1.1   Scope of prEN 1995-1-1
(1) prEN 1995-1-1 gives general design rules for timber structures.
(2) prEN 1995-1-1 also gives specific design rules for buildings and timber civil engineering works.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) prEN 1995-1-1 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1998 (all parts) when timber structures are built in seismic regions.

  • Draft
    440 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1995-3
(1) This document gives minimum requirements for execution of timber structures (buildings and bridges) designed in accordance with EN 1995 (all parts) to ensure that what is built meets the requirements for mechanical resistance, serviceability, durability, and fire performance.
(2) This document gives guidance on moisture control during transport to the building site, storage on site, handling on site and erection.
(3) This document gives guidance on workmanship and deviation limits during execution.
(4) This document assumes that there is an execution specification which states all the specific requirements relevant for the execution of a particular structure.
(5) For products covered by a European technical product specification, this document only covers those aspects of fabrication such as cutting, machining and drilling after placement of the product on the market.
(6) This document does not cover:
a)   parts which are not designed according to EN 1995;
b)   temporary works (such as formwork, scaffolding, propping, shoring, etc.);
c)   specification, production and conformity of timber members in accordance with European technical product specifications;
d)   deviation limits for other properties than mechanical resistance, serviceability, durability and fire performance;
e)   contractual aspects, responsibilities of the various parties, competency requirements or the degree of independence of the personnel undertaking the inspection;
f)   health and safety requirements during execution.
1.2   Assumptions
(1) It is assumed that all relevant provisions of EN 1995 are complied with.
(2) It is recognized in this document that areas such as detailed requirements for competence of personnel, and details related to Quality Management are within the competence of the CEN Member States.
(3) Before the execution begins on a part of the structure, it is assumed that the following are available on site:
—   the drawings and specification of that part;
—   the execution specification.
(4) Before the start of the execution, it is assumed that the execution specification has been checked for completeness.
(5) It is assumed that previous work (such as foundations) has been inspected and that any work which needs to be done due to deviations from the execution specification has been carried out.

  • Draft
    70 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993 5
(1) This document provides rules for the structural design of bearing piles and sheet piles made of steel.
(2) This document provides rules for the structural design of steel elements for foundations and retaining structures constructed using steel piles.
(3) This document is applicable to:
—   steel piled foundations for civil engineering works on land and over water;
—   temporary or permanent structures needed to carry out steel piling work;
—   temporary and permanent retaining structures made of continuous steel piling.
(4) This document does not apply to:
—   offshore platforms;
—   dolphins;
—   ground reinforcing elements.
NOTE   Ground reinforcing elements include rock bolts, soil nails, sprayed concrete, wire mesh and facing elements.
(5) This document does not cover the following aspects:
—   geotechnical design;
—    seismic design.
NOTE 1   For geotechnical design, see EN 1997 (all parts).
NOTE 2   For the effects of ground movement caused by earthquakes, see EN 1998 (all parts).
(6) This document provides methods for design by calculation and for design assisted by testing.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts), EN 1993 1 (all parts) and EN 1997 (all parts) apply.
(2) The design methods given in EN 1993 5 are applicable if
—   the execution quality for steel piles is as specified in EN 12063, EN 12699, EN 14199; and
—   the execution quality for associated steel elements (such as bracing, anchors, waling, etc.) is as specified in EN 1090 2, EN 1537; and
—   the execution quality for concreting of bearing piles is as specified in EN 1536; and
—   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.
(3) The methods for design by calculation apply only within the stated ranges of material properties and geometric proportions, for which sufficient experience and test evidence is available. These limitations do not apply to design assisted by testing.

  • Draft
    127 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-14
(1) This document gives principles and requirements for the use of numerical methods in the design of steel structures, more specifically for the ultimate limit state (including fatigue) and serviceability limit state verifications. It also gives principles and requirements for the application of advanced finite element (FE) and similar modelling techniques for numerical simulation which also covers safety assessment.
(2) This document covers general methodologies such as the finite element method (FEM), finite strip method (FSM) or generalized beam theory (GBT) for modelling, analysis and design of steel structures made of the following members and joint configurations:
a)   hot-rolled profiles,
b)   cold-formed members and sheeting,
c)   welded plated profiles,
d)   stainless steel profiles,
e)   plate assemblies,
f)   shell structures,
g)   welded and bolted joints.
In addition to the general design rules, specific additional rules can also be found in the relevant standard parts in EN 1993.
(3) This document contains harmonized design rules in terms of the application of the numerical modelling methods, development of the numerical models, application of analysis types, result evaluation methods, and determination of the resistance of steel structures for different limit states.
1.2   Assumptions
(1) This document gives rules intended for engineers who are experienced in the use of FE.
(2) It is recognized that structural analysis, based upon the laws of physics, has been successfully researched, developed, historically or currently used for the design and verification of elements or whole structural frames. This remains appropriate for many structural solutions. However, when a more detailed understanding of structural behaviour is required, the methods described in this document can be useful for the professional design.
(3) Unless specifically stated, EN 1990, EN 1991 (all parts) and the other relevant parts of EN 1993-1 (all subparts) apply.
(4) The design methods given in EN 1993-1-14 are applicable if
-   the execution quality is as specified in EN 1090-2 and/or EN 1090-4, and
-   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.

  • Draft
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) EN 1991-1-7 provides actions and rules for safeguarding buildings and civil engineering works against identifiable accidental actions.
NOTE 1   Identifiable accidental actions include impact from vehicles and internal explosions.
NOTE 2   Rules on impact from vehicles travelling on a bridge deck are given in EN 1991-2.
(2) EN 1991-1-7 also covers: actions and rules for tying systems and key members; information on risk assessment; dynamic design for impact; actions for internal explosions; actions from debris.
(3) Actions from ship operations such as berthing and mooring are outside the scope of this document.
(4) Actions due to high explosives that detonate are outside the scope of this document.

  • Draft
    67 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 1998-4 is applicable to the seismic design of on-ground and elevated silos, on-ground, elevated and underground tanks, above-ground and buried pipeline systems, towers, masts and chimneys and ancillary elements attached to the aforementioned structures or in industrial facilities.

  • Draft
    129 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1998-3
(1)   This document is applicable to the assessment and retrofitting of buildings and bridges in seismic regions, namely as given in a) to c):
a)   to provide criteria for the assessment of the seismic performance of existing individual buildings and bridges;
b)   to describe the procedure to be followed in selecting necessary corrective measures;
c)   to set forth criteria for the design of retrofitting measures (i.e. design, structural analysis including intervention measures, final dimensioning of structural parts and their connections to existing structural members).
NOTE 1   For the purposes of this document, retrofitting covers both the seismic upgrading (e.g. strengthening or adding a passive system) of undamaged structures and the repair and possible upgrading of earthquake-damaged structures.
NOTE 2   Only the most common retrofit techniques are covered in this document. This does not exclude the use of other techniques, which can be developed in each country, based on the strengthening principles of this document.
NOTE 3   Annex D gives flowcharts for the application of this document.
(2)   Unless specifically stated, EN 1998-1-1 and EN 1998-5 apply.
(3)   Reflecting the performance requirements of EN 1998-1-1:2024, 4.1, this document covers the seismic assessment and retrofitting of buildings and bridges made of the more commonly used structural materials: concrete, steel and composite, timber and masonry.
NOTE   Annexes B and C contain additional guidance related to the assessment of timber and masonry structures, respectively, and to their retrofitting when necessary.
(4)   This document is intended for the assessment of individual structures, to decide on the need for structural intervention and to design the retrofitting measures that may be necessary. It is not intended for the vulnerability assessment of populations or groups of structures in seismic risk evaluations for various purposes (e.g. for determining insurance risk, for setting risk mitigation priorities, etc.).
(5)   This document provides (in its material-specific Clauses 8 to 11) criteria for the verification of the more common retrofitting techniques currently in use.
(6)   This document gives specific rules for the assessment and retrofitting relevant to existing buildings and bridges of consequence classes CC1, CC2 and CC3, as defined in EN 1990:2023, 4.3.
(7)   Although the provisions of this document are applicable to all common categories of buildings and bridges, the seismic assessment and retrofitting of monuments and heritage structures often requires different types of provisions and approaches, depending on the nature of the monuments and heritage structures.
1.2   Assumptions
(1)   The assumptions of EN 1998-1-1 apply to this document.
(2)   The provisions of this document assume that the data collection and tests are performed by experienced personnel and that the engineer responsible for the assessment, the possible design of the retrofitting and the execution of work has appropriate experience of the type of structures being upgraded or repaired.
(3)   It is assumed that inspection procedures, checklists and other data-collection procedures will be documented and filed and referred to in the assessment/design documents.

  • Draft
    201 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1995-1-2
(1) This document deals with the design of timber structures for the accidental situation of fire exposure and it is intended to be used in conjunction with EN 1995-1-1 and EN 1991-1-2.
This document only identifies differences from, or supplements to, normal temperature design.
(2) This document applies to timber structures required to fulfil a loadbearing function, separating function or both.
(3) This document gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned functions and the levels of performance.
(4) This document applies to structures, or parts of structures, that are within the scope of EN 1995-1-1 and are designed accordingly.
(5) The methods given in this document are applicable to all products covered by European technical product specifications made reference to in this document.
1.2   Assumptions
(1) In addition to the general assumptions of EN 1990, the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Draft
    180 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993-1-6
(1) EN 1993-1-6 provides rules for the structural design of plated steel structures that have the form of a shell of revolution (axisymmetric shell).
(2) This document is applicable to unstiffened fabricated axisymmetric shells formed from isotropic rolled plates using both algebraic and computational procedures, and to stiffened axisymmetric shells with different wall constructions using computational procedures. It also applies to associated circular or annular plates and to beam section rings and stringer stiffeners where they form part of the complete shell structure. The general computational procedures are applicable to all shell forms.
(3) This document does not apply to manufactured shells or to shell panels or to elliptical shell forms, except that its computational procedures are applicable to all shell structures. This document does not apply to structures under seismic or other dynamic loading. It does not cover the aspects of leakage of stored liquids or solids.
(4) Cylindrical and conical panels are not explicitly covered by this document. However, the provisions of 9.8 can be used provided that appropriate boundary conditions are taken into account.  
(5) This document defines the characteristic and design values of the resistance of the structure.
(6) This document is concerned with the requirements for design against the ultimate limit states of:
—   plastic failure;
—   cyclic plasticity;
—   buckling;
—   fatigue.
(7) Overall equilibrium of the structure (sliding, uplifting, overturning) is not included in this document. Special considerations for specific applications are included in the relevant application parts of EN 1993.
(8) Detailed formulae for the simple calculation of unstiffened cylinders, cones and spherical domes are given in the Annexes.
(9) Provisions for simple calculations on specific stiffened shell types are given in EN 1993-4-1.
(10) This document is intended for application to steel shell structures. Where no standard exists for shell structures made of other metals, including high strength steels, the provisions of this document are applicable provided the appropriate material properties of the metal are taken into account.
(11) The provisions of this document are intended to be applied within the temperature ranges defined in the relevant EN 1993 application parts.
(12) Where no application part defines a different range, this document applies to structures within the following limits:
—   design metal temperatures lie within the range −50 °C to +100 °C, except when using the special provisions given in 5.1;
—   radius to thickness ratios (r/t) within the range 50 to 2 000;
—   manufactured circular hollow sections according to EN 10210 and EN 10219 are outside the scope of this document and are covered by EN 1993-1-1. However, if no other provisions are available, the rules of this document are useful for manufactured circular hollow sections. In particular, this document is applicable to the design of manufactured piles (see EN 1993-5) provided the imperfections and tolerance requirements of EN 1993-5 are adopted in place of those specified in this document, and where no other standard covers the specific pile geometry.
NOTE 1   Experimental and theoretical data relating to manufactured circular hollow sections were not considered when this document was drafted. The application of this document to such structures therefore remains the responsibility of the user.  
NOTE 2   The stress design rules of this document can be rather conservative if applied to some geometries and loading conditions for relatively thick-walled shells.
NOTE 3   Thinner shells than r/t = 2 000 can be treated using these provisions but the provisions have not been verified for such thin shells.
NOTE 4   The maximum temperature is restricted so that the influence of creep can be ignored where high temperature creep effects are not covered by the relevant application part.
[...]

  • Draft
    160 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993-1-9
(1) EN 1993-1-9 gives design methods for the verification of the fatigue design situation of steel structures.
NOTE   Steel structures consist of members and their joints. Each member and joint can be represented as a constructional detail or as several of the latter.
(2) Design methods other than the stress-based methods, such as the notch strain method or fracture mechanics methods, are not covered by EN 1993-1-9.
(3) EN 1993-1-9 only applies to structures made of all grades of structural steels and products within the scope of EN 1993-1 (all parts), in accordance with the provisions noted in the detail category tables or annexes.
(4) EN 1993-1-9 only applies to structures where execution conforms to EN 1090-2.
NOTE   Supplementary execution requirements are indicated in the detail category tables.
(5) EN 1993-1-9 applies to structures operating under normal atmospheric conditions and with sufficient corrosion protection and regular maintenance. The effect of seawater corrosion is not covered.
(6) EN 1993-1-9 applies to structures with hot dip galvanizing in accordance with the provisions noted in the detail category tables or annexes.
(7) Microstructural damage from high temperature (> 150°C) that occurs during the design service life is not covered.
(8) EN 1993-1-9 gives guidance of how to consider post-fabrication treatments that are intended to improve the fatigue resistance of constructional details.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and EN 1993 1 (all parts) apply.
(2) The design methods given in EN 1993-1-9 are applicable if:
-   the execution quality is as specified in EN 1090-2, and
-   the construction materials and products used are as specified in the relevant parts on EN 1993 (all parts), or in the relevant material and product specifications.
(3) The design methods of EN 1993-1-9 are generally derived from fatigue tests on constructional details with large scale specimens that include effects of geometrical and structural imperfections from material production and execution (e.g. the effects of tolerances and residual stresses from welding).

  • Draft
    126 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-7
(1) prEN 1993-1-7 provides rules for the structural design of assemblies of unstiffened and stiffened steel plates whose elements are under predominantly distributed transverse loads.
(2) prEN 1993-1-7 is applicable to containment structures such as silos, tanks, digesters and lock gates, where the external actions chiefly act transversely on their individual plates or panels. Where a plate or panel under bending is additionally subject to membrane forces that have a significant effect on the resistance, this document covers assessment of the resistance through its computational analysis procedures.
(3) prEN 1993-1-7 is applicable to structures with rectangular, trapezoidal or triangular component plate segments, each with one axis of symmetry.
(4) prEN 1993-1-7 does not apply to plates or panels where the dominant structural resistance requirement relates to membrane forces in the plates (for these, see EN 1993-1-5).
(5) prEN 1993-1-7 does not apply to plates or panels whose curvature (out of flatness) exceeds that defined in 1.1 (14). For such curved plates, see EN 1993-1-6.
(6) prEN 1993-1-7 does not apply to circular or annular plates. For such plates, see EN 1993 1-6.
(7)    prEN 1993-1-7 does not apply to cold-formed sheeting. For such plates, see EN 1993-1-3.
(8) This document is only concerned with the requirements for design of plates and plate assemblies against the ultimate limit states of:
-   plastic failure;
-   cyclic plasticity;
-   buckling;
-   fatigue.
(9) Overall equilibrium of the structure (sliding, uplifting, or overturning) is not included in this document. Special considerations for specific applications are available in the relevant applications parts of EN 1993.
(10) The rules in this document refer to plate assemblies that are fabricated using unstiffened or stiffened plates or panels. The document is also applicable to the design of individual plates or panels that are predominantly subject to actions transverse to the plane of each plate. Both frictional actions on the plate surface and forces imposed by adjacent components of the plate assembly also induce in-plane actions in each plate.
(11) This document gives algebraic rules and guidance to account for bending with small membrane forces in the individual plates or panels. Where an unstiffened or stiffened plates or panels is subject to significant magnitudes of both bending and in-plane forces, the computational analysis procedures of this document apply.
(12) Where no application part defines a different range, this document applies to structures within the following limits:
-   design metal temperatures within the range −50 °C to +100 °C;
-   the geometry of individual plate segments is limited to rectangular, triangular and trapezoidal shapes with b/t greater than 20, or b1/t greater than 20, as appropriate (see Figure 3.2);
-   Single plate elements are treated as flat where the deviation from flatness e0 meets the condition   (see Figure 9.1). Where this criterion is not met, it is appropriate to treat the plate as a shell panel (see EN 1993-1-6).
1.2   Assumptions
(1) Unless specifically stated, the provisions of EN 1990, EN 1991 (all parts) and EN 1993 (all parts) apply.
(2) The design methods given in prEN 1993-1-7 are applicable if:
-   the execution quality is as specified in EN 1090 2, and
-   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.
(3) The provisions in this document apply to materials that satisfy the brittle fracture provisions given in EN 1993-1-4 and EN 1993-1-10.
(4) In this document, it is assumed that wind loading, seismic actions and bulk solids flow can, in general, be treated as quasi-static actions.
...

  • Draft
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-4
This document provides supplementary rules for the structural design of steel structures that extend and modify the application of EN 1993-1-1, EN 1993-1-3, EN 1993-1-5 and EN 1993-1-8 to austenitic, duplex (austenitic-ferritic) and ferritic stainless steels.
NOTE 1   Austenitic-ferritic stainless steels are commonly known as duplex stainless steels. The term duplex stainless steel is used in this document.
NOTE 2   Information on the durability of stainless steels is given in Annex A.
NOTE 3   The execution of stainless steel structures is covered in EN 1090-2 and EN 1090-4.
1.2   Assumptions
Unless specifically stated, EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1993-1-3, EN 1993-1-5 and EN 1993-1-8 apply.
The design methods given in prEN 1993-1-4 are applicable if
-   the execution quality is as specified in EN 1090-2 and EN 1090-4, and
-   the construction materials and products used are as specified in EN 1993-1-1, EN 1993-1-3, EN 1993 1-5 and EN 1993-1-8, or in the relevant material and product specifications.

  • Draft
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993-1-10
(1) EN 1993-1-10 specifies rules for the selection of steel grades and qualities related to fracture toughness to avoid brittle fracture.
NOTE   Steel quality is also known as (Charpy) subgrade.
(2) EN 1993-1-10 specifies rules to specify through thickness properties for welded elements to reduce the risk of lamellar tearing.
(3) EN 1993-1-10 specifies additional toughness requirements for specific cases to ensure upper shelf toughness in relation to design ultimate resistance in tension and seismic design.
(4) EN 1993-1-10 specifies rules for structural steels as listed in EN 1993-1-1. This document applies to steel grades S235 to S700.
(5) EN 1993-1-10 specifies rules that apply to the selection of parent material only.
(6) EN 1993-1-10 specifies rules that apply to steel materials covered by EN 1993-1-1:2022, 5.1(3), provided that each individual piece of steel is tested in accordance with the requirements of EN 1993 1 1:2022, 5.2.1 and EN 1090-2:2018+A1:2024, 5.1.
(7) This document does not apply to material salvaged from existing steelwork subjected to fatigue or fire.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and the other relevant parts of EN 1993-1 (all parts) apply.
(2) The design methods given in EN 1993-1-10 are applicable if:
-   the execution quality is as specified in EN 1090-2 or EN 1090-4, and
-   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.

  • Draft
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 1998-2 is intended to be applied to the design of new bridges in seismic regions. It covers the design of reinforced concrete, steel and composite steel-concrete bridges and provides guidance for the design of timber bridges.
EN 1998-2 is applicable to the seismic design of bridges exploiting ductility in structural members or through the use of antiseismic devices. When ductility is exploited, this part primarily covers bridges in which the horizontal seismic actions are mainly resisted through bending of the piers or at the abutments; i.e. of bridges composed of vertical or nearly vertical pier systems supporting the traffic deck superstructure. It is also applicable to the seismic design of arched bridges, although its provisions should not be considered as fully covering these cases.
Suspension bridges and masonry bridges, moveable bridges and floating bridges are not included in the scope of EN 1998-2.

  • Draft
    87 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1991-1-9
(1) EN 1991 1 9 gives principles and rules to determine the values of loads due to atmospheric icing to be used for following types of structures:
-   masts;
-   towers;
-   antennas and antenna structures;
-   cables, stays, guy ropes and similar structures;
-   rope ways (cable railways);
-   structures for ski-lifts;
-   buildings or parts of them exposed to potential icing;
-   special types of structures, such as towers for transmission lines and wind turbines.
NOTE   Atmospheric icing on electrical overhead lines is covered by EN 50341-1.
(2) EN 1991-1-9 specifies values for:
-   dimensions and weight of accreted ice;
-   shapes of accreted ice.
(3) EN 1991-1-9 covers types of icing, ice loads acting on structures, and falling ice considerations.
NOTE   For wind actions on iced structures, see EN 1991-1-4.
1.2   Assumptions
The assumptions given in EN 1990:2023, 1.2 apply.
EN 1991-1-9 is intended to be used with EN 1990 (all parts), the other parts of EN 1991 and EN 1992 (all parts) to EN 1999 (all parts) for the design of structures.

  • Draft
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1991-1-3
(1) EN 1991-1-3 gives principles and rules to determine the values of loads due to snow to be used for the structural design of buildings and civil engineering works.
(2) This document does not apply to sites at altitudes above 1 500 m, unless otherwise specified.
NOTE   For rules for the treatment of snow loads for altitudes above 1 500 m, see 6.1.
(3) This document does not give guidance on specialist aspects of snow loading, for example:
-   impact snow loads resulting from snow sliding off or falling from a higher roof;
-   changes in shape or size of the construction works due to the presence of snow or the accretion of ice which could affect the wind action;
-   loads in areas where snow is present all year round;
-   lateral loading due to snow creep (e.g. lateral loads exerted by drifts);
-   loads due to artificial snow.
1.2   Assumptions
The assumptions given in EN 1990:2023, 1.2 apply.

  • Draft
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1991-1-5
(1) EN 1991-1-5 gives principles and rules for calculating thermal actions on buildings, bridges and other structures including their structural members. Principles needed for cladding and other attachments of buildings are also provided.
(2) This document describes the changes in the temperature of structural members. Characteristic values of thermal actions are presented for use in the design of structures which are exposed to daily and seasonal climatic changes.
(3) This document also gives principles for changes in the temperature of structural members due to the paving of hot asphalt on bridge decks.
(4) This document also provides principles and rules for thermal actions acting in structures which are mainly a function of their use (e.g. cooling towers, silos, tanks, warm and cold storage facilities, hot and cold services, etc.).
NOTE   Supplementary guidance for thermal actions on chimneys is provided in EN 13084-1.
1.2   Assumptions
(1) The assumptions given in EN 1990:2023, 1.2 apply.
(2) EN 1991 1 5 is intended to be used with EN 1990, the other parts of EN 1991 and EN 1992 (all parts) to EN 1999 (all parts) for the design of structures.

  • Draft
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) EN 1991-1-1 gives rules on the following aspects related to actions, which are relevant to the structural design of buildings and civil engineering works including some geotechnical aspects:
-   specific weight of construction materials and stored materials;
-   self-weight of construction works;
-   imposed loads for buildings.
(2) Mean values for specific weight of specific construction materials, additional materials for bridges, stored materials and products are given. In addition, for specific materials and products the angle of repose is provided.
(3) Methods for the assessment of the characteristic values of self-weight of construction works are given.
(4) Characteristic values of imposed loads are given for the following areas in buildings according to the category of use:
-   residential, social, commercial and administration areas;
-   areas for archive, storage and industrial activities;
-   garage and vehicle traffic areas (excluding bridges);
-   roofs;
-   stairs and landings;
-   terraces and balconies.
NOTE   The loads on traffic areas given in this standard refer to vehicles up to a gross vehicle weight of 160 kN. Further information can be obtained from EN 1991-2.
(5) Characteristic values of horizontal imposed loads on parapets and partition walls acting as barriers are provided.
NOTE   Forces due to vehicle impact are specified in EN 1991-1-7 and EN 1991-2.
1.2   Assumptions
(1) The general assumptions of EN 1990 apply.
(2) EN 1991-1-1 is intended to be used with EN 1990, the other parts of EN 1991 and the other Eurocode parts for the design of structures.

  • Draft
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1997 1
(1)   This document provides general rules for the design and verification of geotechnical structures.
(2)   This document is applicable for the design and verification of geotechnical structures outside the scope of EN 1997 3.
NOTE   In this case, additional or amended provisions can be necessary.
1.2   Assumptions
(1)   In addition to the assumptions given in EN 1990, the provisions of EN 1997 (all parts) assume that:
—   ground investigations are planned by individuals or organisations with knowledge of potential ground and groundwater conditions;
—   ground investigations are executed by individuals with appropriate skills and experience;
—   the evaluation of test results and derivation of ground properties from the ground investigation are carried out by individuals with appropriate geotechnical experience and qualifications;
—   the data required for design are collected, recorded, and interpreted by appropriately qualified and experienced individuals;
—   geotechnical structures are designed and verified by individuals with appropriate qualifications and experience in geotechnical design;
—   adequate continuity and communication exist between the individuals involved in data collection, design, verification and execution.
(2)   This document is intended to be used in conjunction with EN 1990, which establishes principles and requirements for the safety, serviceability, robustness, and durability of structures, including geotechnical structures, and other construction works.
NOTE   Additional or amended provisions can be necessary for assessment of existing structures, see EN 1990 2.
(3)   This document is intended to be used in conjunction with EN 1997 2, which gives provisions for determining ground properties from ground investigations.
(4)   This document is intended to be used in conjunction with EN 1997 3, which gives specific rules for the design and verification of certain types of geotechnical structures.
(5)   This document is intended to be used in conjunction with other Eurocodes for the design of geotechnical structures, including temporary geotechnical structures.

  • Draft
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1998-1-1
(1)   This document is applicable to the design and verification of buildings and other structures for earthquake resistance. It gives general rules relevant to all types of structures, except for structures belonging to consequence classes CC0 or CC4.
NOTE   For further details on consequence class CC4, see 4.2.
(2)   This document provides basic performance requirements and compliance criteria applicable to buildings and other structures for earthquake resistance.
(3)   This document gives rules for the representation of seismic actions and the description of the design seismic situations.
NOTE   Certain types of structures, dealt with in other parts of Eurocode 8, need supplementary rules which are given in those relevant Parts.
(4)   This document contains general methods for structural analysis and verification under seismic actions, including base-isolated structures and structures with distributed dissipative systems.
(5)   This document contains rules for modelling and verification of ultimate strengths and deformations.
1.2   Assumptions
(1)   The assumptions of EN 1990 apply to this document.
(2)   It is assumed that no change in the structure and in the masses carried by the structure takes place during the construction phase or during the subsequent life of the structure with respect to the design unless proper justification and verification is provided. This applies also to ancillary elements (see 3.1.2). Due to the specific nature of seismic response, this applies even in the case of changes that lead to an increase of the structural resistance.
(3)   The design documents are assumed to indicate the geometry, the detailing, and the properties of the materials of all structural members. If appropriate, the design documents are also assumed to include the properties of special devices to be used and the distances between structural and ancillary elements. The necessary quality control provisions are assumed to be specified.
(4)   Members of special structural importance requiring special checking during construction are assumed to be identified in the design documents and the verification methods to be used are assumed to be specified.
(5)   It is assumed that in the case of high seismic action class (4.1.1(4)), formal quality system plans, covering design, construction, and use, additional to the control procedures prescribed in the other relevant Eurocodes, are specified.

  • Draft
    120 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1996-1-2
(1) This document gives rules for the design of masonry structures for the accidental situation of fire exposure. This document only identifies differences from, or supplements to, normal temperature design.
(2) This document applies to structures, or parts of structures, that are within the scope of EN 1996-1-1 or EN 1996-3 and are designed accordingly.
(3) This document gives rules for the design of structures for specified requirements in respect of the aforementioned functions and the levels of performance.
(5) This document does not cover masonry built with natural stone units according to EN 771-6.
(6) This document deals with:
-   non-loadbearing internal walls;
-   non-loadbearing external walls;
-   loadbearing internal walls with separating or non-separating functions;
-   loadbearing external walls with separating or non-separating functions.
1.2   Assumptions
(1) The assumptions of EN 1990 and EN 1996-1-1 apply to this document.
(2) This document is intended to be used together with EN 1990, EN 1991-1-2, EN 1996-1-1, EN 1996 2 and EN 1996-3.
(3) In addition to the general assumptions of EN 1990 and EN 1996-1-1, the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Draft
    87 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1998-5
(1)   This document establishes general principles for the design and assessment of geotechnical systems in seismic regions. It gives general rules relevant to all families of geotechnical structures, to the design of foundations, retaining structures and underground structures and complements EN 1997-3 for the seismic design situation.
(2)   This document contains the basic performance requirements and compliance criteria applicable to geotechnical structures and geotechnical systems in seismic regions.
(3)   This document refers to the rules for the representation of seismic actions and the description of the seismic design situations defined in EN 1998-1-1 and provides specific definition of the seismic action applicable to geotechnical structures.
1.2   Assumptions
(1)   The assumptions of EN 1990 apply to this document.

  • Draft
    113 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprEN 1997-2
(1)   This document provides rules for determining ground properties for the design and verification of geotechnical structures.
(2)   This document covers requirements and guidance for planning ground investigations, collecting information about ground properties and groundwater conditions, and preparation of the Ground Model.
(3)   This document covers requirements and guidance for the selection of field investigation and laboratory test methods to obtain derived values of ground properties.
(4)   This document covers requirements and guidance on the presentation of the results of ground investigation, including derived values of ground properties, in the Ground Investigation Report.
1.2   Assumptions
(5)   The provisions in FprEN 1997-2 are based on the assumptions given in EN 1990 and FprEN 1997-1.
(6)   This document is intended to be used in conjunction with FprEN 1997-1, which provides general rules for design and verification of all geotechnical structures.
(7)   This document is intended to be used in conjunction with prEN 1997-3, which provides specific rules for design and verification of certain types of geotechnical structures.
(8)   This document is intended to be used in conjunction with FprEN 1998-1-1 which provides the requirements for the ground properties needed to define the seismic action.
(9)   This document is intended to be used in conjunction with FprEN 1998-5 which provides rules for the design of geotechnical structures in seismic regions.

  • Draft
    129 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) This document gives basic rules for the selection of materials and execution of masonry to enable it to comply with the design assumptions of the other parts of Eurocode 6.
(2) This document deals with ordinary aspects of masonry design and execution including:
-   selection of masonry materials;
-   factors affecting the performance and durability of masonry;
-   masonry detailing, joint finishes, movement joints, resistance of buildings to moisture penetration;
-   storage, preparation and use of materials on site;
-   execution of masonry;
-   masonry protection during execution;
(3) This document does not cover the following items:
-   aesthetic aspects;
-   applied finishes;
1.2   Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used together with EN 1990, EN 1991, EN 1996 1-1, EN 1996-1-2 and EN 1996-3.
(3) The design of masonry is carried out in accordance with EN 1996 1 1.

  • Draft
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-3
(1) This document provides rules for structural design of cold-formed steel members and sheeting.
(2) This document applies to cold-formed steel products made from coated or uncoated hot- or cold-rolled sheet or strip, which have been cold-formed by processes such as roll-forming or press braking. It also covers sheeting and members which are curved during fabrication by continuous bending or roll-forming. Sheeting which has the curvature created by crushing the inner flanges is not included. This document is also applicable to the design of profiled steel sheeting for composite steel and concrete slabs at the construction stage, see EN 1994. The execution of steel structures made of cold-formed steel members and sheeting is covered in EN 1090 4. Provisions for bolted connections are provided in EN 1090 2.
NOTE   The rules in prEN 1993 1 3 complement the rules in other parts of EN 1993 1.
(3) Methods are also given for stressed-skin design, using steel sheeting as a structural diaphragm.
(4) This document does not apply to cold-formed circular and rectangular structural hollow sections supplied to EN 10219, for which reference is made to EN 1993 1 1 and EN 1993 1 8.
(5) This document provides methods for design by calculation and for design assisted by testing. The methods for design by calculation apply only within the stated ranges of material properties and geometric proportions, for which sufficient experience and test evidence is available. These limitations do not apply to design assisted by testing.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and EN 1993 1 1 apply.
(2) The design methods given in prEN 1993 1 3 are applicable if:
-   the execution quality is as specified in EN 1090 4, the execution quality of bolted connections is as specified in EN 1090 2, and
-   the construction materials and products are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.
(2) EN 1993 is intended to be used in conjunction with:
-   the parts of EN 1992 to EN 1999 where steel structures or steel components are referred to within those documents;
-   EN, EAD and ETA standards for construction products relevant to steel structures.

  • Standard
    209 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprEN 1993-1-8
(1) FprEN 1993-1-8 provides rules for structural design of joints subject to predominantly static loading using all steel grades from S235 up to and including S700, unless otherwise stated in individual clauses.
NOTE   As an alternative to the design rules provided in Clause 9, the design rules given in CEN/TR 1993-1-801 "Eurocode 3: Design of steel structures - Part 1 801: Hollow section joints design according to the component method" can be used.
(2) The provisions in this document apply to steels complying with the requirements given in EN 1993 1 1 and to material thickness greater than or equal to 3 mm, unless otherwise stated in individual clauses.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and the other relevant parts of EN 1993-1 (all parts) apply.
(2) The design methods given in FprEN 1993-1-8 are applicable if:
-   the execution quality is as specified in EN 1090-2,
and
-   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.

  • Standard
    216 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-2
(1) This document provides rules for the design of steel structures for the accidental situation of fire exposure. This Part of EN 1993 only identifies differences from, or supplements to, normal temperature design.
(2) This document applies to steel structures required to fulfil a loadbearing function.
(3) This document does not include rules for separating function.
(4) This document gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(5) This document applies to structures, or parts of structures, that are within the scope of EN 1993 1 1 and are designed accordingly.
(6) This document is intended to be used in conjunction with EN 1991-1-2, EN 1993-1-1, EN 1993 1-3, EN 1993-1-4, EN 1993-1-5, EN 1993-1-6, EN 1993-1-7, EN 1993-1-8, EN 1993-1-11, EN 1993-1-13 or EN 1993-1-14.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991(all parts) and EN 1993-1-1 apply.
(2) The design methods given in prEN 1993-1-2 are applicable if
-   the execution quality is as specified in EN 1090-2 and/or EN 1090-4, and
-   the construction materials and products used are as specified in prEN 1993-1-1:2020, Table 5.1 and Table 5.2 and in prEN 1993-1-3:2022, Table 5.1 and Table 5.2, or in the relevant material and product specifications.
(3) In addition to the general assumptions of EN 1990 the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Standard
    97 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) This document provides guidance for the development or improvement of rules deemed to help with the choosing of appropriate glazing for protection against injuries and falling, hereafter called "the Specifications". The Specifications to be written or revised can be a national regulation, a national standard, recommendations from a professional association, requirements for a particular project, etc.
(2) This document deals with the choice of the mode of breakage (see 5.2) with regard to the safety of people against:
-   the risk of injury in the event of a collision with a glazed element, e.g. a partition,
-   the risk of falling through or over a glazed element, e.g. a balustrade, and
-   the risk of accidental falling of glass fragments on people not having caused the breakage, e.g. an overhead glazing.
(3) These risks can be evaluated in the function of a normal use of the building or construction work. This includes use by the elderly, children and people with disabilities, but excludes deliberate risk taking. It presupposes a rational and responsible behaviour of the users or, in case of children, of those responsible for supervising them.
(4) The information contained in this document can be used to define minimum glass configuration. It does not exempt from the verification according to CEN/TS 19100-1 and CEN/TS 19100-2 and where appropriate CEN/TS 19100-3.
(5) Safety against burglary, vandalism, bullet attack, explosion, exposition to fire and seismic actions are not covered in this document. Preventing these risks needs further appropriate requirements.
(6) This document does not apply to the following glass products:
-   glass blocks and paver units;
-   channel-shaped glass.
(7) It also does not apply to the following applications:
-   escalators and moving walkway;
-   lifts;
-   accesses to machinery;
-   animal enclosures and aquariums;
-   greenhouses and agricultural installations;
-   temporary scaffolds.

  • Technical specification
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1991 1 2
(1)   The methods given in this Eurocode are applicable to buildings and civil engineering works, with a fire load related to the building and its occupancy.
(2)   EN 1991 1 2 deals with thermal and mechanical actions on structures exposed to fire. It is intended to be used in conjunction with the fire design Parts of EN 1992 to EN 1996 and EN 1999 which give rules for designing structures for fire resistance.
(3)   EN 1991 1 2 contains thermal actions either nominal or physically based. More data and models for physically based thermal actions are given in annexes.
(4)   EN 1991 1 2 does not cover the assessment of the damage of a structure after a fire.
(5)   EN 1991 1 2 does not cover supplementary requirements concerning, for example:
-   the possible installation and maintenance of sprinkler systems;
-   conditions on occupancy of building or fire compartment;
-   the use of approved insulation and coating materials, including their maintenance.
1.2   Assumptions
(1)   In addition to the general assumptions of EN 1990 the following assumptions apply:
-   any active and passive fire protection systems taken into account in the design will be adequately maintained;
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993-1-5
(1) This document provides rules for structural design of stiffened and unstiffened nominally flat plates which are subject to in-plane forces.
(2) Non-uniform stress distributions due to shear lag, in-plane load introduction and plate buckling are covered. The effects of out-of-plane loading are outside the scope of this document.
NOTE 1   The rules in this part complement the rules for class 1, 2, 3 and 4 sections, see EN 1993-1-1.
NOTE 2   For the design of slender plates which are subject to repeated direct stress and/or shear and also fatigue due to out-of-plane bending of plate elements ("breathing"), see EN 1993-2 and EN 1993-6.
NOTE 3   For the effects of out-of-plane loading and for the combination of in-plane effects and out-of-plane loading effects, see EN 1993-2 and EN 1993-1-7.
(3) Single plate elements are considered as nominally flat where the curvature radius r in the direction perpendicular to the compression satisfies, as illustrated in Figure 1.1:
r≥b^2/t   (1.1)
where
b   is the panel width;
t   is the plate thickness.
Figure 1.1 - Definition of plate curvature
1.2   Assumptions
(1) Unless specifically stated, EN 1990, the EN 1991 series and EN 1993-1-1 apply.
(2) The design methods given in EN 1993-1-5 are applicable if
-   the execution quality is as specified in EN 1090-2 and
-   the construction materials and products used are as specified in the relevant parts of the EN 1993 series or in the relevant material product specifications.

  • Standard
    82 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1    Scope of FprEN 1992-1-1
(1)   This document gives the general basis for the design of structures in plain, reinforced and prestressed concrete made with normal weight, lightweight and heavyweight aggregates. It gives specific rules for buildings, bridges and civil engineering structures, including temporary structures; additional requirements specific to bridges are given in Annex K. The rules are valid under temperature conditions between −40 °C and +100 °C generally. This document complies with the principles and requirements for the safety, serviceability, durability and robustness of structures, the basis of their design and verification that are given in EN 1990.
(2)   This document is only concerned with the requirements for resistance, serviceability, durability, robustness and fire resistance of concrete structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
(3)    This document does not cover:
-   resistance to fire (see EN 1992 1 2);
-   fastenings in concrete (see EN 1992 4);
-   seismic design (see EN 1998 (all parts));
-   particular aspects of special types of civil engineering works (such as dams, pressure vessels);
-   structures made with no-fines concrete, aerated or cellular concrete, lightweight aggregate concrete with open structure components;
-   structures containing steel sections considered in design (see EN 1994 (all parts)) for composite steel and concrete structures;
-   structural parts made of concrete with a smallest value of the upper sieve aggregate size Dlower < 8 mm (or if known Dmax < 8 mm) unless otherwise stated in this Eurocode.
1.2   Assumptions
(1)   The assumptions of EN 1990 apply to FprEN 1992-1-1.
(2)   It is assumed that the requirements for execution and workmanship given in EN 13670 are complied with.

  • Standard
    402 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1996-3
(1)   This document provides simplified calculation methods to facilitate the design of the following unreinforced masonry walls, subject to certain conditions of application:
-   walls subjected to vertical and wind loading;
-   walls subjected to concentrated loads;
-   shear walls;
-   basement walls subjected to lateral earth pressure and vertical loading;
-   walls subjected to lateral loading but not subjected to vertical loading.
NOTE 1   For those types of masonry structures or parts of structures not covered by (1), the design can be based on EN 1996-1-1.
NOTE 2   The rules given in this document are consistent with those given in EN 1996-1-1 but are more conservative in respect of the conditions and limitations of their use.
(2) This document applies only to those masonry structures, or parts thereof, that are described in EN 1996-1-1 and EN 1996-2.
(3) The simplified calculation methods given in this document do not cover the design of double-leaf walls.
(4) The simplified calculation methods given in this document do not cover the design for accidental situations.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used, for direct application, together with EN 1990, the EN 1991 series, EN 1996 1-1, EN 1996-1-2 and EN 1996-2.
(3) The rules given in this document assume that concrete floors are designed according to EN 1992-1-1.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1)   This document defines imposed loads (models and representative values) associated with road traffic, pedestrian actions and rail traffic which include, when relevant, dynamic effects and centrifugal, braking and acceleration actions and actions for accidental design situations.
(2)   Imposed loads defined in this document are applicable for the design of new bridges, including piers, abutments, upstand walls, wing walls and flank walls, noise barriers, canopies etc., and their foundations. Where appropriate, the loads can also be considered as a basis for assessment or modification of existing structures in combination with complementary conditions if necessary.
(3)   The load models and values given in this document are also applicable for the design of retaining walls adjacent to roads and railway lines and the design of earthworks subject to road or rail traffic actions. This document also provides applicability conditions for specific load models.
(4)   This document is intended to be used with prEN 1990, the other parts of the EN 1991 series and the EN 1992 series to EN 1999 series for the design of structures.

  • Standard
    160 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1992 1 2
(1)   This document deals with the design of concrete structures for the accidental situation of fire exposure and is intended to be used in conjunction with prEN 1992 1 1 and EN 1991 1 2. This document identifies differences from, or supplements to, normal temperature design.
(2)   This document applies to concrete structures required to fulfil a loadbearing function, separating function or both.
(3)   This document gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned functions and the levels of performance.
(4)   This document applies to structures, or parts of structures, that are within the scope of prEN 1992 1 1 and are designed accordingly.
(5)   The methods given in this document are applicable to normal weight concrete up to strength class C100/115 and lightweight concrete up to strength class LC50/60.
1.2   Assumptions
(1)   In addition to the general assumptions of prEN 1990 the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Standard
    88 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of CEN/TS 19102
(1) This document applies to the design of buildings and structural works, made of structural membrane material. It provides guidance for the design of tensioned membrane structures, either mechanically or pneumatically tensioned at a defined prestress level.
NOTE 1   Membrane materials comprise structural fabrics, coated structural fabrics and foils.
NOTE 2   For elements of tensile surface structures not governed by this Technical Specification (for example made of steel, aluminium, wood or other structural materials), see relevant Eurocode parts.
(2) This document is concerned with the requirements for resistance, serviceability and durability of tensioned membrane structures, as given in EN 1990.
NOTE 1   The safety criteria follow EN 1990 and will consider specific limit states for tensioned membrane structures.
NOTE 2   Specific requirements concerning seismic design are not considered.
(3) Design and verification in this document is based on limit state design in conjunction with the partial factor method.
NOTE   Special attention goes to the action of prestress, snow, wind and rain action on membrane structures and the combined effect of wind and rain or snow.
(4) This document covers analysis methodologies appropriate for tensioned membrane structures, from analytical to full numerical simulation methods.
(5) This document considers connections between membrane materials and between membrane materials and others.
(6) This document is applicable for hybrid membrane structures integrating different kinds of load bearing behaviour (tension, compression, bending, inflation…), in a way that the structural membrane shares loadbearing capacity with other structural elements made of different materials.
NOTE   The term ‘hybrid structure’ refers to this combined structural behaviour or use of materials.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used in conjunction with EN 1990, the EN 1991 series, the EN 1993 series, the EN 1999 series, ENs, EADs and ETAs for construction products relevant to tensioned membrane structures.

  • Technical specification
    102 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    102 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-2
(1)   EN 1999-1-2 deals with the design of aluminium structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1999-1-1, EN 1999-1-2, EN 1999-1-3, EN 1999-1-4 and EN 1999-1-5. This document only identifies differences from, or supplements to, normal temperature design.
(2)   EN 1999-1-2 applies to aluminium structures required to fulfil a load bearing function.
(3)   EN 1999-1-2 gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(4)   EN 1999-1-2 applies to structures, or parts of structures, that are within the scope of EN 1999 1 1 and are designed accordingly.
(5)   The methods given in EN 1999-1-2 are applicable to the following aluminium alloys:
EN AW-3004 - H34   EN AW-5083 - O and H12   EN AW-6063 - T5 and T6
EN AW-5005  -  O and H34   EN AW-5454 - O and H34   EN AW-6082 - T4 and T6
EN AW-5052  - H34      EN AW-6061 - T6   
(6)   The methods given in EN 1999-1-2 are applicable also to other aluminium alloy/tempers of EN 1999 1-1, if reliable material properties at elevated temperatures are available or the simplified assumptions in 5.2.1 are applied.
1.2   Assumptions
(1)   In addition to the general assumptions of EN 1990, the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.
-   any active and passive fire protection systems taken into account in the design will be adequately maintained.
(2)   For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997, EN 1998 and EN 1999.
(3)   EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
-   EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Scope of FprEN 1990
(1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle.
(4) The verification methods in this document are based primarily on the partial factor method.
NOTE 1   Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2   The Annexes to this document also provide general guidance concerning the use of alternative methods.
(5) This document is also applicable for:
-   structural assessment of existing structures;
-   developing the design of repairs, improvements and alterations;
-   assessing changes of use.
NOTE   Additional or amended provisions can be necessary.
(6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 (all parts) to EN 1999 (all parts) are involved.
NOTE   In this case, additional or amended provisions can be necessary.
1.2   Assumptions
(1) It is assumed that reasonable skill and care appropriate to the circumstances is exercised in the design, based on the knowledge and good practice generally available at the time the structure is designed.
(2) It is assumed that the design of the structure is made by appropriately qualified and experienced personnel.
(3) The design rules provided in the Eurocodes assume that:
-   execution will be carried out by personnel having appropriate skill and experience;
-   adequate control and supervision will be provided during design and execution of the works, whether in factories, plants, or on site;
-   construction materials and products will be used in accordance with the Eurocodes, in the relevant product and execution standards, and project specifications;
-   the structure will be adequately maintained;
-   the structure will be used in accordance with the design assumptions.
NOTE   Guidance on management measures to satisfy the assumptions for design and execution is given in
Annex B.

  • Standard
    172 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-5
(1)   EN 1999-1-5 applies to the structural design of aluminium structures, stiffened and unstiffened, that have the form of a shell of revolution or of a round panel in monocoque structures.
(2)   EN 1999-1-5 covers additional provisions to those given in the relevant parts of EN 1999 for design of aluminium structures.
NOTE   Supplementary information for certain types of shells is given in EN 1993-1-6 and the relevant application parts of EN 1993 which include:
-   Part 3-1 for towers and masts;
-   Part 3-2 for chimneys;
-   Part 4-1 for silos;
-   Part 4-2 for tanks;
-   Part 4-3 for pipelines.
(4)   The provisions in EN 1999-1-5 apply to axisymmetric shells (cylinders, cones, spheres) and associated circular or annular plates, beam section rings and stringer stiffeners, where they form part of the complete structure.
(5)   Single shell panels (cylindrical, conical or spherical) are not explicitly covered by EN 1999-1-5. However, the provisions can be applicable if the appropriate boundary conditions are duly taken into account.
(6)   Types of shell walls covered in EN 1999-1-5 can be (see Figure 1.1):
-   shell wall constructed from flat rolled sheet with adjacent plates connected with butt welds, termed “isotropic”;
-   shell wall with lap joints formed by connecting adjacent plates with overlapping sections, termed “lap-jointed”;
-   shell wall with stiffeners attached to the outside, termed “externally stiffened” irrespective of the spacing of stiffeners;
-   shell wall with the corrugations running up the meridian, termed “axially corrugated”;
-   shell wall constructed from corrugated sheets with the corrugations running around the shell circumference, termed “circumferentially corrugated”.
[Figure 1.1 - Illustration of cylindrical shell form]
(7)   The provisions of EN 1999-1-5 are intended to be applied within the temperature range defined in EN 1999-1-1. The maximum temperature is restricted so that the influence of creep can be neglected. For structures subject to elevated temperatures associated with fire, see EN 1999-1-2.
(8)   EN 1999-1-5 does not cover the aspect of leakage.
1.2   Assumptions
(1)   The general assumptions of EN 1990 apply.
(2)   The provisions of EN 1999-1-1 apply.
(3)   The design procedures are valid only when the requirements for execution in EN 1090-3 or other equivalent requirements are complied with.
(4)   For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
(5)   EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures;
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
-   EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1 Scope of EN 1999-1-3
(1) This document gives the basis for the design of aluminium alloy structures subject to fatigue in the ultimate limit state.
(2) This document gives rules for:
- safe life design;
- damage tolerant design;
- design assisted by testing.
(3) This document does not cover pressurized containment vessels or pipework.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999-1-1 apply.
(3) EN 1999-1-3 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), relevant parts in EN 1992 to EN 1999, EN 1090-1 and EN 1090-3 for requirements for execution, and ENs, EADs and ETAs for construction products relevant to aluminium structures.

  • Standard
    125 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1 Scope of FprEN 1999-1-1
(1) FprEN 1999-1-1 gives basic design rules for structures made of wrought aluminium alloys and limited guidance for cast alloys (see Clause 5 and Annex C).
This document does not cover the following, unless otherwise explicitly stated in this document:
- components with material thickness less than 0,6 mm;
- welded components with material thickness less than 1,5 mm;
- connections with:
- steel bolts and pins with diameter less than 5 mm;
- aluminium bolts and pins with diameter less than 8 mm;
- rivets and thread forming screws with diameter less than 3,9 mm.
1.2 Assumptions
(1) In addition to the general assumptions of EN 1990 the following assumptions apply:
- execution complies with EN 1090-3 and EN 1090-5;
- the mechanical properties comply with the product standards listed in 5.2.2.
(2) EN 1999 is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures;
- EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
- EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures;
- EN 1090-5, Execution of steel structures and aluminium structures - Part 5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications.

  • Standard
    371 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-4
(1)   EN 1999-1-4 gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1   The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2   The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall applications is covered in EN 1090-5.
(2)   EN 1999-1-4 gives methods for stressed-skin design using aluminium sheeting as a structural diaphragm.
(3)   EN 1999-1-4 does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-formed and welded circular or rectangular hollow sections.
(4)   EN 1999-1-4 gives methods for design by calculation and for design assisted by testing. The methods for the design by calculation apply only within stated ranges of material properties and geometrical properties for which sufficient experience and test evidence is available. These limitations do not apply to design by testing.
(5)   EN 1999-1-4 does not cover load arrangement for loads during execution and maintenance.
1.2   Assumptions
(1) For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures;
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
-   EN 1090-5, Execution of steel structures and aluminium structures - Part 5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications.

  • Standard
    83 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprEN 1993 1 1
(1) FprEN 1993 1 1 gives basic design rules for steel structures.
(2) It also gives supplementary provisions for the structural design of steel buildings. These supplementary provisions are indicated by the letter "B" after the paragraph number, thus (  )B.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to FprEN 1993 1 1.
(2) EN 1993 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), the parts of EN 1992 to EN 1999 where steel structures or steel components are referred to within those documents, EN 1090 2, EN 1090 4 and ENs, EADs and ETAs for construction products relevant to steel structures.

  • Standard
    120 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprCEN/TS 19101
(1) This document applies to the design of buildings, bridges and other civil engineering structures in fibre-polymer composite materials, including permanent and temporary structures. It complies with the principles and requirements for the safety, serviceability and durability of structures, the basis of their design and verification that are given in EN 1990.
NOTE   In this document, fibre-polymer composite materials are referred to as composite materials or as composites.
(2) This document is only concerned with the requirements for resistance, serviceability, durability and fire resistance of composite structures.
NOTE 1   Specific requirements concerning seismic design are not considered.
NOTE 2   Other requirements, e.g. concerning thermal or acoustic insulation, are not considered.
(3) This document gives a general basis for the design of composite structures composed of (i) composite members, or (ii) combinations of composite members and members of other materials (hybrid-composite structures), and (iii) the joints between these members.
(4) This document applies to composite structures in which the values of material temperature in members, joints and components in service conditions are (i) higher than -40 °C and (ii) lower than   - 20 °C, where   is the glass transition temperature of composite, core and adhesive materials, defined according to 5.1(1).
(5) This document applies to:
(i) composite members, i.e. profiles and sandwich panels, and
(ii) bolted, bonded and hybrid joints and their connections.
NOTE 1   Profiles and sandwich panels can be applied in structural systems such as beams, columns, frames, trusses, slabs, plates and shells.
NOTE 2   Sandwich panels include homogenous core and web-core panels. In web-core panels, the cells between webs can be filled (e.g. with foam) or remain empty (e.g. panels from pultruded profiles).
NOTE 3   This document does not apply to sandwich panels made of metallic face sheets.
NOTE 4   Built-up members can result from the assembly of two or more profiles, through bolting and/or adhesive bonding.
NOTE 5   The main manufacturing processes of composite members include pultrusion, filament winding, hand layup, resin transfer moulding (RTM), resin infusion moulding (RIM), vacuum-assisted resin transfer moulding (VARTM).
NOTE 6   This document does not apply to composite cables or special types of civil engineering works (e.g. pressure vessels, tanks or chemical storage containers).
(6) This document applies to:
(i) the composite components of composite members, i.e. composite plies, composite laminates, sandwich cores and plates or profiles, and
(ii) the components of joints or their connections, i.e. connection plates or profiles (e.g. cleats), bolts, and adhesive layers.
NOTE 1   Composite components are composed of composite materials (i.e. fibres and matrix resins) and core materials. Components of joints and their connections are also composed of composite, steel or adhesive materials.
NOTE 2   The fibre architecture of composite components can comprise a single type of fibres or a hybrid of two or more types of fibres.
NOTE 3   This document does not apply to composite components used for internal reinforcement of concrete structures (composite rebars) or strengthening of existing structures (composite rebars, strips or sheets).
(7) This document applies to composite materials, comprising:
(i) glass, carbon, basalt or aramid fibres, and
(ii) a matrix based on unsaturated polyester, vinylester, epoxy or phenolic thermoset resins.

  • Technical specification
    238 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) This document provides an alternative method for the stability verification of steel members under compression axial force and bending moment, with reference to EN 1993 1 1.
NOTE   For the applicability of this document, see Clause 4.
(2) The method given in this document applies to uniform steel members with double symmetric cross-section under axial compression force and bi-axial bending.

  • Technical specification
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) The basis for the design of building and civil engineering works in masonry is given in this Part 1-1 of EN 1996, which deals with unreinforced masonry, reinforced masonry and confined masonry. Principles for the design of prestressed masonry are also given. This Part 1-1 of EN 1996 is not valid for masonry elements with a plan area of less than 0,04 m2.
(2) For those types of structures not covered entirely, for new structural uses for established materials, for new materials, or where actions and other influences outside normal experience have to be resisted, the provisions given in this Part 1-1 of EN 1996 may be applicable, but may need to be supplemented.
(3) Part 1-1 of EN 1996 gives detailed rules which are mainly applicable to ordinary buildings. The applicability of these rules may be limited, for practical reasons or due to simplifications; any limits of applicability are given in the text where necessary.
(4) Part 1-1 of EN 1996 does not cover:
-   resistance to fire (which is dealt with in EN 1996-1-2);
-   particular aspects of special types of building (for example, dynamic effects on tall buildings);
-   particular aspects of special types of civil engineering works (such as masonry bridges, dams, chimneys or liquid-retaining structures);
-   particular aspects of special types of structures (such as arches or domes);
-   masonry where gypsum, with or without cement, mortars are used;
-   masonry where the units are not laid in a regular pattern of courses (rubble masonry);
-   masonry reinforced with other materials than steel.

  • Standard
    137 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprCEN/TS 19100 2
(1) FprCEN/TS 19100 2 gives basic structural design rules for mechanically supported glass components primarily subjected to out of plane loading. Out of plane loaded glass components are made of flat or curved glass components.
NOTE   Out of plane loads are loads acting normal (e.g wind) to or having a component (e.g dead load, snow, ...) acting normal to the glass plane.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to FprCEN/TS 19100-2.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.

  • Technical specification
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprCEN/TS 19100-1
(1) FprCEN/TS 19100-1 gives basic design rules for mechanically supported glass components. This document is concerned with the requirements for resistance, serviceability, fracture characteristics and glass component failure consequences in relation to human safety, robustness, redundancy and durability of glass structures.
(2) This document covers the basis of design, materials, durability and structural design.
(3) This document also covers construction rules for the structural design of glass components.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to FprCEN/TS 19100-1.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.

  • Technical specification
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1      Scope of CEN/TS 19100 3
(1) This document gives design rules for mechanically supported glass components primarily subjected to in-plane loading. It also covers construction rules for mechanical joints for in-plane loaded glass components.
NOTE   In-plane loaded glass elements are primarily subjected to in-plane loads, e.g. transferred from adjacent parts of a structure. They can also be subjected to out-of-plane loading.
1.2      Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN 1993-1-1, EN 1995 1 1, EN 1998 1, EN 1999 1 1 and EN 12488.

  • Technical specification
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of CEN/TS 19103
(1)   CEN/TS 19103 gives general design rules for timber-concrete composite structures.
(2)   It provides requirements for materials, design parameters, connections, detailing and execution for timber-concrete composite structures. Recommendations for environmental parameters (temperature and moisture content), design methods and test methods are given in the Annexes.
(3)   It includes rules common to many types of timber-concrete composite, but does not include details for the design of glued timber-concrete composites, nor for bridges.
NOTE   For the design of glued timber-concrete composites or bridges alternative references are available.
(4)   It covers the design of timber-concrete composite structures in both quasi-constant and variable environmental conditions. For ease of use, it provides simple design rules for quasi-constant environmental conditions and more complex rules for variable environmental conditions.
1.2   Assumptions
(1)   The general assumptions of EN 1990 apply.
(2)   CEN/TS 19103 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), EN  1992 (all parts), EN  1994 (all parts), EN 1995 (all parts), EN 1998 (all parts) when timber structures are built in seismic regions, and ENs for construction products relevant to timber structures.

  • Technical specification
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of CEN/TS 17440
(1)This document provides additional or amended provisions to EN 1990 to cover the assessment of existing structures (see EN 1990:2002, 1.1(4)), and the retained parts of existing structures that are being modified, extended, strengthened or retrofitted.
NOTE 1   The assessment of an existing structure is, in many aspects, different from the design of a new structure, see Introduction.
NOTE 2   There can be some aspects of EN 1990 that are required for design but are not applicable for assessment. The definition of those aspects of EN 1990 that are not applicable can be included in the definition of the assessment objectives and the approach to the assessment, see 5.
NOTE 3   This document is based on the general requirements and principles of structural reliability provided in Eurocodes EN 1990 and EN 1991.
(2) This document covers general principles regarding actions for assessment complementing EN 1991.
NOTE   Supplementary provisions for seismic actions due to earthquake are provided in EN 1998.
(3) This document includes general principles for the assessment of the structural resistance of existing structures.
NOTE   The specific models used to assess resistance are not provided in this document and will depend on the materials and structure types.
(4) This document does not provide specific rules for initiation of assessment.
(5) This document does not provide specific rules on how to undertake interventions that can be carried out as a result of an assessment.
(6) This document does not cover the design of new elements that will be integrated into an existing structure.
NOTE   For the design of new elements, see EN 1990.
1.2   Assumptions
(1) The general assumptions of CEN/TS 17440 are:
-   the assessment of the structure is made by appropriately qualified and experienced personnel;
-   adequate supervision and quality control is provided during the assessment process;
-   the structure will be used in accordance with the assessment assumptions;
-   the structure will be maintained in accordance with the assessment assumptions.

  • Technical specification
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day