M/515 - Eurocodes
Mandate for amending existing Eurocodes and extending the scope of structural Eurocodes
General Information
EN 1993-1-5 gives design requirements of stiffened and unstiffened plates which are subject to inplane forces. Effects due to shear lag, in-plane load introduction and plate buckling for I-section girders and box girders are covered. Also covered are plated structural components subject to in-plane loads as in tanks and silos. The effects of out-of-plane loading are outside the scope of this document.
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
EN 1993-1-5 gives design requirements of stiffened and unstiffened plates which are subject to inplane forces. Effects due to shear lag, in-plane load introduction and plate buckling for I-section girders and box girders are covered. Also covered are plated structural components subject to in-plane loads as in tanks and silos. The effects of out-of-plane loading are outside the scope of this document.
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment4 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of FprCEN/TS 19100 2
(1) FprCEN/TS 19100 2 gives basic structural design rules for mechanically supported glass components primarily subjected to out of plane loading. Out of plane loaded glass components are made of flat or curved glass components.
NOTE Out of plane loads are loads acting normal (e.g wind) to or having a component (e.g dead load, snow, ...) acting normal to the glass plane.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to FprCEN/TS 19100-2.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.
- Technical specification36 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of CEN/TS 19103
(1) CEN/TS 19103 gives general design rules for timber-concrete composite structures.
(2) It provides requirements for materials, design parameters, connections, detailing and execution for timber-concrete composite structures. Recommendations for environmental parameters (temperature and moisture content), design methods and test methods are given in the Annexes.
(3) It includes rules common to many types of timber-concrete composite, but does not include details for the design of glued timber-concrete composites, nor for bridges.
NOTE For the design of glued timber-concrete composites or bridges alternative references are available.
(4) It covers the design of timber-concrete composite structures in both quasi-constant and variable environmental conditions. For ease of use, it provides simple design rules for quasi-constant environmental conditions and more complex rules for variable environmental conditions.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) CEN/TS 19103 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1992 (all parts), EN 1994 (all parts), EN 1995 (all parts), EN 1998 (all parts) when timber structures are built in seismic regions, and ENs for construction products relevant to timber structures.
- Technical specification58 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of CEN/TS 19100 3
(1) This document gives design rules for mechanically supported glass components primarily subjected to in-plane loading. It also covers construction rules for mechanical joints for in-plane loaded glass components.
NOTE In-plane loaded glass elements are primarily subjected to in-plane loads, e.g. transferred from adjacent parts of a structure. They can also be subjected to out-of-plane loading.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.
- Technical specification36 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1993 1 8
(1) This document gives design methods for the design of joints subject to predominantly static loading using all steel grades from S235 up to and including S700 unless otherwise stated in individual clauses.
1.2 Assumptions
(1) The assumptions of EN 1990 and EN 1993-1-1 apply to this document.
(2) The design methods given in this part of EN 1993 are applicable when the quality of construction is as specified in EN 1090 2 or EN 1090 4, and that the construction materials and products used are those specified in the relevant parts of EN 1993, or in the relevant material and product specifications.
- Draft197 pagesEnglish languagesale 10% offe-Library read for1 day
EN 1999 applies to the design of buildings and civil engineering and structural works made of aluminium. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design.
EN 1999 is only concerned with requirements for resistance, serviceability, durability and fire resistance of aluminium structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
EN 1999 is intended to be used in conjunction with:
— EN 1990 Basis of structural design
— EN 1991 Actions on structures
— European Standards for construction products relevant for aluminium structures
— EN 1090-1: Execution of steel structures and aluminium structures – Part 1: Requirements for conformity assessment of structural components
— EN 1090-3: Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures.
EN 1999-1-1 gives basic design rules for structures made of wrought aluminium alloys and limited guidance for cast alloys.
The following limits are recommended – if not otherwise explicitly stated in this standard:
components with material thickness not less than 0,6 mm;
welded components with material thickness not less than 1,5 mm;
connections with:
— steel bolts and pins with diameter not less than 5 mm;
— aluminium bolts and pins with diameter not less than 8 mm;
— rivets and thread forming screws with diameter not less than 3,9 mm
- Draft364 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of FprCEN/TS 19100-1
(1) FprCEN/TS 19100-1 gives basic design rules for mechanically supported glass components. This document is concerned with the requirements for resistance, serviceability, fracture characteristics and glass component failure consequences in relation to human safety, robustness, redundancy and durability of glass structures.
(2) This document covers the basis of design, materials, durability and structural design.
(3) This document also covers construction rules for the structural design of glass components.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to FprCEN/TS 19100-1.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.
- Technical specification44 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999 1 5
(1) EN 1999 1 5 applies to the structural design of aluminium structures, stiffened and unstiffened, that have the form of a shell of revolution or of a round panel in monocoque structures.
(2) EN 1999 1 5 covers additional provisions to those given in the relevant parts of EN 1999 for design of aluminium structures.
NOTE Supplementary information for certain types of shells is given in EN 1993 1 6 and the relevant application parts which include:
- Part 3-1 for towers and masts;
- Part 3-2 for chimneys;
- Part 4-1 for silos;
- Part 4-2 for tanks;
- Part 4-3 for pipelines.
(4) The provisions in EN 1999 1 5 apply to axisymmetric shells (cylinders, cones, spheres) and associated circular or annular plates, beam section rings and stringer stiffeners, where they form part of the complete structure.
(5) Single shell panels (cylindrical, conical or spherical) are not explicitly covered by EN 1999 1 5. However, the provisions can be applicable if the appropriate boundary conditions are duly taken into account.
(6) Types of shell walls covered in EN 1999 1 5 can be (see Figure 1.1):
- shell wall constructed from flat rolled sheet with adjacent plates connected with butt welds, termed ‘isotropic’;
- shell wall with lap joints formed by connecting adjacent plates with overlapping sections, termed lap-jointed;
- shell wall with stiffeners attached to the outside, termed ‘externally stiffened’ irrespective of the spacing of stiffeners;
- shell wall with the corrugations running up the meridian, termed ‘axially corrugated’;
- shell wall constructed from corrugated sheets with the corrugations running around the shell circumference, termed ‘circumferentially corrugated’.
(7) The provisions of EN 1999 1 5 are intended to be applied within the temperature range defined in EN 1999 1 1. The maximum temperature is restricted so that the influence of creep can be neglected. For structures subject to elevated temperatures associated with fire see EN 1999 1 2.
(8) EN 1999 1 5 does not cover the aspect of leakage.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999 1 1 apply.
(3) The design procedures are valid only when the requirements for execution in EN 1090 3 or other equivalent requirements are complied with.
(4) For the design of new structures, prEN 1999 (all parts) is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
(5) EN 1999 (all parts) is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures
- EN 1090 1: Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
- EN 1090 3: Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures
- Draft73 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999-1-4
(1)P This document gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1 The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2 The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall applications is covered in EN 1090-5.
(2) This document gives methods for stressed-skin design using aluminium sheeting as a structural diaphragm.
(3) This document does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-formed and welded circular or rectangular hollow sections.
(4) This document gives methods for design by calculation and for design assisted by testing. The methods for the design by calculation apply only within stated ranges of material properties and geometrical properties for which sufficient experience and test evidence is available. These limitations do not apply to design by testing.
(5) This document does not cover load arrangement for loads during execution and maintenance.
1.2 Assumptions
(1) For the design of new structures, prEN 1999 (all parts) is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 (all parts) is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures
- EN 1090-1: Execution of steel structures and aluminium structures – Part 1: Requirements for conformity assessment of structural components
- EN 1090-5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications
- Draft82 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999-1-3
(1) This document gives the basis for the design of aluminium alloy structures subject to fatigue in the ultimate limit state.
(2) This document gives rules for:
- safe life design;
- damage tolerant design;
- design assisted by testing.
(3) This document does not cover pressurized containment vessels or pipework.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999-1-1 apply.
(3) EN 1999-1-3 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), relevant parts in EN 1992 to EN 1999, EN 1090-1 and EN 1090-3 for requirements for execution, and ENs, EADs and ETAs for construction products relevant to aluminium structures.
- Draft125 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999-1-2
(1) EN 1999-1-2 deals with the design of aluminium structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1999-1-1, EN 1999-1-2, EN 1999-1-3, EN 1999-1-4 and EN 1999-1-5. This document only identifies differences from, or supplements to, normal temperature design.
(2) EN 1999-1-2 applies to aluminium structures required to fulfil a load bearing function.
(3) EN 1999-1-2 gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(4) EN 1999-1-2 applies to structures, or parts of structures, that are within the scope of EN 1999 1 1 and are designed accordingly.
(5) The methods given in EN 1999-1-2 are applicable to the following aluminium alloys:
EN AW-3004 - H34 EN AW-5083 - O and H12 EN AW-6063 - T5 and T6
EN AW-5005 - O and H34 EN AW-5454 - O and H34 EN AW-6082 - T4 and T6
EN AW-5052 - H34 EN AW-6061 - T6
(6) The methods given in EN 1999-1-2 are applicable also to other aluminium alloy/tempers of EN 1999 1-1, if reliable material properties at elevated temperatures are available or the simplified assumptions in 5.2.1 are applied.
1.2 Assumptions
(1) In addition to the general assumptions of EN 1990, the following assumptions apply:
- the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.
- any active and passive fire protection systems taken into account in the design will be adequately maintained.
(2) For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997, EN 1998 and EN 1999.
(3) EN 1999 is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures
- EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
- EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures
- Draft53 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1993 1 1
(1) EN 1993 1 1 gives basic design rules for steel structures.
(2) It also gives supplementary provisions for the structural design of steel buildings. These supplementary provisions are indicated by the letter "B" after the paragraph number, thus ( )B.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to EN 1993 1 1.
(2) EN 1993 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), the parts of EN 1992 to EN 1999 where steel structures or steel components are referred to within those documents, EN 1090 2, EN 1090 4 and ENs, EADs and ETAs for construction products relevant to steel structures.
- Draft118 pagesEnglish languagesale 10% offe-Library read for1 day
(1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle.
(4) Design and verification in this document are based primarily on the partial factor method.
NOTE 1 Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2 The Annexes to this document also provide general guidance concerning the use of alternative methods.
(5) This document is applicable for:
— structural appraisal of existing construction;
— developing the design of repairs, improvements and alterations;
— assessing changes of use.
(6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 to EN 1999 are involved.
NOTE In this case additional or amended provisions can be necessary.
- Draft115 pagesEnglish languagesale 10% offe-Library read for1 day
(1) The basis for the design of building and civil engineering works in masonry is given in this Part 1-1 of EN 1996, which deals with unreinforced masonry, reinforced masonry and confined masonry. Principles for the design of prestressed masonry are also given. This Part 1-1 of EN 1996 is not valid for masonry elements with a plan area of less than 0,04 m2.
(2) For those types of structures not covered entirely, for new structural uses for established materials, for new materials, or where actions and other influences outside normal experience have to be resisted, the provisions given in this Part 1-1 of EN 1996 may be applicable, but may need to be supplemented.
(3) Part 1-1 of EN 1996 gives detailed rules which are mainly applicable to ordinary buildings. The applicability of these rules may be limited, for practical reasons or due to simplifications; any limits of applicability are given in the text where necessary.
(4) Part 1-1 of EN 1996 does not cover:
— resistance to fire (which is dealt with in EN 1996-1-2);
— particular aspects of special types of building (for example, dynamic effects on tall buildings);
— particular aspects of special types of civil engineering works (such as masonry bridges, dams, chimneys or liquid-retaining structures);
— particular aspects of special types of structures (such as arches or domes);
— masonry where gypsum, with or without cement, mortars are used;
— masonry where the units are not laid in a regular pattern of courses (rubble masonry);
— masonry reinforced with other materials than steel.
- Draft135 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of CEN/TS 19103
(1) CEN/TS 19103 gives general design rules for timber-concrete composite structures.
(2) It provides requirements for materials, design parameters, connections, detailing and execution for timber-concrete composite structures. Recommendations for environmental parameters (temperature and moisture content), design methods and test methods are given in the Annexes.
(3) It includes rules common to many types of timber-concrete composite, but does not include details for the design of glued timber-concrete composites, nor for bridges.
NOTE For the design of glued timber-concrete composites or bridges alternative references are available.
(4) It covers the design of timber-concrete composite structures in both quasi-constant and variable environmental conditions. For ease of use, it provides simple design rules for quasi-constant environmental conditions and more complex rules for variable environmental conditions.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) CEN/TS 19103 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1992 (all parts), EN 1994 (all parts), EN 1995 (all parts), EN 1998 (all parts) when timber structures are built in seismic regions, and ENs for construction products relevant to timber structures.
- Technical specification58 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999-1-2
(1) EN 1999-1-2 deals with the design of aluminium structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1999-1-1, EN 1999-1-2, EN 1999-1-3, EN 1999-1-4 and EN 1999-1-5. This document only identifies differences from, or supplements to, normal temperature design.
(2) EN 1999-1-2 applies to aluminium structures required to fulfil a load bearing function.
(3) EN 1999-1-2 gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(4) EN 1999-1-2 applies to structures, or parts of structures, that are within the scope of EN 1999 1 1 and are designed accordingly.
(5) The methods given in EN 1999-1-2 are applicable to the following aluminium alloys:
EN AW-3004 - H34 EN AW-5083 - O and H12 EN AW-6063 - T5 and T6
EN AW-5005 - O and H34 EN AW-5454 - O and H34 EN AW-6082 - T4 and T6
EN AW-5052 - H34 EN AW-6061 - T6
(6) The methods given in EN 1999-1-2 are applicable also to other aluminium alloy/tempers of EN 1999 1-1, if reliable material properties at elevated temperatures are available or the simplified assumptions in 5.2.1 are applied.
1.2 Assumptions
(1) In addition to the general assumptions of EN 1990, the following assumptions apply:
- the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.
- any active and passive fire protection systems taken into account in the design will be adequately maintained.
(2) For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997, EN 1998 and EN 1999.
(3) EN 1999 is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures
- EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
- EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures
- Draft53 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of FprCEN/TS 19100-1
(1) FprCEN/TS 19100-1 gives basic design rules for mechanically supported glass components. This document is concerned with the requirements for resistance, serviceability, fracture characteristics and glass component failure consequences in relation to human safety, robustness, redundancy and durability of glass structures.
(2) This document covers the basis of design, materials, durability and structural design.
(3) This document also covers construction rules for the structural design of glass components.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to FprCEN/TS 19100-1.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.
- Technical specification44 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999 1 5
(1) EN 1999 1 5 applies to the structural design of aluminium structures, stiffened and unstiffened, that have the form of a shell of revolution or of a round panel in monocoque structures.
(2) EN 1999 1 5 covers additional provisions to those given in the relevant parts of EN 1999 for design of aluminium structures.
NOTE Supplementary information for certain types of shells is given in EN 1993 1 6 and the relevant application parts which include:
- Part 3-1 for towers and masts;
- Part 3-2 for chimneys;
- Part 4-1 for silos;
- Part 4-2 for tanks;
- Part 4-3 for pipelines.
(4) The provisions in EN 1999 1 5 apply to axisymmetric shells (cylinders, cones, spheres) and associated circular or annular plates, beam section rings and stringer stiffeners, where they form part of the complete structure.
(5) Single shell panels (cylindrical, conical or spherical) are not explicitly covered by EN 1999 1 5. However, the provisions can be applicable if the appropriate boundary conditions are duly taken into account.
(6) Types of shell walls covered in EN 1999 1 5 can be (see Figure 1.1):
- shell wall constructed from flat rolled sheet with adjacent plates connected with butt welds, termed ‘isotropic’;
- shell wall with lap joints formed by connecting adjacent plates with overlapping sections, termed lap-jointed;
- shell wall with stiffeners attached to the outside, termed ‘externally stiffened’ irrespective of the spacing of stiffeners;
- shell wall with the corrugations running up the meridian, termed ‘axially corrugated’;
- shell wall constructed from corrugated sheets with the corrugations running around the shell circumference, termed ‘circumferentially corrugated’.
(7) The provisions of EN 1999 1 5 are intended to be applied within the temperature range defined in EN 1999 1 1. The maximum temperature is restricted so that the influence of creep can be neglected. For structures subject to elevated temperatures associated with fire see EN 1999 1 2.
(8) EN 1999 1 5 does not cover the aspect of leakage.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999 1 1 apply.
(3) The design procedures are valid only when the requirements for execution in EN 1090 3 or other equivalent requirements are complied with.
(4) For the design of new structures, prEN 1999 (all parts) is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
(5) EN 1999 (all parts) is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures
- EN 1090 1: Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
- EN 1090 3: Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures
- Draft73 pagesEnglish languagesale 10% offe-Library read for1 day
(1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle.
(4) Design and verification in this document are based primarily on the partial factor method.
NOTE 1 Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2 The Annexes to this document also provide general guidance concerning the use of alternative methods.
(5) This document is applicable for:
— structural appraisal of existing construction;
— developing the design of repairs, improvements and alterations;
— assessing changes of use.
(6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 to EN 1999 are involved.
NOTE In this case additional or amended provisions can be necessary.
- Draft115 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999-1-3
(1) This document gives the basis for the design of aluminium alloy structures subject to fatigue in the ultimate limit state.
(2) This document gives rules for:
- safe life design;
- damage tolerant design;
- design assisted by testing.
(3) This document does not cover pressurized containment vessels or pipework.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999-1-1 apply.
(3) EN 1999-1-3 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), relevant parts in EN 1992 to EN 1999, EN 1090-1 and EN 1090-3 for requirements for execution, and ENs, EADs and ETAs for construction products relevant to aluminium structures.
- Draft125 pagesEnglish languagesale 10% offe-Library read for1 day
(1) The basis for the design of building and civil engineering works in masonry is given in this Part 1-1 of EN 1996, which deals with unreinforced masonry, reinforced masonry and confined masonry. Principles for the design of prestressed masonry are also given. This Part 1-1 of EN 1996 is not valid for masonry elements with a plan area of less than 0,04 m2.
(2) For those types of structures not covered entirely, for new structural uses for established materials, for new materials, or where actions and other influences outside normal experience have to be resisted, the provisions given in this Part 1-1 of EN 1996 may be applicable, but may need to be supplemented.
(3) Part 1-1 of EN 1996 gives detailed rules which are mainly applicable to ordinary buildings. The applicability of these rules may be limited, for practical reasons or due to simplifications; any limits of applicability are given in the text where necessary.
(4) Part 1-1 of EN 1996 does not cover:
— resistance to fire (which is dealt with in EN 1996-1-2);
— particular aspects of special types of building (for example, dynamic effects on tall buildings);
— particular aspects of special types of civil engineering works (such as masonry bridges, dams, chimneys or liquid-retaining structures);
— particular aspects of special types of structures (such as arches or domes);
— masonry where gypsum, with or without cement, mortars are used;
— masonry where the units are not laid in a regular pattern of courses (rubble masonry);
— masonry reinforced with other materials than steel.
- Draft135 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of FprCEN/TS 19100 2
(1) FprCEN/TS 19100 2 gives basic structural design rules for mechanically supported glass components primarily subjected to out of plane loading. Out of plane loaded glass components are made of flat or curved glass components.
NOTE Out of plane loads are loads acting normal (e.g wind) to or having a component (e.g dead load, snow, ...) acting normal to the glass plane.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to FprCEN/TS 19100-2.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.
- Technical specification36 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1993 1 8
(1) This document gives design methods for the design of joints subject to predominantly static loading using all steel grades from S235 up to and including S700 unless otherwise stated in individual clauses.
1.2 Assumptions
(1) The assumptions of EN 1990 and EN 1993-1-1 apply to this document.
(2) The design methods given in this part of EN 1993 are applicable when the quality of construction is as specified in EN 1090 2 or EN 1090 4, and that the construction materials and products used are those specified in the relevant parts of EN 1993, or in the relevant material and product specifications.
- Draft197 pagesEnglish languagesale 10% offe-Library read for1 day
EN 1999 applies to the design of buildings and civil engineering and structural works made of aluminium. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design.
EN 1999 is only concerned with requirements for resistance, serviceability, durability and fire resistance of aluminium structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
EN 1999 is intended to be used in conjunction with:
— EN 1990 Basis of structural design
— EN 1991 Actions on structures
— European Standards for construction products relevant for aluminium structures
— EN 1090-1: Execution of steel structures and aluminium structures – Part 1: Requirements for conformity assessment of structural components
— EN 1090-3: Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures.
EN 1999-1-1 gives basic design rules for structures made of wrought aluminium alloys and limited guidance for cast alloys.
The following limits are recommended – if not otherwise explicitly stated in this standard:
components with material thickness not less than 0,6 mm;
welded components with material thickness not less than 1,5 mm;
connections with:
— steel bolts and pins with diameter not less than 5 mm;
— aluminium bolts and pins with diameter not less than 8 mm;
— rivets and thread forming screws with diameter not less than 3,9 mm
- Draft364 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1993 1 1
(1) EN 1993 1 1 gives basic design rules for steel structures.
(2) It also gives supplementary provisions for the structural design of steel buildings. These supplementary provisions are indicated by the letter "B" after the paragraph number, thus ( )B.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to EN 1993 1 1.
(2) EN 1993 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), the parts of EN 1992 to EN 1999 where steel structures or steel components are referred to within those documents, EN 1090 2, EN 1090 4 and ENs, EADs and ETAs for construction products relevant to steel structures.
- Draft118 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 1999-1-4
(1)P This document gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1 The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2 The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall applications is covered in EN 1090-5.
(2) This document gives methods for stressed-skin design using aluminium sheeting as a structural diaphragm.
(3) This document does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-formed and welded circular or rectangular hollow sections.
(4) This document gives methods for design by calculation and for design assisted by testing. The methods for the design by calculation apply only within stated ranges of material properties and geometrical properties for which sufficient experience and test evidence is available. These limitations do not apply to design by testing.
(5) This document does not cover load arrangement for loads during execution and maintenance.
1.2 Assumptions
(1) For the design of new structures, prEN 1999 (all parts) is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 (all parts) is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures
- EN 1090-1: Execution of steel structures and aluminium structures – Part 1: Requirements for conformity assessment of structural components
- EN 1090-5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications
- Draft82 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of CEN/TS 19100 3
(1) This document gives design rules for mechanically supported glass components primarily subjected to in-plane loading. It also covers construction rules for mechanical joints for in-plane loaded glass components.
NOTE In-plane loaded glass elements are primarily subjected to in-plane loads, e.g. transferred from adjacent parts of a structure. They can also be subjected to out-of-plane loading.
1.2 Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.
- Technical specification36 pagesEnglish languagesale 10% offe-Library read for1 day