given in parentheses are for information
and elongation at break.
only.
1.3 This standard does not purport to address all of the
5. Apparatus
safety concerns, if any, associated with its use. It is the
5.1 Tensile instrumentation shall meet the requirements
responsibility of the user of this standard to establish appro-
outlined in Test Method D 638.
priate safety and health practices and determine the applica-
5.2 Grips—One of the grips must be self aligning to
bility of regulatory limitations prior to use.
compensate for uneven distribution of force across the speci-
2. Referenced Documents men. The clamping force and the clamp surfaces shall hold the
specimen firmly without causing damage.
2.1 ASTM Standards:
5.3 Grip Faces—Grip faces shall be a minimum of 50 mm
D 638 Test Method for Tensile Properties of Plastics
(2 in.) wide and a minimum of 50 mm (2 in.) in length. Smooth
D 4354 Practice for Sampling of Geosynthetics for Testing
rubber, fine serrated or coarse serrated grip faces have all been
D 4439 Terminology for Geosynthetics
found to be suitable for testing BGM. If needed, the use of a
D 6455 Guide for the Selection of Test Methods for Prefab-
silicone-coated paper to help holding the specimen ends into
ricated Bituminous Geomembranes (PBGM)
the grips is recommended. The silicone-coated side is to be
3. Terminology used in contact with the specimen.
3.1 Definition of Term Specific to This Standard:
6. Sampling and Test Specimens
3.1.1 prefabricated bituminous geomembrane (BGM), n—a
6.1 Sampling shall be conducted according to Practice
material fabricated in a plant and consisting principally of
D 4354.
non-woven geotextile, impregnated by a blend of oxidized or
6.2 Take a sample that will exclude material from the outer
polymer-modified bitumen incorporating filler.
wrap of the roll or the inner wrap around the core. In the case
3.2 For definitions of other terms used in this test method,
where the sample is taken at the production site, material from
refer to Terminology D 4439.
the outer wrap may be used if it is undamaged.
4. Significance and Use 6.3 Test Specimens—Prepare five specimens with the length
ofthespecimenparalleltothemachinedirection(MD)andfive
4.1 This method is used to evaluate the tensile properties of
specimens with the length parallel to the cross-machine direc-
BGM. It can be used for manufacturing quality control or
tion (XD).
acceptance testing.
6.4 The specimens shall be cut using an appropriate die to
the shape, dimensions, and tolerances presented in Fig. 1.
This test method is under the jurisdiction of ASTM Committee D35 on
Geosynthetics and is the direct responsibility of Subcommittee D35.10 on Geomem-
7. Conditioning and Testi
...
This May Also Interest You
SIGNIFICANCE AND USE
4.1 Geomembranes are used as impermeable barriers to prevent liquids from leaking from landfills, ponds, and other containments. The liquids may contain contaminants that, if released, can cause damage to the environment. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose. For these reasons, it is desirable that the geomembrane have as little leakage as practical.
4.2 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness.
4.3 The most significant causes of leaks in geomembranes that are covered with only water are related to construction activities, including pumps and equipment placed on the geomembrane, accidental punctures, and punctures caused by traffic over rocks or debris on the geomembrane or in the subgrade.
4.4 The most significant cause of leaks in geomembranes covered with earthen materials is construction damage caused by machinery that occurs while placing the earthen material on the geomembrane. Such damage also can breach additional layers of the lining system such as geosynthetic clay liners.
4.5 Electrical leak location methods are an effective final quality assurance measure to detect and locate leaks. If any of the requirements for survey area preparation is not adhered to, then leak sensitivity could be diminished. Optimal survey area conditions are described in Section 6.
SCOPE
1.1 These practices cover standard procedures for using electrical methods to locate leaks in geomembranes covered with water or earthen materials. For clarity, this practice uses the term “leak” to mean holes, punctures, tears, knife cuts, seam defects, cracks, and similar breaches in an installed geomembrane (as defined in 3.2.9).
1.2 These practices are intended to ensure that leak location surveys are performed with a standardized level of leak detection capability. To allow further innovations, and because various leak location practitioners use a wide variety of procedures and equipment to perform these surveys, performance-based protocol are also used that specify minimum leak detection criteria.
1.3 The survey shall then be conducted using the demonstrated equipment, procedures, and survey parameters. In the absence of the minimum signal strength during leak detection distance testing, a minimum measurement density specification is provided. Alternatively, the minimum measurement density may simply be used.
1.4 Separate procedures are given for leak location surveys for geomembranes covered with water and for geomembranes covered with earthen materials. Separate procedures are given for leak detection distance tests using actual and artificial leaks.
1.5 Examples of methods of data analysis for soil-covered surveys are provided as guidance in Appendix X1.
1.6 Leak location surveys can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other electrically insulating materials.
1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.8 (Warning—The electrical methods used for geomembrane leak location could use high voltages, resulting in the potential for electrical shock or electrocution. This hazard might be increased because operations might be conducted in or near water. In particular, a high voltage could exist between the water or earthen material and earth ground, or any grounded conductor. These procedures are potentially VERY DANGEROUS, and can re...
- Standard14 pagesEnglish languagesale 15% off
- Standard14 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method is to be used as a quality control or quality assurance test. As a manufacturing quality control (MQC) test, it would generally be used by the geocomposite product manufacturer or fabricator. As a construction quality assurance (CQA) test, it would be used by certification or inspection organizations.
5.2 This test method can also be used to verify if the adhesion or bond strength varies after exposure to various incubation media in durability or chemical resistance testing, or both.
5.3 Whatever use is to be associated with the test, it should be understood that this is an index test.
Note 2: There have been numerous attempts to relate the results of this test to the interface shearing resistance of the respective materials determined per Test Method D5321/D5321M. To date, no relationships have been established between the two properties.
5.4 Test Method D7005/D7005M for determining the bond strength (ply adhesion) strength may be used as an acceptance test of commercial shipments of geocomposites, but caution is advised since information about between-laboratory precision is incomplete. Comparative tests as directed in 5.4.1 are advisable.
5.4.1 In the case of a dispute arising from differences in reported test results when using the procedure in Test Method D7005/D7005M for acceptance of commercial shipments, the purchaser and the supplier should first confirm that the tests were conducted using comparable test parameters including specimen conditioning, grip faces, grip size, etc. Comparative tests should then be conducted to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of the material in question. The test specimens should be randomly assigned to each laboratory for testing. The average results from ...
SCOPE
1.1 It has been widely discussed in the literature that bond strength of flexible multi-ply materials is difficult to measure with current technology. The above is recognized and accepted, since all known methods of measurement include the force required to bend the separated layers, in addition to that required to separate them. However, useful information can be obtained when one realizes that the bending force is included and that direct comparison between different materials, or even between the same materials of different thickness, cannot be made. Also, conditioning that affects the moduli of the plies will be reflected in the bond strength measurement.
1.2 This index test method defines a procedure for comparing the bond strength or ply adhesion of geocomposites. The focus is on geotextiles bonded to geonets or other types of drainage cores, for example, geomats, geospacers, etc. Other possible uses are geotextiles adhered or bonded to themselves, geomembranes, geogrids, or other dissimilar materials. Various processes can make such laminates: adhesives, thermal bonding, stitch bonding, needling, spread coating, etc.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 11.1.1.
1.5 This international standard was developed in accordance with internationally recognized principles on ...
- Standard4 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The determination of the wide-width force-elongation properties of geotextiles provides design parameters for reinforcement type applications, for example, design of reinforced roadways/pavements, reinforced embankments over soft subgrades, reinforced soil retaining walls, and reinforcement of slopes. When strength is not necessarily a design consideration, an alternative test method may be used for acceptance testing. Test Method D4595/D4595M for the determination of the wide-width tensile properties of geotextiles may be used for the acceptance testing of commercial shipments of geotextiles, but caution is advised since information about between-laboratory precision is incomplete (Note 3). Comparative tests as directed in 5.1.1 may be advisable.
5.1.1 In cases of a dispute arising from differences in reported test results when using Test Method D4595/D4595M for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. At a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing began. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in light of the known bias.
5.2 Most geotextiles can be tested by this test method. Some modification of clamping techniques may be necessary for a given geotextile depending upon its structure. Special clamping adaptions may be necessary with strong...
SCOPE
1.1 This test method covers the measurement of tensile properties of geotextiles using a wide-width specimen tensile method. This test method is applicable to most geotextiles that include woven geotextiles, nonwoven geotextiles, layered fabrics, and knit fabrics that are used for geotextile applications.
1.2 This test method covers the measurement of tensile strength and elongation of geotextiles and includes directions for the calculation of initial modulus, offset modulus, secant modulus, and breaking toughness.
1.3 Procedures for measuring the tensile properties of both conditioned and wet geotextiles by the wide-width method are included.
1.4 The basic distinction between this test method and other methods for measuring strip tensile properties is the width of the specimen. Some fabrics used in geotextile applications have a tendency to contract (neck down) under a force in the gage length area. The greater width of the specimen specified in this test method minimizes the contraction effect of those fabrics and provides a closer relationship to expected geotextile behavior in the field and a standard comparison.
1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Developme...
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The determination of the tensile force-elongation values of geogrids provides index property values. This test method shall be used for quality control and acceptance testing of commercial shipments of geogrids.
5.2 In cases of dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing began. If a bias is found, either its cause must be found and corrected or the purchaser and supplier must agree to interpret future test results in light of the known bias.
5.3 All geogrids can be tested by any of these methods. Some modification of techniques may be necessary for a given geogrid depending upon its physical makeup. Special adaptations may be necessary with strong geogrids, multiple layered geogrids, or geogrids that tend to slip in the clamps or those which tend to be damaged by the clamps.
SCOPE
1.1 This test method covers the determination of the tensile strength properties of geogrids by subjecting strips of varying width to tensile loading.
1.2 Three alternative procedures are provided to determine the tensile strength, as follows:
1.2.1 Method A—Testing a single geogrid rib in tension (N or lbf).
1.2.2 Method B—Testing multiple geogrid ribs in tension (kN/m or lbf/ft).
1.2.3 Method C—Testing multiple layers of multiple geogrid ribs in tension (kN/m or lbf/ft).
1.3 This test method is intended for quality control and conformance testing of geogrids.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This practice covers test arrangements, measurement techniques, sampling methods, and calculations to be used for nondestructive evaluation of geomembranes using ultrasonic testing.
5.2 Wave velocity may be established for particular geomembranes (for specific polymer type, specific formulation, specific density). Relationships may be established between velocity and both density and tensile properties of geomembranes. An example of the use of ultrasound for determining density of polyethylene is presented in Test Method D4883. Velocity measurements may be used to determine thickness of geomembranes (1, 2).4 Travel time and amplitude of transmitted waves may be used to assess the condition of geomembranes and to identify defects in geomembranes including surface defects (for example, scratches, cuts), inner defects (for example, discontinuities within geomembranes), and defects that penetrate the entire thickness of geomembranes (for example, pinholes) (3, 4). Bonding between geomembrane sheets can be evaluated using travel time, velocity, or impedance measurements for seam assessment (5-10). Examples of the use of ultrasonic testing for determining the integrity of field and factory seams through travel time and velocity measurements (resulting in thickness measurements) are presented in Practices D4437 and D4545, respectively. An ultrasonic testing device is routinely used for evaluating seams in prefabricated bituminous geomembranes in the field (11). Integrity of geomembranes may be monitored in time using ultrasonic measurements.
Note 1: Differences may exist between ultrasonic measurements and measurements made using other methods due to differences in test conditions such as pressure applied and probe dimensions. An example is ultrasonic and mechanical thickness measurements.
5.3 The method is applicable to testing both in the laboratory and in the field for parent material and seams. The test durations are very short as wave transmission through ...
SCOPE
1.1 This practice provides a summary of equipment and procedures for ultrasonic testing of geomembranes using the pulse echo method.
1.2 Ultrasonic wave propagation in solid materials is correlated to physical and mechanical properties and condition of the materials. In ultrasonic testing, two wave propagation characteristics are commonly determined: velocity (based on wave travel time measurements) and attenuation (based on wave amplitude measurements). Velocity of wave propagation is used to determine thickness, density, and elastic properties of materials. Attenuation of waves in solid materials is used to determine microstructural properties of the materials. In addition, frequency characteristics of waves are analyzed to investigate the properties of a test material. Travel time, amplitude, and frequency distribution measurements are used to assess the condition of materials to identify damage and defects in solid materials. Ultrasonic measurements are used to determine the nature of materials/media in contact with a test specimen as well. Measurements are conducted in the time-domain (time versus amplitude) or frequency-domain (frequency versus amplitude).
1.3 Measurements of one or more ultrasonic wave transmission characteristics are made based on the requirements of the specific testing program.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development ...
- Standard10 pagesEnglish languagesale 15% off
- Standard10 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The asperity height is an index property used to quantify one of the physical attributes related to the surface roughness of textured geomembranes.
5.2 This test method is applicable to all currently available textured geomembranes that are deployed as manufactured geomembrane sheets.
SCOPE
1.1 This test method covers a procedure to measure the asperity height of textured geomembranes.
1.2 This test method does not provide for measurement of the spacing between the asperities nor of the complete profile of the textured surface.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 The use of reinforced geomembranes as barrier materials has created a need for a standard test method to evaluate the quality of seams produced by thermo-fusion methods. This test method is used for quality control purposes and is intended to provide quality control and quality assurance personnel with data to evaluate seam quality.
4.2 This standard arose from the need for a destructive test method for evaluating seams of reinforced geomembranes. Standards written for destructive testing of nonreinforced geomembranes do not include all break codes (Fig. 1) applicable to reinforced geomembranes.
FIG. 1 Break Codes for Dual Hot Wedge and Hot Air Seams of Reinforced Geomembranes Tested for Seam Strength in Shear and Peel Modes
4.3 When reinforcement occurs in directions other than machine and cross-machine, scrim are cut at specimen edges, generally lowering results. To partially compensate for this, testing can be performed according to Test Method D7749 or the 2 in. wide strip specimen specified in this method can be utilized. Testing of 1 in. and 2 in. specimens is Method A and Method B, respectively.
4.4 The shear test outlined in this method correlates to strength of parent material measured according to Test Method D7003/D7003M only if reinforcement is parallel to TD. For other materials, seam strength and parent material strength can be compared through Test Methods D7749 and D7004/D7004M. Values obtained with the strip methods shall not be compared to values obtained with grab methods.
SCOPE
1.1 This test method describes destructive quality control tests used to determine the integrity of thermo-fusion seams made with reinforced geomembranes. Test procedures are described for seam tests for peel and shear properties using strip specimens.
1.2 The types of thermal field and factory seaming techniques used to construct geomembrane seams include the following:
1.2.1 Hot Air—This technique introduces high-temperature air between two geomembrane surfaces to facilitate melting. Pressure is applied to the top or bottom geomembrane, forcing together the two surfaces to form a continuous bond.
1.2.2 Hot Wedge—This technique melts the two geomembrane surfaces to be seamed by running a hot metal wedge between them. Pressure is applied to the top and bottom geomembrane to form a continuous bond. Some seams of this kind are made with dual tracks separated by a non-bonded gap. These seams are sometimes referred to as dual hot wedge seams or double-track seams.
1.2.3 Extrusion—This technique encompasses extruding molten resin between two geomembranes or at the edge of two overlapped geomembranes to effect a continuous bond.
1.2.4 Radio Frequency (RF) or Dielectric—High-frequency dielectric equipment is used to generate heat and pressure to form an overlap seam in factory fabrication.
1.2.5 Impulse—Clamping bars heated by wires or a ribbon melt the sheets clamped between them. A cooling period while still clamped allows the polymer to solidify before being released.
1.3 The types of materials covered by this test method include, but are not limited to, reinforced geomembranes made from the following polymers:
1.3.1 Very low-density polyethylene (VLDPE).
1.3.2 Linear low-density polyethylene (LLDPE).
1.3.3 Flexible polypropylene (fPP).
1.3.4 Polyvinyl chloride (PVC).
1.3.5 Chlorosulfonated polyethylene (CSPE).
1.3.6 Ethylene interpolymer alloy (EIA).
1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ap...
- Standard6 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The increased use of geomembranes as barrier materials to restrict liquid or gas movement, and the common use of dual-track seams in joining these sheets, has created a need for a standard nondestructive test by which the quality of the seams can be assessed for continuity and watertightness. The test is not intended to provide any indication of the physical strength of the seam.
5.2 This practice recommends an air pressure test within the channel created between dual-seamed tracks whereby the presence of unbonded sections or channels, voids, nonhomogenities, discontinuities, foreign objects, and the like, in the seamed region can be identified.
5.3 This technique is intended for use on seams between geomembrane sheets formulated from the appropriate polymers and compounding ingredients to form a plastic or elastomer sheet material that meets all specified requirements for the end use of the product.
SCOPE
1.1 This practice covers a nondestructive evaluation of the continuity of parallel geomembrane seams separated by an unwelded air channel. The unwelded air channel between the two distinct seamed regions is sealed and inflated with air to a predetermined pressure. Long lengths of seam can be evaluated by this practice more quickly than by other common nondestructive tests.
1.2 This practice should not be used as a substitute for destructive testing. Used in conjunction with destructive testing, this method can provide additional information regarding the seams undergoing testing.
1.3 This practice supercedes Practice D4437/D4437M for geomembrane seams that include an air channel. Practice D4437/D4437M may continue to be used for other types of seams. The user is referred to the referenced standards or to EPA/530/SW-91/051 for additional information regarding geomembrane seaming techniques and construction quality assurance.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method yields the flux of water through a saturated GCL specimen that is consolidated, hydrated, and permeated under a prescribed set of conditions.
5.2 This test method can be performed to determine if the flux of a GCL specimen exceeds the maximum value stated by the manufacturer.
5.3 This test method can be used to determine the variation in flux within a sample of GCL by testing a number of different specimens.
5.4 This test method does not provide a flux value to be used directly in design calculations.
Note 1: Flux for in-service conditions depends on a number of factors, including confining pressure, type of hydration fluid, degree of hydration, degree of saturation, type of permeating fluid, and hydraulic gradient. Correlation between flux values obtained with this test method and flux through GCLs subjected to in-service conditions has not been fully investigated.
5.5 This test method does not provide a value of hydraulic conductivity. Although hydraulic conductivity can be determined in a manner similar to the method described in this test method, the thickness of the specimen is needed to calculate hydraulic conductivity. This test method does not include procedures for measuring the thickness of the GCL nor of the clay component within the GCL. Refer to Appendix X2 for calculation of hydraulic conductivity.
5.6 The apparatus used in this test method is commonly used to determine the hydraulic conductivity of soil specimens. However, flux values measured in this test are typically much lower than those commonly measured for most natural soils. It is essential that the leakage rate of the apparatus used in this test be less than 10 % of the flux.
SCOPE
1.1 This test method covers an index test that covers laboratory measurement of flux through saturated geosynthetic clay liner (GCL) specimens using a flexible wall permeameter.
1.2 This test method is applicable to GCL products having geotextile backing(s). It is not applicable to GCL products with geomembrane backing(s), geofilm backing(s), or polymer coating backing(s).
1.3 This test method provides a measurement of flux under a prescribed set of conditions that can be used for manufacturing quality control. The test method can also be used to check conformance. The flux value determined using this test method is not considered to be representative of the in-service flux of GCLs.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard8 pagesEnglish languagesale 15% off
- Standard8 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.