Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range

SIGNIFICANCE AND USE
5.1 Fracture toughness is expressed in terms of an elastic-plastic stress intensity factor, KJc, that is derived from the J-integral calculated at fracture.  
5.2 Ferritic steels are microscopically inhomogeneous with respect to the orientation of individual grains. Also, grain boundaries have properties distinct from those of the grains. Both contain carbides or nonmetallic inclusions that can act as nucleation sites for cleavage microcracks. The random location of such nucleation sites with respect to the position of the crack front manifests itself as variability of the associated fracture toughness (13). This results in a distribution of fracture toughness values that is amenable to characterization using the statistical methods in this test method.  
5.3 The statistical methods in this test method assume that the data set represents a macroscopically homogeneous material, such that the test material has both the uniform tensile and toughness properties. The fracture toughness evaluation of nonuniform materials is not amenable to the statistical analysis procedures employed in this test method. For example, multi-pass weldments can create heat-affected and brittle zones with localized properties that are quite different from either the bulk or weld materials. Thick-section steels also often exhibit some variation in properties near the surfaces. Metallographic analysis can be used to identify possible nonuniform regions in a material. These regions can then be evaluated through mechanical testing such as hardness, microhardness, and tensile testing for comparison with the bulk material. It is also advisable to measure the toughness properties of these nonuniform regions distinctly from the bulk material. Section 10.6 provides a screening criterion to assess whether the data set may not be representative of a macroscopically homogeneous material, and therefore, may not be amenable to the statistical analysis procedures employed in this test method. If the data ...
SCOPE
1.1 This test method covers the determination of a reference temperature, To, which characterizes the fracture toughness of ferritic steels that experience onset of cleavage cracking at elastic, or elastic-plastic KJc instabilities, or both. The specific types of ferritic steels (3.2.2) covered are those with yield strengths ranging from 275 to 825 MPa (40 to 120 ksi) and weld metals, after stress-relief annealing, that have 10 % or less strength mismatch relative to that of the base metal.  
1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shaped compact tension specimens, C(T) or DC(T). A range of specimen sizes with proportional dimensions is recommended. The dimension on which the proportionality is based is specimen thickness.  
1.3 Median KJc values tend to vary with the specimen type at a given test temperature, presumably due to constraint differences among the allowable test specimens in 1.2. The degree of KJc variability among specimen types is analytically predicted to be a function of the material flow properties (1)2 and decreases with increasing strain hardening capacity for a given yield strength material. This KJc dependency ultimately leads to discrepancies in calculated To values as a function of specimen type for the same material. To values obtained from C(T) specimens are expected to be higher than To values obtained from SE(B) specimens. Best estimate comparisons of several materials indicate that the average difference between C(T) and SE(B)-derived To values is approximately 10°C (2). C(T) and SE(B) To differences up to 15°C have also been recorded (3). However, comparisons of individual, small datasets may not necessarily reveal this average trend. Datasets which contain both C(T) and SE(B) specimens may generate To results which fall between the To values calculated using solely C(T) or SE(B) specimens. It is therefore strongly recomme...

General Information

Status
Historical
Publication Date
14-Jul-2019
Technical Committee
Drafting Committee
Current Stage
Ref Project

Relations

Buy Standard

Standard
ASTM E1921-19be1 - Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
English language
39 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
REDLINE ASTM E1921-19be1 - Standard Test Method for Determination of Reference Temperature, <emph type="bdit">T<inf >o</inf></emph>, for Ferritic Steels in the Transition Range
English language
39 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
´1
Designation: E1921 − 19b
Standard Test Method for
Determination of Reference Temperature, T , for Ferritic
o
1
Steels in the Transition Range
This standard is issued under the fixed designation E1921; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision.Anumber in parentheses indicates the year of last reapproval.A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
1
ε NOTE—Section 7.4 and Fig. 5 were editorially corrected in May 2020.
1. Scope solely C(T) or SE(B) specimens. It is therefore strongly
recommended that the specimen type be reported along with
1.1 Thistestmethodcoversthedeterminationofareference
thederivedT valueinallreporting,analysis,anddiscussionof
o
temperature, T , which characterizes the fracture toughness of
o
results. This recommended reporting is in addition to the
ferritic steels that experience onset of cleavage cracking at
requirements in 11.1.1.
elastic, or elastic-plastic K instabilities, or both. The specific
Jc
types of ferritic steels (3.2.2) covered are those with yield
1.4 Requirements are set on specimen size and the number
strengths ranging from 275 to 825 MPa (40 to 120 ksi) and
of replicate tests that are needed to establish acceptable
weld metals, after stress-relief annealing, that have 10% or
characterization of K data populations.
Jc
less strength mismatch relative to that of the base metal.
1.5 T is dependent on loading rate. T is evaluated for a
o o
1.2 The specimens covered are fatigue precracked single-
quasi-static loading rate range with 0.1< dK/dt < 2 MPa√m/s.
edge notched bend bars, SE(B), and standard or disk-shaped
Slowly loaded specimens (dK/dt < 0.1 MPa√m) can be
compact tension specimens, C(T) or DC(T). A range of
analyzed if environmental effects are known to be negligible.
specimen sizes with proportional dimensions is recommended.
Provision is also made for higher loading rates (dK/dt>2
The dimension on which the proportionality is based is
MPa√m/s) in Annex A1. Note that this threshold loading rate
specimen thickness.
for application of AnnexA1 is a much lower threshold than is
1.3 Median K values tend to vary with the specimen type
Jc
required in other fracture toughness test methods such as E399
at a given test temperature, presumably due to constraint
and E1820.
differences among the allowable test specimens in 1.2. The
1.6 The statistical effects of specimen size on K in the
degree of K variability among specimen types is analytically
Jc
Jc
2
transition range are treated using the weakest-link theory (4)
predicted to be a function of the material flow properties (1)
applied to a three-parameter Weibull distribution of fracture
and decreases with increasing strain hardening capacity for a
toughness values. A limit on K values, relative to the
given yield strength material. This K dependency ultimately
Jc
Jc
specimen size, is specified to ensure high constraint conditions
leads to discrepancies in calculated T values as a function of
o
along the crack front at fracture. For some materials, particu-
specimen type for the same material. T values obtained from
o
larly those with low strain hardening, this limit may not be
C(T) specimens are expected to be higher than T values
o
sufficient to ensure that a single-parameter (K ) adequately
obtained from SE(B) specimens. Best estimate comparisons of
Jc
several materials indicate that the average difference between describes the crack-front deformation state (5).
C(T) and SE(B)-derived T values is approximately 10°C (2).
o
1.7 Statistical methods are employed to predict the transi-
C(T) and SE(B) T differences up to 15°C have also been
o
tion toughness curve and specified tolerance bounds for 1T
recorded (3). However, comparisons of individual, small data-
specimens of the material tested.The standard deviation of the
sets may not necessarily reveal this average trend. Datasets
datadistributionisafunctionofWeibullslopeandmedianK .
Jc
which contain both C(T) and SE(B) specimens may generate
The procedure for applying this information to the establish-
T results which fall between the T values calculated using
o o
ment of transition temperature shift determinations and the
establishment of tolerance limits is prescribed.
1
This test method is under the jurisdiction ofASTM Committee E08 on Fatigue
1.8 The procedures described in this test method assume
and Fracture and is the direct responsibility of E08.07 on Fracture Mechanics.
Current edition approved July 15, 2019. Published August 2019. Originally
that the data set represents a macroscopically homogeneous
approved in 1997. Last previous edition approved in 2019 as E1921–19a. DOI:
material, such that the test material has uniform tensile and
10.1520/E1921-19BE01.
2
...

This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because
it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version
of the standard as published by ASTM is to be considered the official document.
´1
Designation: E1921 − 19b E1921 − 19b
Standard Test Method for
Determination of Reference Temperature, T , for Ferritic
o
1
Steels in the Transition Range
This standard is issued under the fixed designation E1921; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
1
ε NOTE—Section 7.4 and Fig. 5 were editorially corrected in May 2020.
1. Scope
1.1 This test method covers the determination of a reference temperature, T , which characterizes the fracture toughness of
o
ferritic steels that experience onset of cleavage cracking at elastic, or elastic-plastic K instabilities, or both. The specific types
Jc
of ferritic steels (3.2.13.2.2) covered are those with yield strengths ranging from 275 to 825 MPa (40 to 120 ksi) and weld metals,
after stress-relief annealing, that have 10 % or less strength mismatch relative to that of the base metal.
1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shaped compact
tension specimens, C(T) or DC(T). A range of specimen sizes with proportional dimensions is recommended. The dimension on
which the proportionality is based is specimen thickness.
1.3 Median K values tend to vary with the specimen type at a given test temperature, presumably due to constraint differences
Jc
among the allowable test specimens in 1.2. The degree of K variability among specimen types is analytically predicted to be a
Jc
2
function of the material flow properties (1) and decreases with increasing strain hardening capacity for a given yield strength
material. This K dependency ultimately leads to discrepancies in calculated T values as a function of specimen type for the same
Jc o
material. T values obtained from C(T) specimens are expected to be higher than T values obtained from SE(B) specimens. Best
o o
estimate comparisons of several materials indicate that the average difference between C(T) and SE(B)-derived T values is
o
approximately 10°C (2). C(T) and SE(B) T differences up to 15°C have also been recorded (3). However, comparisons of
o
individual, small datasets may not necessarily reveal this average trend. Datasets which contain both C(T) and SE(B) specimens
may generate T results which fall between the T values calculated using solely C(T) or SE(B) specimens. It is therefore strongly
o o
recommended that the specimen type be reported along with the derived T value in all reporting, analysis, and discussion of
o
results. This recommended reporting is in addition to the requirements in 11.1.1.
1.4 Requirements are set on specimen size and the number of replicate tests that are needed to establish acceptable
characterization of K data populations.
Jc
1.5 T is dependent on loading rate. T is evaluated for a quasi-static loading rate range with 0.1< dK/dt < 2 MPa√m/s. Slowly
o o
loaded specimens (dK/dt < 0.1 MPa√m) can be analyzed if environmental effects are known to be negligible. Provision is also
made for higher loading rates (dK/dt > 2 MPa√m/s) in Annex A1. Note that this threshold loading rate for application of Annex
A1 is a much lower threshold than is required in other fracture toughness test methods such as E399 and E1820.
1.6 The statistical effects of specimen size on K in the transition range are treated using the weakest-link theory (4) applied
Jc
to a three-parameter Weibull distribution of fracture toughness values. A limit on K values, relative to the specimen size, is
Jc
specified to ensure high constraint conditions along the crack front at fracture. For some materials, particularly those with low
strain hardening, this limit may not be sufficient to ensure that a single-parameter (K ) adequately describes the crack-front
Jc
deformation state (5).
1.7 Statistical methods are employed to predict the transition toughness curve and specified tolerance bounds for 1T specimens
of the material tested. The standard deviation of the data distribution is a function of Weibull slope and median K . The procedure
Jc
for applying this information to the establishment of transition temperature shift determinations and the establishment of tolerance
limits is prescribed.
1
This test method is under the jurisdiction of ASTM Committee E08 on Fatigue and Fracture and is the direct responsibility of E08.07 on Fracture Mechanics.
Current edition approved Jul
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.