Quantities and units — Part 11: Characteristic numbers

This document gives names, symbols and definitions for characteristic numbers used in the description of transport and transfer phenomena.

Grandeurs et unités — Partie 11: Nombres caractéristiques

Le présent document donne noms, les symboles et les définitions des nombres caractéristiques utilisés dans la description des phénomènes de transfert.

General Information

Status
Published
Publication Date
21-Oct-2019
Current Stage
6060 - International Standard published
Completion Date
22-Oct-2019
Ref Project

RELATIONS

Buy Standard

Standard
ISO 80000-11:2019 - Quantities and units
English language
50 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 80000-11:2019 - Grandeurs et unités
French language
51 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (sample)

INTERNATIONAL ISO
STANDARD 80000-11
Second edition
2019-10
Quantities and units —
Part 11:
Characteristic numbers
Grandeurs et unités —
Partie 11: Nombres caractéristiques
Reference number
ISO 80000-11:2019(E)
ISO 2019
---------------------- Page: 1 ----------------------
ISO 80000-11:2019(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may

be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting

on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address

below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
---------------------- Page: 2 ----------------------
ISO 80000-11:2019(E)
Contents Page

Foreword ........................................................................................................................................................................................................................................iv

Introduction ..................................................................................................................................................................................................................................v

1 Scope ................................................................................................................................................................................................................................. 1

2 Normative references ...................................................................................................................................................................................... 1

3 Terms and definitions ..................................................................................................................................................................................... 1

4 Momentum transfer .......................................................................................................................................................................................... 1

5 Transfer of heat ..................................................................................................................................................................................................16

6 Transfer of matter in a binary mixture ......................................................................................................................................24

7 Constants of matter.........................................................................................................................................................................................33

8 Magnetohydrodynamics.............................................................................................................................................................................37

9 Miscellaneous .......................................................................................................................................................................................................46

Bibliography .............................................................................................................................................................................................................................48

Alphabetical index .............................................................................................................................................................................................................49

© ISO 2019 – All rights reserved iii
---------------------- Page: 3 ----------------------
ISO 80000-11:2019(E)
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards

bodies (ISO member bodies). The work of preparing International Standards is normally carried out

through ISO technical committees. Each member body interested in a subject for which a technical

committee has been established has the right to be represented on that committee. International

organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of

electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are

described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the

different types of ISO documents should be noted. This document was drafted in accordance with the

editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of

patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of

any patent rights identified during the development of the document will be in the Introduction and/or

on the ISO list of patent declarations received (see www .iso .org/ patents).

Any trade name used in this document is information given for the convenience of users and does not

constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and

expressions related to conformity assessment, as well as information about ISO's adherence to the

World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see: www .iso

.org/ iso/ foreword .html.

This document was prepared by Technical Committee ISO/TC 12, Quantities and units, in collaboration

with Technical Committee IEC/TC 25, Quantities and units.

This second edition cancels and replaces the first edition (ISO 80000-11:2008), which has been

technically revised.
The main changes compared to the previous edition are as follows:
— the table giving the quantities and units has been simplified;

— all items have been revised in terms of the layout of the definitions, and a worded definition has

been added to each item;
— the number of items has been increased from 25 to 108 (concerns all Clauses);

— item 11-9.2 (Landau-Ginzburg number) has been transferred in this document from

ISO 80000-12:2009 (revised as ISO 80000-12:2019).

A list of all parts in the ISO 80000 and IEC 80000 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A

complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2019 – All rights reserved
---------------------- Page: 4 ----------------------
ISO 80000-11:2019(E)
Introduction

Characteristic numbers are physical quantities of unit one, although commonly and erroneously

called “dimensionless” quantities. They are used in the studies of natural and technical processes, and

(can) present information about the behaviour of the process, or reveal similarities between different

processes.

Characteristic numbers often are described as ratios of forces in equilibrium; in some cases, however,

they are ratios of energy or work, although noted as forces in the literature; sometimes they are the

ratio of characteristic times.

Characteristic numbers can be defined by the same equation but carry different names if they are

concerned with different kinds of processes.

Characteristic numbers can be expressed as products or fractions of other characteristic numbers if

these are valid for the same kind of process. So, the clauses in this document are arranged according to

some groups of processes.

As the amount of characteristic numbers is tremendous, and their use in technology and science is not

uniform, only a small amount of them is given in this document, where their inclusion depends on their

common use. Besides, a restriction is made on the kind of processes, which are given by the Clause

headings. Nevertheless, several characteristic numbers are found in different representations of the

same physical information, e.g. multiplied by a numerical factor, as the square, the square root, or the

inverse of another representation. Only one of these have been included, the other ones are declared as

deprecated or are mentioned in the remarks column.
© ISO 2019 – All rights reserved v
---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 80000-11:2019(E)
Quantities and units —
Part 11:
Characteristic numbers
1 Scope

This document gives names, symbols and definitions for characteristic numbers used in the description

of transport and transfer phenomena.
2 Normative references
There are no normative references in this document.
3 Terms and definitions

Names, symbols and definitions for characteristic numbers are given in Clauses 4 to 9.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
4 Momentum transfer

Table 1 gives the names, symbols and definitions of characteristic numbers used to characterize

processes in which momentum transfer plays a predominant role. The transfer of momentum

(ISO 80000-4) basically occurs during a collision of 2 bodies, and is governed by the law of momentum

conservation. Energy dissipation can occur. In a more generalized meaning momentum transfer occurs

during the interaction of 2 subsystems moving with velocity v relative to each other. Typically, one of

the subsystems is solid and possibly rigid, with a characteristic length, which can be a length, width,

radius, etc. of a solid object, often the effective length is given by the ratio of a body’s volume to the area

of its surface.

The other subsystem is a fluid, in general liquid or gaseous, with the following properties amongst others:

— mass density ρ (ISO 80000-4);
— dynamic viscosity η (ISO 80000-4);
— kinematic viscosity ν=ηρ/ (ISO 80000-4), or
— pressure drop Δp (ISO 80000-4).

The field of science is mainly fluid dynamics (mechanics). Characteristic numbers of this kind allow

the comparison of objects of different sizes. They also can give some estimation about the change of

laminar flow to turbulent flow.
© ISO 2019 – All rights reserved 1
---------------------- Page: 6 ----------------------
ISO 80000-11:2019(E)
2 © ISO 2019 – All rights reserved
Table 1 — Characteristic numbers for momentum transfer
No. Name Symbol Definition Remarks

11-4.1 Reynolds num- Re quotient of inertial forces and viscous forces in a fluid flow, ex- The value of the Reynolds number gives an estimate

ber pressed by on the flow state: laminar flow or turbulent flow.
In rotating movement, the speed v = ωl, where l is the
ρvvll
Re== ; where
distance from the rotation axis and ω is the angular
velocity.
ρ is mass density (ISO 80000-4),
v is speed (ISO 80000-3),
l is characteristic length (ISO 80000-3),
η is dynamic viscosity (ISO 80000-4), and
ν is kinematic viscosity (ISO 80000-4)

11-4.2 Euler number Eu relationship between pressure drop in a flow and the kinetic energy The Euler number is used to characterize losses in

per volume for flow of fluids in a pipe, expressed by the flow.
Δp A modification of the Euler number is considering the
Eu= ; where
dimensions of the containment (pipe):
Δp is drop of pressure (ISO 80000-4),
Eu′= Eu ; where
ρ is mass density (ISO 80000-4), and
d is inner diameter (ISO 80000-3) of the pipe, and
v is speed (ISO 80000-3)
l is length (ISO 80000-3).

11-4.3 Froude number Fr quotient of a body’s inertial forces and its gravitational forces for The Froude number can be modified by buoyancy.

flow of fluids, expressed by
Sometimes the square and sometimes the inverse of
v the Froude number as defined here is wrongly used.
Fr= ; where
v is speed (ISO 80000-3) of flow,
l is characteristic length (ISO 80000-3), and
g is acceleration of free fall (ISO 80000-3)
---------------------- Page: 7 ----------------------
ISO 80000-11:2019(E)
© ISO 2019 – All rights reserved 3
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.4 Grashof number Gr quotient of buoyancy forces due to thermal expansion which results Heating can occur near hot vertical walls, in pipes, or

in a change of mass density and viscous forces for free convection by a bluff body.

due to temperature differences, expressed by
The characteristic length can be the vertical height
of a hot plate, the diameter of a pipe, or the effective
Gr=ΔlgανT/ ; where
length of a body.
l is characteristic length (ISO 80000-3),
See also Rayleigh number (item 11-5.3).
g is acceleration of free fall (ISO 80000-3),
α is thermal cubic expansion coefficient (ISO 80000-5),
ΔT is difference of thermodynamic temperature T (ISO 80000-5)
between surface of the body and the fluid far away from the
body, and
ν is kinematic viscosity (ISO 80000-4)

11-4.5 Weber number We relation between inertial forces and capillary forces due to surface The fluids can be gases or liquids.

tension at the interface between two different fluids, expressed by
The different fluids often are drops moving in a gas or
bubbles in a liquid.
We=ργv l/ ; where
The characteristic length is commonly the diameter of
ρ is mass density (ISO 80000-4),
bubbles or drops.
v is speed (ISO 80000-3),
The square root of the Weber number is called Ray-
l is characteristic length (ISO 80000-3), and
leigh number.
γ is surface tension (ISO 80000-4)
Sometimes the square root of the Weber number as
defined here is called the Weber number. That defini-
tion is deprecated.
Interfaces only exist between two fluids which are not
miscible.

11-4.6 Mach number Ma quotient of the speed of flow and the speed of sound, expressed by The Mach number represents the relationship of iner-

tial forces compared to compression forces.
Ma=v/c ; where
For an ideal gas
v is speed (ISO 80000-3) of the body, and
p RT kT
c is speed of sound (ISO 80000-8) in the fluid
c==γ γγ= ; where γ is ratio of the
ρ M m
specific heat capacity (ISO 80000-5).
---------------------- Page: 8 ----------------------
ISO 80000-11:2019(E)
4 © ISO 2019 – All rights reserved
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.7 Knudsen number Kn quotient of free path length of a particle and a characteristic length, The Knudsen number is a measure to estimate wheth-

expressed by er the gas in flow behaves like a continuum.
Kn=λ /l ; where The characteristic length, l, can be a characteristic
size of the gas flow region like a pipe diameter.
λ is mean free path (ISO 80000-9), and
l is characteristic length (ISO 80000-3)

11-4.8 Strouhal num- Sr, relation between a characteristic frequency and a characteristic The characteristic length, l, can be the diameter of an

ber; speed for unsteady flow with periodic behaviour, expressed by obstacle in the flow which can cause vortex shedding,

or the length of it.
Thomson num- Sr= fl/v ; where
ber
f is frequency (ISO 80000-3) of vortex shedding,
l is characteristic length (ISO 80000-3), and
v is speed (ISO 80000-3) of flow

11-4.9 drag coefficient c relation between the effective drag force and inertial forces for a The drag coefficient is strongly dependant on the

body moving in a fluid, expressed by shape of the body.
c = ; where
ρv A
F is drag force (ISO 80000-4) on the body,
ρ is mass density (ISO 80000-4) of the fluid,
v is speed (ISO 80000-3) of the body, and
A is cross-sectional area (ISO 80000-3)

11-4.10 Bagnold number Bg quotient of drag force and gravitational force for a body moving in a The characteristic length, l, is the body’s volume di-

fluid, expressed by vided by its cross-sectional area.
c ρv
Bg= ; where
lgρ
c is drag coefficient (item 11-4.9) of the body,
ρ is mass density (ISO 80000-4) of the fluid,
v is speed (ISO 80000-3) of the body,
l is characteristic length (ISO 80000-3),
g is acceleration of free fall (ISO 80000-3), and
ρ is mass density (ISO 80000-4) of the body
---------------------- Page: 9 ----------------------
ISO 80000-11:2019(E)
© ISO 2019 – All rights reserved 5
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.11 Bagnold number Ba quotient of drag force and viscous force in a fluid transferring solid

particles, expressed by
ργd
s 12/
Ba =−11/ f ; where
2 s
ρ is mass density (ISO 80000-4) of particles,
d is diameter (ISO 80000-3) of particles,
γ=v/d is shear rate time-derivative of shear strain
(ISO 80000-4),
η is dynamic viscosity (ISO 80000-4) of fluid, and
f is volumic fraction of solid particles

11-4.12 lift coefficient c , quotient of the lift force available from a wing at a given angle The lift coefficient is dependant on the shape of the

and the inertial force for a wing shaped body moving in a fluid, wing.
expressed by
2F F
c == ; where
ρv S
F is lift force (ISO 80000-4) on the wing,
ρ is mass density (ISO 80000-4) of the fluid,
v is speed (ISO 80000-3) of the body,
S = A cos α is effective area (ISO 80000-3) when α is the angle
of attack and A is area of the wing, and
q=ρv /2 is dynamic pressure.

11-4.13 thrust coeffi- c quotient of the effective thrust force available from a propeller and The thrust coefficient is dependant on the shape of the

cient the inertial force in a fluid, expressed by propeller.
cF= / ρnd ; where
F is thrust force (ISO 80000-4) of the propeller,
ρ is mass density (ISO 80000-4) of the fluid,
n is rotational frequency (ISO 80000-3), and
d is tip diameter (ISO 80000-3) of the propeller
---------------------- Page: 10 ----------------------
ISO 80000-11:2019(E)
6 © ISO 2019 – All rights reserved
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.14 Dean number Dn relation between centrifugal force and inertial force, for flows of

fluids in curved pipes, expressed by
2vrr
Dn= ; where
ν R
v is (axial) speed (ISO 80000-3),
r is radius (ISO 80000-3) of the pipe,
ν is kinematic viscosity (ISO 80000-4) of the fluid, and
R is radius of curvature (ISO 80000-3) of the path of the pipe

11-4.15 Bejan number Be quotient of mechanical work and frictional energy loss in fluid dy- A similar number exists for heat transfer (item 11-5.9).

namics in a pipe, expressed by
The kinematic viscosity is also called momentum
diffusivity.
Δpl ρΔpl
Be= = ; where
Δp is drop of pressure (ISO 80000-4) along the pipe,
l is characteristic length (ISO 80000-3),
η is dynamic viscosity (ISO 80000-4),
ν is kinematic viscosity (ISO 80000-4), and
ρ is mass density (ISO 80000-4).

11-4.16 Lagrange num- Lg quotient of mechanical work and frictional energy loss in fluid dy- The Lagrange number is also given by

ber namics in a pipe, expressed by
La=⋅Re Eu ; where
lpΔ
Re is the Reynolds number (item 11-4.1), and
Lg= ; where
Eu is the Euler number (item 11-4.2).
l is length (ISO 80000-3) of the pipe,
Δp is drop of pressure (ISO 80000-4) along the pipe,
η is dynamic viscosity (ISO 80000-4), and
v is speed (ISO 80000-3)
---------------------- Page: 11 ----------------------
ISO 80000-11:2019(E)
© ISO 2019 – All rights reserved 7
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.17 Bingham num- Bm, quotient of yield stress and viscous stress in a viscous material for

ber; flow of viscoplastic material in channels, expressed by
plasticity num- τd
Bm= ; where
ber
τ is shear stress (ISO 80000-4),
d is characteristic diameter (ISO 80000-3), e.g. effective
channel width,
η is dynamic viscosity (ISO 80000-4), and
v is speed (ISO 80000-3)

11-4.18 Hedström num- He, quotient of yield stress and viscous stress of a viscous material at

ber flow limit for visco-plastic material in a channel, expressed by
τρd
He= ; where
τ is shear stress (ISO 80000-4) at flow limit,
d is characteristic diameter (ISO 80000-3), e.g. effective
channel width,
ρ is mass density (ISO 80000-4), and
η is dynamic viscosity (ISO 80000-4)

11-4.19 Bodenstein Bd mathematical expression of the transfer of matter by convection in The Bodenstein number is also given by

number reactors with respect to diffusion,
Bd==Pe Re⋅Sc ; where
Bd=vlD/ ; where
Pe is the Péclet number for mass transfer (item
v is speed (ISO 80000-3),
11-6.2),
l is length (ISO 80000-3) of the reactor, and
Re is the Reynolds number (item 11-4.1), and
D is diffusion coefficient (ISO 80000-9)
Sc=ηρ//()DD=ν is Schmidt number (item
11-7.2).
---------------------- Page: 12 ----------------------
ISO 80000-11:2019(E)
8 © ISO 2019 – All rights reserved
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.20 Rossby number; Ro quotient of inertial forces and Coriolis forces in the context of trans- The Rossby number represents the effect of Earth's

fer of matter in geophysics, expressed by rotation on flow in pipes, rivers, ocean currents, tor-

Kiebel number
nadoes, etc.
Ro=v/2()lωϕsin ; where
The quantity ωϕsin is called Coriolis frequency.
v is speed (ISO 80000-3) of motion,
l is characteristic length (ISO 80000-3), the scale of the
phenomenon,
ω is angular velocity (ISO 80000-3) of the Earth's rotation, and
φ is angle (ISO 80000-3) of latitude

11-4.21 Ekman number Ek quotient of viscous forces and Coriolis forces in the context of trans- In plasma physics, the square root of this number is

fer of matter for the flow of a rotating fluid, expressed by used.
The Ekman number is also given by
Ek=νω/2l sinϕ ; where
Ek=Ro/Re ; where
ν is kinematic viscosity (ISO 80000-4),
Ro is the Rossby number (item 11-4.20), and
l is characteristic length (ISO 80000-3), the scale of the
phenomenon,
Re is the Reynolds number (item 11-4.1).
ω is angular frequency (ISO 80000-3) of the Earth’s rotation, and
φ is angle of latitude

11-4.22 elasticity num- El relation between relaxation time and diffusion time in viscoelastic See also Deborah number (item 11-7.8).

ber flows, expressed by
El=trν/ ; where
t is relaxation time (ISO 80000-12),
ν is kinematic viscosity (ISO 80000-4), and
r is radius (ISO 80000-3) of pipe
---------------------- Page: 13 ----------------------
ISO 80000-11:2019(E)
© ISO 2019 – All rights reserved 9
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.23 Darcy friction f representation of pressure loss in a pipe due to friction within a

factor; laminar or turbulent flow of a fluid in a pipe, expressed by
Moody friction 2Δp d
f = ; where
factor
Δp is drop of pressure (ISO 80000-4) due to friction,
ρ is mass density (ISO 80000-4) of the fluid,
v is (average) speed (ISO 80000-3) of the fluid in the pipe,
d is diameter (ISO 80000-3) of the pipe, and
l is length (ISO 80000-3) of the pipe

11-4.24 Fanning number f , relation between shear stress and dynamic pressure in the flow of a The Fanning number describes the flow of fluids in

fluid in a containment, expressed by a pipe with friction at the walls represented by its

shear stress.
f = ; where
n Symbol f may be used where no conflicts are possible.
τ is shear stress (ISO 80000-4) at the wall,
ρ is mass density (ISO 80000-4) of the fluid, and
v is speed (ISO 80000-3) of the fluid in the pipe

11-4.25 Goertler num- Go characterization of the stability of laminar boundary layer flows in The Goertler number represents the ratio of centrifu-

ber; transfer of matter in a boundary layer on curved surfaces, ex- gal effects to viscous effects.

pressed by
Goertler param-
eter
vll
 
Go= ; where
 
ν r
 
v is speed (ISO 80000-3),
l is boundary layer thickness (ISO 80000-3),
ν is kinematic viscosity (ISO 80000-4), and
r is radius of curvature (ISO 80000-3)
---------------------- Page: 14 ----------------------
ISO 80000-11:2019(E)
10 © ISO 2019 – All rights reserved
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.26 Hagen number Hg, generalization of the Grashof number for forced or free convection

For free thermal convection with =ΔραgT , the
in laminar flow, expressed by V
Hagen number then coincides with the Grashof
1 dp l
Hg=− ; where
number (item 11-4.4). See also the Poiseuille number
ρ dx
(item 11-4.28).
ρ is mass density (ISO 80000-4) of fluid,
is gradient of pressure (ISO 80000-4),
l is characteristic length (ISO 80000-3), and
ν is kinematic viscosity (ISO 80000-4)

11-4.27 Laval number La quotient of speed and the (critical) sound speed at the throat of a The Laval number is a specific kind of Mach number

nozzle, expressed by (item 11-4.6).
La=v//RT21γγ()+ ; where
v is speed (ISO 80000-3),
R = is specific gas constant, where
R is molar gas constant (ISO 80000-9), and
M is molar mass (ISO 80000-9),
T is thermodynamic temperature (ISO 80000-5), and
γ is ratio of the specific heat capacities (ISO 80000-5)

11-4.28 Poiseuille num- Poi quotient of propulsive force by pressure and viscous force for a flow The Poiseuille number is Poi=32 for laminar flow in a

ber of fluids in a pipe, expressed by round pipe.
See also the Hagen number (item 11-4.26).
Δp d
Poi=− ; where
l ηv
Δp is drop of pressure (ISO 80000-4) along the pipe,
l is length (ISO 80000-3) of the pipe,
d is diameter (ISO 80000-3) of the pipe,
η is dynamic viscosity (ISO 80000-4) of the fluid, and
v is characteristic speed (ISO 80000-3) of the fluid
---------------------- Page: 15 ----------------------
ISO 80000-11:2019(E)
© ISO 2019 – All rights reserved 11
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.29 power number Pn quotient of power consumption by agitators due to drag and rota-

tional inertial power in fluids, expressed by
Pn=Pn/ ρ d ; where
P is active power (IEC 80000-6) consumed by a stirrer,
ρ is mass density (ISO 80000-4) of fluid,
n is rotational frequency (ISO 80000-3), and
d is diameter (ISO 80000-3) of stirrer

11-4.30 Richardson Ri quotient of potential energy and kinetic energy for a falling body, In geophysics differences of these quantities are of

number expressed by interest.
Ri=gh/v ; where
g is acceleration of free fall (ISO 80000-3),
h is characteristic height (ISO 80000-3), and
v is characteristic speed (ISO 80000-3)

11-4.31 Reech number Ree relation between the speed of an object submerged in water relative The Reech number can be used to determine the

to the water, and wave propagation speed, expressed by resistance of a partially submerged object (e.g. a

ship) of length l (in direction of the motion) moving
Reeg= l /v ; where
through water.
g is acceleration of free fall (ISO 80000-3),
A similar quantity is defined as the Boussinesq
number Bs=v/2gl .
l is characteristic length (ISO 80000-3), and
v is speed (ISO 80000-3) of the object relative to the water

11-4.32 Stokes number Stk quotient of friction and inertia forces for particles in a fluid or in a

In most cases tl= /v ; where l is characteristic length,
plasma, expressed by
and v is speed of fluid. The characteristic length can
be the diameter of an obstacle or hole.
Stkt= /t ; where
t is relaxation time (ISO 80000-12) of particles to achieve
fluid’s velocity due to friction (viscosity), and
t is time (ISO 80000-3) of fluid to alter its velocity under
external influence
---------------------- Page: 16 ----------------------
ISO 80000-11:2019(E)
12 © ISO 2019 – All rights reserved
Table 1 (continued)
No. Name Symbol Definition Remarks

11-4.33 Stokes number Stk quotient of friction and inertia forces for the special case of parti- Sometimes the inverse of this number is wrongly used.

ticles>
Stkd=ν/ f ; where
ν is kinematic viscosity (ISO 80000-4) of the fluid or plasma,
d is diameter (ISO 80000-3) of particle, and
f is frequency (ISO 80000-3) of particle vibrations

11-4.34 Stokes number Stk Stokes number for calibration of rotameters metering vertical flows In general use, this value is multiplied by 1,042.

; of fluids by means of a floating body, expressed by
See also the Archimedes number (item 11-6.12).
3 3
power coeffi-
()ρρ−  
rgmrρ gm 11
Stk = =− ; where
 
cient 2 2
ρ ρρ
η ν
 
ter>
r is ratio of pipe and float radii,
g is acceleration of free fall (ISO 80000-3),
m is mass (ISO 80000-4) of the body,
ρ is mass density (ISO 80000-4) of the fluid,
η is dynamic viscosity (ISO 80000-4) of the fluid,
ρ is mass density (ISO 80000-4) of the body, and
ν is kinematic viscosity (ISO 80000
...

NORME ISO
INTERNATIONALE 80000-11
Deuxième édition
2019-10
Grandeurs et unités —
Partie 11:
Nombres caractéristiques
Quantities and units —
Part 11: Characteristic numbers
Numéro de référence
ISO 80000-11:2019(F)
ISO 2019
---------------------- Page: 1 ----------------------
ISO 80000-11:2019(F)
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019

Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette

publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,

y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut

être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.

ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés
---------------------- Page: 2 ----------------------
ISO 80000-11:2019(F)
Sommaire Page

Avant-propos ..............................................................................................................................................................................................................................iv

Introduction ..................................................................................................................................................................................................................................v

1 Domaine d’application ................................................................................................................................................................................... 1

2 Références normatives ................................................................................................................................................................................... 1

3 Termes et définitions ....................................................................................................................................................................................... 1

4 Transfert de quantité de mouvement ............................................................................................................................................. 1

5 Transfert de chaleur ......................................................................................................................................................................................16

6 Transfert de matière dans un mélange binaire .................................................................................................................24

7 Constantes de la matière ...........................................................................................................................................................................34

8 Magnétohydrodynamique ........................................................................................................................................................................38

9 Divers .............................................................................................................................................................................................................................47

Bibliographie ...........................................................................................................................................................................................................................49

Index alphabétique............................................................................................................................................................................................................50

© ISO 2019 – Tous droits réservés iii
---------------------- Page: 3 ----------------------
ISO 80000-11:2019(F)
Avant-propos

L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes

nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est

en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude

a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,

gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.

L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui

concerne la normalisation électrotechnique.

Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont

décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents

critères d’approbation requis pour les différents types de documents ISO. Le présent document a été

rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www

.iso .org/ directives).

L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de

droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable

de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant

les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de

l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de

brevets reçues par l’ISO (voir www .iso .org/ brevets).

Les appellations commerciales éventuellement mentionnées dans le présent document sont données

pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un

engagement.

Pour une explication de la nature volontaire des normes, la signification des termes et expressions

spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion

de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles

techniques au commerce (OTC), voir le lien suivant: www .iso .org/ iso/ fr/ avant -propos.

Le présent document a été élaboré par le comité technique ISO/TC 12, Grandeurs et unités, en

collaboration avec le comité d’études IEC/TC 25, Grandeurs et unités.

Cette deuxième édition annule et remplace la première édition (ISO 80000-11:2008), qui a fait l’objet

d’une révision technique.

Les principales modifications par rapport à l’édition précédente sont les suivantes:

— le tableau donnant les grandeurs et les unités a été simplifié;

— tous les articles terminologiques ont été révisés en termes de présentation des définitions, et une

définition formulée a été ajoutée à chaque article;

— le nombre d’articles terminologiques est passé de 25 à 108 (cela concerne tous les Articles du

document);

— l’article terminologique 11-9.2 (nombre Landau-Ginzburg) a été transféré de ce document vers

l’ISO 80000-12:2009 (révisé en tant qu’ISO 80000-12:2019).

Une liste de toutes les parties des séries ISO 80000 et IEC 80000 se trouve sur les sites de l’ISO et de l’IEC.

Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent

document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes

se trouve à l’adresse www .iso .org/ fr/ members .html.
iv © ISO 2019 – Tous droits réservés
---------------------- Page: 4 ----------------------
ISO 80000-11:2019(F)
Introduction

Les nombres caractéristiques sont des grandeurs physiques d’unité 1, appelées aussi grandeurs «sans

dimension». Ils sont utilisés dans les études de processus naturels et techniques, et présentent (peuvent

présenter) des informations sur le comportement du processus ou révèlent (peuvent révéler) des

similitudes entre différents processus.

Les nombres caractéristiques sont souvent décrits comme des rapports de forces à l’équilibre; toutefois,

dans certains cas, ce sont des rapports d’énergie ou de travail, bien qu’ils soient désignés en tant que

forces dans les publications; parfois, il s’agit du rapport de temps caractéristiques.

Des nombres caractéristiques peuvent être définis par la même équation, mais porter des noms

différents s’ils concernent des types de processus différents.

Les nombres caractéristiques peuvent être exprimés sous forme de produits ou de quotients d’autres

nombres caractéristiques si ceux-ci sont valables pour le même type de processus. Ainsi, les Articles du

présent document sont organisés selon certains groupes de processus.

La quantité de nombres caractéristiques étant considérable, et leur utilisation en science et technologie

n’étant pas uniforme, seul un petit nombre d’entre eux est donné dans le présent document, où leur

inclusion dépend de leur usage courant. En outre, les types de processus ont été restreints et sont

indiqués par les titres des Articles. Néanmoins, plusieurs nombres caractéristiques peuvent avoir

différentes représentations de la même information physique, par exemple multipliés par un facteur

numérique, sous forme de carré, de racine carrée ou d’inverse d’une autre représentation. Une seule de

ces représentations a été incluse, les autres étant déclarées comme déconseillées ou mentionnées dans

la colonne Remarques.
© ISO 2019 – Tous droits réservés v
---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 80000-11:2019(F)
Grandeurs et unités —
Partie 11:
Nombres caractéristiques
1 Domaine d’application

Le présent document donne noms, les symboles et les définitions des nombres caractéristiques utilisés

dans la description des phénomènes de transfert.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions

Les noms, symboles et définitions des nombres caractéristiques sont indiqués dans les Articles 4 à 9.

L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en

normalisation, consultables aux adresses suivantes:

— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp;

— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/ .
4 Transfert de quantité de mouvement

Le Tableau 1 donne les noms, les symboles et les définitions des nombres caractéristiques utilisés

pour caractériser les processus dans lesquels le transfert de quantité de mouvement joue un rôle

prépondérant. Le transfert de quantité de mouvement (ISO 80000-4) se produit fondamentalement

lors d’une collision entre deux corps et est déterminé par la loi de conservation de la quantité de

mouvement. Une dissipation de l’énergie peut se produire. Dans un sens plus général, un transfert de

quantité de mouvement se produit lors de l’interaction de deux sous-systèmes se déplaçant à une vitesse

v l’un par rapport à l’autre. En général, l’un des sous-systèmes est solide et éventuellement rigide, avec

une longueur caractéristique, qui peut être une longueur, une largeur, un rayon, etc. d’un objet solide;

souvent, la longueur effective est donnée par le rapport du volume d’un corps à l’aire de sa surface.

L’autre sous-système est un fluide, en général liquide ou gazeux, ayant entre autres les propriétés

suivantes:
— masse volumique ρ (ISO 80000-4);
— viscosité dynamique η (ISO 80000-4);
— viscosité cinématique νη= /ρ (ISO 80000-4); ou
— chute de pression Δp (ISO 80000-4).

Le domaine scientifique est essentiellement la dynamique (mécanique) des fluides. Les nombres

caractéristiques de ce type permettent de comparer des objets de différentes dimensions. Ils peuvent

également fournir une certaine estimation du passage d’un écoulement laminaire à un écoulement

turbulent.
© ISO 2019 – Tous droits réservés 1
---------------------- Page: 6 ----------------------
ISO 80000-11:2019(F)
2 © ISO 2019 – Tous droits réservés
Tableau 1 — Nombres caractéristiques pour le transfert de quantité de mouvement
N° Nom Symbole Définition Remarques

11-4.1 nombre de Re quotient des forces d’inertie par les forces visqueuses dans l’écoule- La valeur du nombre de Reynolds donne une estima-

Reynolds, m ment d’un fluide, exprimé par: tion de l’état de l’écoulement: écoulement laminaire ou

écoulement turbulent.
ρvvll
Re== ; où
Dans un mouvement de rotation, la vitesse v = ωl, où l
est la distance par rapport à l’axe de rotation et ω est
ρ est la masse volumique (ISO 80000-4);
la vitesse angulaire.
v est la vitesse (ISO 80000-3);
l est la longueur caractéristique (ISO 80000-3);
η est la viscosité dynamique (ISO 80000-4); et
ν est la viscosité cinématique (ISO 80000-4)

11-4.2 nombre Eu relation entre la chute de pression dans un écoulement et l’énergie Le nombre d’Euler est utilisé pour caractériser les

d’Euler, m cinétique par volume dans le contexte de l’écoulement de fluides pertes lors de l’écoulement.

dans un tube, exprimée par:
Une modification du nombre d’Euler prend en compte
Δp les dimensions du contenant (tube):
Eu= ; où
Eu′= Eu ; où
Δp est la chute de pression (ISO 80000-4);
d est le diamètre intérieur (ISO 80000-3) du tube; et
ρ est la masse volumique (ISO 80000-4); et
l est la longueur (ISO 80000-3).
v est la vitesse (ISO 80000-3)

11-4.3 nombre de Fr quotient des forces d’inertie d’un corps par ses forces de gravitation Le nombre de Froude peut être modifié par la flot-

Froude, m dans le contexte de l’écoulement des fluides, exprimé par: tabilité.
v Parfois, le carré ou l’inverse du nombre de Froude
Fr = ; où
défini ici est utilisé à tort.
v est la vitesse (ISO 80000-3) d’écoulement;
l est la longueur caractéristique (ISO 80000-3); et
g est l’accélération due à la pesanteur (ISO 80000-3)
---------------------- Page: 7 ----------------------
ISO 80000-11:2019(F)
© ISO 2019 – Tous droits réservés 3
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.4 nombre de Gr quotient de la poussée d’Archimède due à la dilatation thermique se Un échauffement peut se produire dans les tubes au

Grashof, m traduisant par une variation de la masse volumique, par les forces voisinage de parois verticales chaudes, ou en raison

visqueuses dans le contexte d’une convection libre due aux diffé- d’un corps non profilé.

rences de température, exprimé par:
La longueur caractéristique peut être la hauteur ver-
ticale d’une plaque chaude, le diamètre d’un tube ou la
Gr=ΔlgανT/ ; où
longueur effective d’un corps.
l est la longueur caractéristique (ISO 80000-3);
Voir aussi le nombre de Rayleigh (11-5.3).
g est l’accélération due à la pesanteur (ISO 80000-3);
α est le coefficient de dilatation thermique volumique
(ISO 80000-5);
ΔT est la différence de température thermodynamique T
(ISO 80000-5) entre la surface du corps et
le fluide à distance du corps; et
ν est la viscosité cinématique (ISO 80000-4)

11-4.5 nombre de We relation entre les forces d’inertie et les forces capillaires due à la Les fluides peuvent être des gaz ou des liquides.

Weber, m tension superficielle au niveau de l’interface entre deux fluides
Les différents fluides sont souvent des gouttes se
différents, exprimée par:
déplaçant dans un gaz ou des bulles dans un liquide.
We=ργv l/ ; où
La longueur caractéristique est généralement le dia-
mètre des bulles ou des gouttes.
ρ est la masse volumique (ISO 80000-4);
La racine carrée du nombre de Weber est appelée
v est la vitesse (ISO 80000-3);
nombre de Rayleigh.
l est la longueur caractéristique (ISO 80000-3); et
Parfois, la racine carrée du nombre de Weber défini
γ est la tension superficielle (ISO 80000-4)
ici est appelée nombre de Weber. Cette définition est
déconseillée.
Des interfaces existent uniquement entre deux fluides
qui ne sont pas miscibles.

11-4.6 nombre de Ma quotient de la vitesse d’écoulement par la vitesse du son, exprimé par: Le nombre de Mach représente la relation entre les

Mach, m forces d’inertie et les forces de compression.
Ma=v/c ; où
Pour un gaz parfait:
v est la vitesse (ISO 80000-3) du corps; et
p RT kT
c est la vitesse du son (ISO 80000-8) dans le fluide
c==γ γγ= ; où γ est le rapport des
ρ M m
capacités thermiques massiques (ISO 80000-5).
---------------------- Page: 8 ----------------------
ISO 80000-11:2019(F)
4 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.7 nombre de Kn quotient du libre parcours moyen d’une particule par une longueur Le nombre de Knudsen est une mesure permettant

Knudsen, m caractéristique, exprimé par: d’estimer si le gaz qui s’écoule se comporte comme un

milieu continu.
Kn=λ /l ; où
La longueur caractéristique, l, peut être une dimen-
λ est le libre parcours moyen (ISO 80000-9); et
sion caractéristique de la zone d’écoulement du gaz,

l est la longueur caractéristique (ISO 80000-3) telle que le diamètre d’un tube.

11-4.8 nombre de Sr, relation entre une fréquence caractéristique et une vitesse carac- La longueur caractéristique, l, peut être le diamètre

Strouhal, m; téristique dans le contexte d’un écoulement instable ayant un com- d’un obstacle dans l’écoulement susceptible de provo-

portement périodique, exprimée par: quer des décollements de tourbillons, ou la longueur

nombre de
de celui-ci.
Thomson, m Sr= fl/v ; où
f est la fréquence (ISO 80000-3) des décollements
de tourbillons;
l est la longueur caractéristique (ISO 80000-3); et
v est la vitesse (ISO 80000-3) d’écoulement

11-4.9 coefficient de c relation entre la traînée effective et les forces d’inertie pour un Le coefficient de traînée dépend fortement de la forme

traînée, m corps se déplaçant dans un fluide, exprimée par: du corps.
c = ; où
ρv A
F est la traînée (ISO 80000-4) sur le corps;
ρ est la masse volumique (ISO 80000-4) du fluide;
v est la vitesse (ISO 80000-3) du corps; et
A est l’aire (ISO 80000-3) de la section droite
---------------------- Page: 9 ----------------------
ISO 80000-11:2019(F)
© ISO 2019 – Tous droits réservés 5
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.10 nombre de Bg quotient de la traînée par la force de gravitation pour un corps se La longueur caractéristique, l, est le quotient du

Bagnold, m déplaçant dans un fluide, exprimé par: volume du corps par l’aire de sa section droite.

c ρv
Bg= ; où
lgρ
c est le coefficient de traînée (11-4.9) du corps;
ρ est la masse volumique (ISO 80000-4) du fluide;
v est la vitesse (ISO 80000-3) du corps;
l est la longueur caractéristique (ISO 80000-3);
g est l’accélération due à la pesanteur (ISO 80000-3); et
ρ est la masse volumique (ISO 80000-4) du corps

11-4.11 nombre de Ba quotient de la traînée par la force visqueuse dans un fluide transfé-

Bagnold, m rant des particules solides, exprimé par:
ργd
solides> 12/
Ba =−11/ f ; où
2 s
ρ est la masse volumique (ISO 80000-4) des particules;
d est le diamètre (ISO 80000-3) des particules;
γ=v/d est la vitesse de cisaillement, dérivée dans
le temps du glissement unitaire (ISO 80000-4);
η est la viscosité dynamique (ISO 80000-4) du fluide; et
f est la fraction volumique de particules solides
---------------------- Page: 10 ----------------------
ISO 80000-11:2019(F)
6 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.12 coefficient de c , quotient de la force de sustentation développée par une aile à un Le coefficient de portance dépend de la forme de l’aile.

portance, m angle d’incidence donné par la force d’inertie pour un corps en
forme d’aile se déplaçant dans un fluide, exprimé par:
2F F
c == ; où
ρv S
F est la force (ISO 80000-4) de sustentation s’exerçant sur l’aile;
ρ est la masse volumique (ISO 80000-4) du fluide;
v est la vitesse (ISO 80000-3) du corps;
S = A cos α est l’aire effective (ISO 80000-3) lorsque
α est l’angle d’incidence et A est l’aire de l’aile; et
q=ρv /2 est la pression dynamique

11-4.13 coefficient de c quotient de la force de poussée effective développée par une hélice Le coefficient de poussée dépend de la forme de

poussée, m par la force d’inertie dans un fluide, exprimé par: l’hélice.
cF= / ρnd ; où
F est la force (ISO 80000-4) de poussée de l’hélice;
ρ est la masse volumique (ISO 80000-4) du fluide;
n est la fréquence de rotation (ISO 80000-3); et
d est le diamètre (ISO 80000-3) extérieur de l’hélice

11-4.14 nombre de Dn relation entre la force centrifuge et la force d’inertie dans le

Dean, m contexte de l’écoulement de fluides dans des tubes courbés, expri-
mée par:
2vrr
Dn= ; où
ν R
v est la vitesse (ISO 80000-3) (axiale);
r est le rayon (ISO 80000-3) du tube;
ν est la viscosité cinématique (ISO 80000-4) du fluide; et
R est le rayon de courbure (ISO 80000-3) longitudinal
du tube
---------------------- Page: 11 ----------------------
ISO 80000-11:2019(F)
© ISO 2019 – Tous droits réservés 7
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.15 nombre de Be quotient du travail mécanique par la perte d’énergie par frottement Un nombre similaire existe pour le transfert de cha-

Bejan, m en dynamique des fluides dans un tube, exprimé par: leur (11-5.9).
La viscosité cinématique est également appelée diffu-
Δpl ρΔpl
Be= = ; où
sivité de quantité de mouvement.
Δp est la chute de pression (ISO 80000-4) le long du tube;
l est la longueur caractéristique (ISO 80000-3);
η est la viscosité dynamique (ISO 80000-4);
ν est la viscosité cinématique (ISO 80000-4); et
ρ est la masse volumique (ISO 80000-4)

11-4.16 nombre de Lg quotient du travail mécanique par la perte d’énergie par frottement Le nombre de Lagrange est également donné par:

Lagrange, m en dynamique des fluides dans un tube, exprimé par:
La =⋅Re Eu ; où
lpΔ
Re est le nombre de Reynolds (11-4.1); et
Lg= ; où
Eu est le nombre d’Euler (11-4.2).
l est la longueur (ISO 80000-3) du tube;
Δp est la chute de pression (ISO 80000-4) le long du tube;
η est la viscosité dynamique (ISO 80000-4); et
v est la vitesse (ISO 80000-3)

11-4.17 nombre de Bm, quotient de la limite d’élasticité par la contrainte visqueuse dans un

Bingham, m; matériau visqueux dans le contexte de l’écoulement d’un matériau
viscoplastique dans des conduits, exprimé par:
nombre de
plasticité, m
Bm= ; où
τ est la contrainte tangentielle (ISO 80000-4);
d est un diamètre caractéristique (ISO 80000-3),
par exemple la largeur effective du conduit;
η est la viscosité dynamique (ISO 80000-4); et
v est la vitesse (ISO 80000-3)
---------------------- Page: 12 ----------------------
ISO 80000-11:2019(F)
8 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.18 nombre de He, quotient de la limite d’élasticité par la contrainte visqueuse d’un

Hedström, m matériau visqueux au seuil d’écoulement pour un matériau visco-
plastique dans des conduits, exprimé par:
τρd
He= ; où
τ est la contrainte tangentielle (ISO 80000-4) au seuil
d’écoulement;
d est un diamètre caractéristique (ISO 80000-3),
par exemple la largeur effective du conduit;
ρ est la masse volumique (ISO 80000-4); et
η est la viscosité dynamique (ISO 80000-4)

11-4.19 nombre de Bd expression mathématique du transfert de matière par convection Le nombre de Bodenstein est également donné par:

Bodenstein, m dans des réacteurs par rapport au transfert par diffusion,
Bd ==Pe Re⋅Sc ; où
Bd=vlD/ ; où
Pe est le nombre de Péclet pour le transfert
v est la vitesse (ISO 80000-3);
de masse (11-6.2);
l est la longueur (ISO 80000-3) du réacteur; et
Re est le nombre de Reynolds (11-4.1); et
D est le coefficient de diffusion (ISO 80000-9)
Sc=ηρ//()DD=ν est le nombre de Schmidt (11-7.2).

11-4.20 nombre de Ro quotient des forces d’inertie par les forces de Coriolis dans le Le nombre de Rossby représente l’effet de la rota-

Rossby, m; contexte d’un transfert de matière en géophysique, exprimé par: tion de la Terre sur l’écoulement dans des tubes, des

rivières, des courants océaniques, des tornades, etc.
nombre de
Ro=v/2lωϕsin ; où
Kiebel, m La grandeur ωϕsin est appelée fréquence de
v est la vitesse (ISO 80000-3) de déplacement;
Coriolis.
l est la longueur caractéristique (ISO 80000-3), l’échelle
du phénomène;
ω est la vitesse angulaire (ISO 80000-3) de rotation de
la Terre; et
φ est l’angle (ISO 80000-3) de latitude
---------------------- Page: 13 ----------------------
ISO 80000-11:2019(F)
© ISO 2019 – Tous droits réservés 9
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.21 nombre Ek quotient des forces visqueuses par les forces de Coriolis dans le La racine carrée de ce nombre est utilisée en physique

d’Ekman, m contexte d’un transfert de matière pour l’écoulement d’un fluide en des plasmas.

rotation, exprimé par:
Le nombre d’Ekman est également donné par:
Ek=νω/2l sinϕ ; où
E Ek=Ro /Re ; où
ν est la viscosité cinématique (ISO 80000-4);
Ro est le nombre de Rossby (11-4.20); et
l est la longueur caractéristique (ISO 80000-3), l’échelle
Re est le nombre de Reynolds (11-4.1).
du phénomène;
ω est la fréquence angulaire (ISO 80000-3) de rotation de
la Terre; et
φ est l’angle de latitude

11-4.22 nombre d’élas- El relation entre le temps de relaxation et le temps de diffusion pour Voir aussi le nombre de Deborah (11-7.8).

ticité, m des écoulements viscoélastiques, exprimée par:
El=trν/ ; où
t est le temps de relaxation (ISO 80000-12);
ν est la viscosité cinématique (ISO 80000-4); et
r est le rayon (ISO 80000-3) du tube

11-4.23 coefficient de f représentation de la chute de pression dans un tube due au frotte-

frottement de ment dans le contexte d’un écoulement laminaire ou turbulent d’un
Darcy, m; fluide dans un tube, exprimée par:
coefficient de
2Δp d
f = ; où
frottement de D
Moody, m
Δp est la chute de pression (ISO 80000-4) due au frottement;
ρ est la masse volumique (ISO 80000-4) du fluide;
v est la vitesse (moyenne) (ISO 80000-3) du fluide dans le tube;
d est le diamètre (ISO 80000-3) du tube; et
l est la longueur (ISO 80000-3) du tube
---------------------- Page: 14 ----------------------
ISO 80000-11:2019(F)
10 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.24 nombre de f , relation entre la contrainte tangentielle et la pression dynamique Le nombre de Fanning décrit l’écoulement des fluides

Fanning, m dans le contexte de l’écoulement d’un fluide dans un contenant, dans un tube, le frottement au niveau des parois étant

exprimée par: représenté par sa contrainte tangentielle.
2τ Le symbole f peut être utilisé lorsqu’aucun conflit
f = ; où
n’est possible.
τ est la contrainte tangentielle (ISO 80000-4) au niveau
de la paroi;
ρ est la masse volumique (ISO 80000-4) du fluide; et
v est la vitesse (ISO 80000-3) du fluide dans le tube

11-4.25 nombre de Go caractérisation de la stabilité des écoulements de couches limites Le nombre de Goertler représente le rapport des

Goertler, m; laminaires dans le contexte du transfert de matière dans une effets centrifuges aux effets visqueux.

couche limite sur des surfaces courbes, exprimée par:
paramètre de
Goertler, m
vll
 
Go= ; où
 
ν r
 c 
v est la vitesse (ISO 80000-3);
l est l’épaisseur (ISO 80000-3) de la couche limite;
ν est la viscosité cinématique (ISO 80000-4); et
r est le rayon de courbure (ISO 80000-3)

11-4.26 nombre de Hg, généralisation du nombre de Grashof pour une convection forcée ou Pour une convection thermique libre avec

Hagen, m libre dans un écoulement laminaire, exprimée par:
=ΔραgT , le nombre de Hagen coïncide alors
3 dx
1 dp l
Hg=− ; où
avec le nombre de Grashof (11-4.4). Voir aussi le
ρ dx
nombre de Poiseuille (11-4.28).
ρ est la masse volumique (ISO 80000-4) du fluide;
est le gradient de pression (ISO 80000-4);
l est la longueur caractéristique (ISO 80000-3); et
ν est la viscosité cinématique (ISO 80000-4)
---------------------- Page: 15 ----------------------
ISO 80000-11:2019(F)
© ISO 2019 – Tous droits réservés 11
Tableau 1 (suite)
N° Nom Symbole Définition Remarques

11-4.27 nombre de La quotient de la vitesse par la vitesse (critique) du son dans le col Le nombre de Laval est un type spécifique de nombre

Laval, m d’une tuyère, exprimé par: de Mach (11-4.6).
La=v//RT21γγ()+ ; où
v est la vitesse (ISO 80000-3);
R = est la constante massique du gaz; où
R est la constante molaire du gaz (ISO 80000-9); et
M est la masse molaire (ISO 80000-9);
T est la température thermodynamique (ISO 80000-5); et
γ est le rapport des capacités thermiques massiques (ISO 80000-5)

11-4.28 nombre de Poi quotient de la force de propulsion par la pression et la force vis- Le nombre de Poiseuille est Poi=32 pour un

Poiseuille, m queuse dans le contexte de l’écoulement de fluides dans un tube, écoulement laminaire dans un tube rond.

exprimé par:
Voir aussi le nombre de Hagen (11-4.26).
Δp d
Poi=− ; où
l ηv
Δp est la chute de pression (ISO 80000-4) le long du tube;
l est la longueur (ISO 80000-3) du tube;
d est le diamètre (ISO 80000-3) du tube;
η est la viscosité dynamique (ISO 80000-4) du fluide; et
v est la vitesse caractéristique (ISO 80000-3) du fluide
11-4.29 nombre de Pn quotie
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.