Industrial valves - Isolating valves for low-temperature applications - Part 1: Design, manufacturing and production testing (ISO 28921-1:2022)

This document specifies requirements for design, dimensions, material, fabrication and production
testing of gate, globe, ball/plug and butterfly valve design types used as isolation valves and check
valves for low-temperature applications.
This document is applicable to isolation valves for use in low and cryogenic temperature service where
the design low-temperature service is -50 °C down to –196 °C.
This document does not apply to valves for cryogenic services, designed in accordance with ISO 21011,
used with cryogenic vessels.
Where the requirements of this document vary from those given in the valve product standards, the
requirements of this document apply.
This document is applicable to valves with body, bonnet, bonnet extension or cover made of metallic
materials.
This document is applicable to:
— valves of nominal sizes DN: 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400;
450; 500; 600; 650; 700; 750; 800; 850; 900; 950; 1 000; 1 050; 1 200; 1 350; 1 400; 1 500; 1 600;
1 650; 1 800,
— corresponding to nominal pipe sizes NPS: ⅜; ½; ¾; 1; 1 ¼; 1 ½; 2; 2 ½; 3; 4; 5; 6; 8; 10; 12; 14; 16;
18; 20; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 48; 54; 56; 60; 64; 66; 72,
and applies to pressure designations:
— PN 16; 25; 40; 100; 160; 250; 400,
— Class 150; 300; 600; 800; 900; 1 500; 2 500.
NOTE Not all type and size combination are available in all pressure ratings.
This document does not apply to safety valves and control valves.

Industriearmaturen - Absperrventile für die Anwendung im Tieftemperaturbereich - Teil 1: Auslegung, Fertigung und Produktionsprüfung (ISO 28921-1:2022)

Dieses Dokument legt Anforderungen an die Auslegung, Maße, das Material, die Fertigung und die Fertigungsprüfung von Schiebern, Durchgangsventilen, Kugel-/Kegelventilen und Drosselventilen, die als Absperrventile und Rückschlagventile für Tieftemperaturanwendungen eingesetzt werden, fest.
Dieses Dokument behandelt Absperrventile zum Einsatz im tiefen und kryogenen Temperaturbetrieb, in welchem der geplante Tieftemperaturbereich zwischen −50 °C und −196 °C liegt.
Dieses Dokument gilt nicht für Ventile für den kryogenen Betrieb, die in Übereinstimmung mit ISO 21011 für den Einsatz mit Kryo-Behältern ausgelegt sind.
In Fällen, in denen die Anforderungen dieses Dokuments von den Anforderungen in der Produktnorm der Ventile abweichen, sind die Anforderungen dieses Dokuments anzuwenden.
Dieses Dokument behandelt Ventile mit einem Ventilgehäuse, einem Ventiloberteil, einer Verlängerung des Oberteils oder einem Deckel aus metallischen Werkstoffen.
Es werden Ventile der folgenden Nennweiten DN abgedeckt: 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400; 450; 500; 600; 650; 700; 750; 800; 850; 900; 950; 1 000; 1 050; 1 200; 1 350; 1 400; 1 500; 1 600; 1 650; 1 800,
entsprechend den NPS: 3/8; 1/2; 3/4; 1; 11/4; 11/2; 2; 21/2; 3; 4; 5; 6; 8; 10; 12; 14; 16; 18; 20; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 48; 54; 56; 60; 64; 66; 72,
und anwendbar auf Druckbezeichnungen:
- PN 16; 25; 40; 100; 160; 250; 400;
- Class 150; 300; 600; 800; 900; 1 500; 2 500.
ANMERKUNG Nicht alle Typen- und Größenkombinationen sind in allen Druckstufen verfügbar.
Dieses Dokument schließt die Prüfung für Sicherheits- und Regelventile aus.

Robinetterie industrielle - Robinets d'isolement pour application à basses températures - Partie 1: Conception, essais de fabrication et de production (ISO 28921-1:2022)

Le présent document spécifie les exigences relatives à la conception, aux dimensions, aux matériaux, à la fabrication et aux essais de production de robinets-vannes, de robinets à soupape, de robinets à tournant sphérique/à boisseau et de robinets à papillon utilisés comme robinets de sectionnement et clapets de non-retour pour application à basses températures.
Le présent document s’applique aux robinets de sectionnement destinés à un usage à basses températures et à des températures cryogéniques pour lesquels la température de calcul est comprise entre – 50 °C et – 196 °C.
Le présent document ne s’applique pas aux appareils de robinetterie pour usage cryogénique, qui sont conçus conformément à l’ISO 21011 et utilisés avec des récipients cryogéniques.
Lorsque les exigences du présent document diffèrent de celles données dans les normes produit des appareils de robinetterie, les exigences du présent document s’appliquent.
Le présent document s’applique aux appareils de robinetterie dont le corps, le chapeau, l’extension du chapeau ou le couvercle sont en matériaux métalliques.
Le présent document s’applique
—    aux appareils de robinetterie de diamètre nominal DN: 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400; 450; 500; 600; 650; 700; 750; 800; 850; 900; 950; 1 000; 1 050; 1 200; 1 350; 1 400; 1 500; 1 600; 1 650; 1 800,
—    correspondant à des dimensions nominales de tubes NPS: ⅜; ½; ¾; 1; 1¼; 1½; 2; 2½; 3; 4; 5; 6; 8; 10; 12; 14; 16; 18; 20; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 48; 54; 56; 60; 64; 66; 72,
et s’applique aux désignations de pression:
—    PN 16; 25; 40; 100; 160; 250; 400,
—    Class 150; 300; 600; 800; 900; 1 500, 2 500.
NOTE            Toutes les combinaisons de type et de taille ne sont pas disponibles pour toutes les pressions nominales.
Le présent document ne s’applique pas aux soupapes de sûreté et aux robinets de régulation.

Industrijski ventili - Zapirni ventili za uporabo pri nizki temperaturi - 1. del: Načrtovanje, proizvodnja in preskušanje med proizvodnjo (ISO 28921-1:2022)

Ta dokument določa zahteve za zasnovo, mere, material, izdelavo in proizvodno preskušanje tipskih izvedb zasunov, sedežnih, krogličnih/stožčastih in loputnih ventilov, ki se uporabljajo kot izolacijski ventili in protipovratni ventili za uporabo pri nizkih temperaturah. Ta dokument se uporablja za izolacijske ventile, namenjene uporabi pri nizkih in kriogenih temperaturah, pri katerih je konstrukcijsko predvideno obratovanje pri nizkih temperaturah med –50°C in –196 °C. Ta dokument se ne uporablja za ventile za kriogeno uporabo, ki so zasnovani v skladu s standardom ISO 21011 in se uporabljajo s kriogenimi posodami. Kadar se zahteve tega dokumenta razlikujejo od zahtev, podanih v proizvodnih standardih za ventile, se uporabljajo zahteve v tem dokumentu. Ta dokument se uporablja za ventile z ohišjem, pokrovom, podaljškom pokrova ali plaščem iz kovinskih materialov. Ta dokument se uporablja za: – ventile nazivnih velikosti DN: 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400; 450; 500; 600; 650; 700; 750; 800; 850; 900; 950; 1 000; 1050; 1200; 1350; 1400; 1500; 1600; 1650; 1800, – ki ustrezajo nazivnim velikostim cevi NPS: ⅜; ½; ¾; 1; 1 ¼; 1 ½; 2; 2 ½; 3; 4; 5; 6; 8; 10; 12; 14; 16; 18; 20; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 48; 54; 56; 60; 64; 66; 72, ter velja za tlačne oznake: – PN 16; 25; 40; 100; 160; 250; 400, – razred 150; 300; 600; 800; 900; 1500; 2500. OPOMBA: Nekatere kombinacije tipov in velikosti niso na voljo za vse nazivne tlake. Ta dokument se ne uporablja za varnostne in regulacijske ventile.

General Information

Status
Published
Public Enquiry End Date
04-Jul-2021
Publication Date
19-Jun-2022
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
01-Jun-2022
Due Date
06-Aug-2022
Completion Date
20-Jun-2022

Relations

Buy Standard

Standard
EN ISO 28921-1:2022
English language
35 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN ISO 28921-1:2021
English language
30 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN ISO 28921-1:2022
01-julij-2022
Nadomešča:
SIST EN ISO 28921-1:2017
Industrijski ventili - Zapirni ventili za uporabo pri nizki temperaturi - 1. del:
Načrtovanje, proizvodnja in preskušanje med proizvodnjo (ISO 28921-1:2022)
Industrial valves - Isolating valves for low-temperature applications - Part 1: Design,
manufacturing and production testing (ISO 28921-1:2022)
Industriearmaturen - Absperrventile für die Anwendung im Tieftemperaturbereich - Teil 1:
Auslegung, Fertigung und Produktionsprüfung (ISO 28921-1:2022)
Robinetterie industrielle - Robinets d'isolement pour application à basses températures -
Partie 1: Conception, essais de fabrication et de production (ISO 28921-1:2022)
Ta slovenski standard je istoveten z: EN ISO 28921-1:2022
ICS:
23.060.01 Ventili na splošno Valves in general
SIST EN ISO 28921-1:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN ISO 28921-1:2022

---------------------- Page: 2 ----------------------
SIST EN ISO 28921-1:2022


EN ISO 28921-1
EUROPEAN STANDARD

NORME EUROPÉENNE

May 2022
EUROPÄISCHE NORM
ICS 23.060.01 Supersedes EN ISO 28921-1:2017
English Version

Industrial valves - Isolating valves for low-temperature
applications - Part 1: Design, manufacturing and
production testing (ISO 28921-1:2022)
Robinetterie industrielle - Robinets d'isolement pour Industriearmaturen - Absperrventile für die
application à basses températures - Partie 1: Anwendung im Tieftemperaturbereich - Teil 1:
Conception, essais de fabrication et de production (ISO Auslegung, Fertigung und Produktionsprüfung (ISO
28921-1:2022) 28921-1:2022)
This European Standard was approved by CEN on 8 May 2022.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 28921-1:2022 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
SIST EN ISO 28921-1:2022
EN ISO 28921-1:2022 (E)
Contents Page
European foreword . 3

2

---------------------- Page: 4 ----------------------
SIST EN ISO 28921-1:2022
EN ISO 28921-1:2022 (E)
European foreword
This document (EN ISO 28921-1:2022) has been prepared by Technical Committee ISO/TC 153
"Valves" in collaboration with Technical Committee CEN/TC 69 “Industrial valves” the secretariat of
which is held by AFNOR.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by November 2022, and conflicting national standards
shall be withdrawn at the latest by November 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN ISO 28921-1:2017.
Any feedback and questions on this document should be directed to the users’ national standards
body/national committee. A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 28921-1:2022 has been approved by CEN as EN ISO 28921-1:2022 without any
modification.

3

---------------------- Page: 5 ----------------------
SIST EN ISO 28921-1:2022

---------------------- Page: 6 ----------------------
SIST EN ISO 28921-1:2022
INTERNATIONAL ISO
STANDARD 28921-1
Second edition
2022-05
Industrial valves — Isolating valves for
low-temperature applications —
Part 1:
Design, manufacturing and production
testing
Robinetterie industrielle — Robinets d'isolement pour application à
basses températures —
Partie 1: Conception, essais de fabrication et de production
Reference number
ISO 28921-1:2022(E)
© ISO 2022

---------------------- Page: 7 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2022
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
  © ISO 2022 – All rights reserved

---------------------- Page: 8 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Requirements . 5
4.1 Materials . 5
4.1.1 General . 5
4.1.2 Metallic materials . 5
4.1.3 Internal non-metallic materials . 5
4.2 Design . 5
4.2.1 General . 5
4.2.2 Body/bonnet wall thickness . 6
4.2.3 Valve body extension and extended bonnet . 6
4.2.4 Stem . 11
4.2.5 Seats and seating surfaces . 11
4.2.6 Provision for internal pressure relief . 11
4.2.7 Operating means .12
4.2.8 Electric continuity and fire-safe design .12
5 Testing.12
5.1 Production testing with low-temperature test .12
5.2 Type-testing .12
6 Sampling .13
6.1 Lot requirements . 13
6.2 Sample size . 13
6.3 Lot acceptance . 13
7 Marking, labelling and packaging .13
Annex A (normative) Test procedure for production testing of valves at low temperature.15
Annex B (informative) Low-temperature test record .25
Bibliography .27
iii
© ISO 2022 – All rights reserved

---------------------- Page: 9 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 153, Valves, in collaboration with the
European Committee for Standardization (CEN) Technical Committee CEN/TC 69, Industrial valves, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This second edition cancels and replaces the first edition (ISO 28921-1:2013), which has been technically
revised.
The main changes are as follows:
— extension of the scope to include sizes DN 950 to 1 800, NPS 38 to 72, and pressure designations
PN 400 and Class 2 500;
— addition of a new terminological entry for shell (3.14);
— addition of a new terminological entry for drip plate (3.15);
— exclusion of safety valves and control valves;
— in 5.2, addition of type test requirement in accordance with ISO 28921-2;
— update of Annex A giving the test procedure for production testing of valves at low temperature.
A list of all parts in the ISO 28921 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
  © ISO 2022 – All rights reserved

---------------------- Page: 10 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
Introduction
The purpose of this document is the establishment of basic requirements and practices for design,
fabrication, material selection and production testing of valves used in low-temperature services. The
intention is to provide requirements for design, material selection and valve preparation for valves to
be used in low-temperature service.
v
© ISO 2022 – All rights reserved

---------------------- Page: 11 ----------------------
SIST EN ISO 28921-1:2022

---------------------- Page: 12 ----------------------
SIST EN ISO 28921-1:2022
INTERNATIONAL STANDARD ISO 28921-1:2022(E)
Industrial valves — Isolating valves for low-temperature
applications —
Part 1:
Design, manufacturing and production testing
1 Scope
This document specifies requirements for design, dimensions, material, fabrication and production
testing of gate, globe, ball/plug and butterfly valve design types used as isolation valves and check
valves for low-temperature applications.
This document is applicable to isolation valves for use in low and cryogenic temperature service where
the design low-temperature service is -50 °C down to –196 °C.
This document does not apply to valves for cryogenic services, designed in accordance with ISO 21011,
used with cryogenic vessels.
Where the requirements of this document vary from those given in the valve product standards, the
requirements of this document apply.
This document is applicable to valves with body, bonnet, bonnet extension or cover made of metallic
materials.
This document is applicable to:
— valves of nominal sizes DN: 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350; 400;
450; 500; 600; 650; 700; 750; 800; 850; 900; 950; 1 000; 1 050; 1 200; 1 350; 1 400; 1 500; 1 600;
1 650; 1 800,
— corresponding to nominal pipe sizes NPS: ⅜; ½; ¾; 1; 1 ¼; 1 ½; 2; 2 ½; 3; 4; 5; 6; 8; 10; 12; 14; 16;
18; 20; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 48; 54; 56; 60; 64; 66; 72,
and applies to pressure designations:
— PN 16; 25; 40; 100; 160; 250; 400,
— Class 150; 300; 600; 800; 900; 1 500; 2 500.
NOTE Not all type and size combination are available in all pressure ratings.
This document does not apply to safety valves and control valves.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 5208, Industrial valves — Pressure testing of metallic valves
ISO 5209, General purpose industrial valves — Marking
ISO 10434, Bolted bonnet steel gate valves for the petroleum, petrochemical and allied industries
1
© ISO 2022 – All rights reserved

---------------------- Page: 13 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
ISO 10497, Testing of valves — Fire type-testing requirements
ISO 10631, Industrial valves — Metallic butterfly valves
ISO 14313, Petroleum and natural gas industries — Pipeline transportation systems — Pipeline valves
ISO 15761, Steel gate, globe and check valves for sizes DN 100 and smaller, for the petroleum and natural
gas industries
ISO 15848-1:2015, Industrial valves — Measurement, test and qualification procedures for fugitive
emissions — Part 1: Classification system and qualification procedures for type testing of valves
ISO 17292, Metal ball valves for petroleum, petrochemical and allied industries
ISO 28921-2, Industrial valves — Isolating valves for low-temperature applications — Part 2: Type testing
EN 1515-1, Flanges and their joints — Bolting — Part 1: Selection of bolting
EN 12516-1, Industrial valves — Shell design strength — Part 1: Tabulation method for steel valve shells
EN 12516-2, Industrial valves — Shell design strength — Part 2: Calculation method for steel valve shells
EN 12516-4, Industrial valves — Shell design strength — Part 4: Calculation method for valve shells
manufactured in metallic materials other than steel
EN 13480-2, Metallic industrial piping — Part 2: Materials
API 607, Fire Test for Quarter-turn Valves and Valves Equipped with Nonmetallic Seats
API 6FA, Standard for Fire Test of Valves
ASME B16.34, Valves — Flanged, Threaded, and Welding End
ASME B31.3, Process Piping
ASME Boiler and Pressure Vessel Code, Section VIII
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
DN
nominal size
alphanumeric designation of size for components of a pipework system, which is used for reference
purposes, comprising the letters DN followed by a dimensionless whole number which is indirectly
related to the physical size, in millimetres, of the bore or outside diameter of the end connections
[SOURCE: ISO 6708:1995, 2.1, modified — Notes to entry removed.]
2
  © ISO 2022 – All rights reserved

---------------------- Page: 14 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
3.2
PN
nominal pressure
numerical designation relating to pressure that is a convenient rounded number for reference purposes,
and which comprises the letters PN followed by the appropriate reference number
Note 1 to entry: It is intended that all equipment of the same nominal size (DN) (3.1) designated by the same PN
number shall have compatible mating dimensions.
Note 2 to entry: The maximum allowable pressure depends on materials, design and working temperature, and is
to be selected from the tables of pressure/temperature ratings given in the appropriate standards.
[SOURCE: ISO 7268:1983, Clause 2, modified — The phrase “and which comprises the letters PN
followed by the appropriate reference number” has been added.]
3.3
NPS
alphanumeric designation of size for components of a pipework system, which is used for reference
purposes, and which comprises the letters NPS followed by a dimensionless number indirectly related
to the physical size of the bore or outside diameter of the end connections
Note 1 to entry: The number following the letters NPS does not represent a measurable value and is not intended
to be used for calculation purposes except where specified in the relevant standard.
3.4
Class
alphanumeric designation used for reference purposes related to a combination of mechanical and
dimensional characteristics of a component of a pipework system, which comprises the word “Class”
followed by a dimensionless whole number
Note 1 to entry: The number following the word Class does not represent a measurable value and is not intended
to be used for calculation purposes except where specified in the relevant standard.
3.5
cold box
enclosure that insulates equipment from the environment without the need for insulation of each
individual component inside the enclosure
3.6
valve body extension
extended valve body that locates the operating mechanism and packing away from the cold media in
the valve
Note 1 to entry: The body extension allows the formation of a vapour barrier between the liquefied gas in the
valve and the packing.
3.7
extended bonnet
bonnet extension that locates the operating mechanism and packing away from the cold media in the
valve
Note 1 to entry: The bonnet extension allows the formation of a vapour barrier between the liquefied gas in the
valve and the packing.
3.8
vapour column
portion of body/bonnet extension that allows for the formation of an insulating column of vapour
3
© ISO 2022 – All rights reserved

---------------------- Page: 15 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
3.9
vapour column length for non-cold box application
distance between the bottom of the packing box and the top of the lower stem guide bushing or the
beginning of the bonnet extension
Note 1 to entry: See Figure 1.
3.10
bonnet extension length for cold box application
length measured from the centre-line of the valve flow passage up to the bottom of the packing chamber
Note 1 to entry: See Figure 1.
3.11
CWP
cold working pressure
maximum fluid pressure assigned to a valve for operation at a fluid temperature of –20 °C to 38 °C
3.12
cryogenic
science of materials at low temperature
3.13
test gas
minimum 97 % pure helium or nitrogen
3.14
shell
pressure containing envelope of the valve normally comprised of the body and when included in the
design a bonnet or cover and the body bonnet or body cover joint excluding sealing parts
3.15
drip plate
plate attached to the extended bonnet (3.7) to prevent condensation from entering the insulation layer
3.16
obturator
movable component of the valve whose position in the fluid flow path permits, restricts or obstructs
the fluid flow
3.17
DBB valve
double block and bleed valve
single valve with two seating surfaces that, in the closed position, provides a seal against pressure from
both ends of the valve with a means of venting/bleeding the cavity between seating surfaces
Note 1 to entry: This valve does not provide positive double isolation when only one side is under pressure.
3.18
DIB valve
double isolation and bleed valve
single valve with two seating surfaces, each of which, in the closed position, provides a seal against
pressure from a single source, with a means of venting/bleeding the cavity between the seating surfaces
Note 1 to entry: This feature can be provided in one direction or in both directions: DIB-1 (both seats
bidirectional) or DIB-2 (one seat unidirectional and one seat bidirectional).
4
  © ISO 2022 – All rights reserved

---------------------- Page: 16 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
4 Requirements
4.1 Materials
4.1.1 General
Materials in contact with cold process fluid or exposed to low temperatures shall be suitable for use at
the minimum design temperature specified by the purchase order. Galling, friction heating, galvanic
corrosion and material compatibility with the fluid shall also be considered in the selection of materials.
4.1.2 Metallic materials
4.1.2.1 Shell
For material suitability at low temperature, use ASME B31.3 or EN 13480-2.
The material of body, bonnet, bonnet extension and cover, and other parts of the shell, shall be selected
from the following:
a) low alloy and austenitic stainless-steel materials listed in ASME B16.34 or EN 12516-1 for Class-
designated valves or EN 12516-1 for PN-designated valves;
b) nickel alloy materials listed in ASME B16.34 for Class-designated valves;
c) copper alloy materials listed in EN 12516-4 for Class- and PN- designated valves.
4.1.2.2 Bolting
Unless otherwise specified by the purchaser, bolting for assembling shell pressure-retaining
components shall be selected from materials listed in ASME B16.34 for Class-designated valves or
EN 1515-1 for PN-designated valves.
If low-strength bolting, such as non-strain hardened austenitic stainless steel, for example, ISO 3506-1
grade A1-50 and A4-50 or ASTM A320 and ASTM A193 grade B8 Class 1, is being used, the design shall
comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 or 2.
4.1.2.3 Internal metallic parts
Internal metallic parts, for example, stem, wedge, disc, ball, plug, seats, back seat and guide bushings,
shall be made of materials suitable for use at the entire design temperature range.
4.1.3 Internal non-metallic materials
Valve parts, for example, packing, gasket, seats and other non-metallic valve parts exposed to low
temperature, shall be capable of functioning at the entire design temperature range.
4.2 Design
4.2.1 General
Unless otherwise specified in the purchase order, valves shall have a bonnet extension that protects
the stem packing and valve operating mechanism from the low-temperature fluid that could otherwise
damage or impair the function of these items.
This document shall be applied in conjunction with the specific requirements of a valve product standard,
such as ISO 10434, ISO 10631, ISO 14313, ISO 15761 and ISO 17292 or other recognized standards, such
as API, ASME or EN, based on an agreement between the purchaser and the manufacturer.
5
© ISO 2022 – All rights reserved

---------------------- Page: 17 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
4.2.2 Body/bonnet wall thickness
The minimum valve body and bonnet wall thickness shall meet the requirements of ASME B16.34 or
EN 12516-1 or EN 12516-4 for Class-designated valves and EN 12516-1 or EN 12516-2 or EN 12516-4
for PN-designated valves. The pressure rating of the valve at or below service temperatures –50 °C shall
not exceed the cold working pressure (CWP) for the applicable valve body material and appropriate
Class or PN designation.
4.2.3 Valve body extension and extended bonnet
4.2.3.1 The length of the extension shall be sufficient to maintain the stem packing at a temperature
high enough to permit operation within the temperature range of the packing material.
4.2.3.2 The minimum vapour column length or bonnet extension length shall be in accordance with
Table 1 or Table 2 and Figure 1, unless otherwise specified in the purchase order.
6
  © ISO 2022 – All rights reserved

---------------------- Page: 18 ----------------------
SIST EN ISO 28921-1:2022
ISO 28921-1:2022(E)
Key
1 minimum vapour column length for non-cold box application (see Table 1)
2 bonnet extension length for cold box applications (see Table 2)
3 outline of cold box enclosure
4 bottom of the packing chamber
5 optional drip plate
6 top of stem guide or bonnet
Figure 1 — Valve with extended bonnet
Table 1 — Minimum vapour column length for non-cold box extension
Valve size Minimum design temperature Valve size
DN NPS
minimum maximum minimum maximum
–196 °C –110 °C –109 °C –50 °C
Minimum vapour column length
[mm]
DN ≤ 25 200 100 NPS ≤ 1
32 ≤ DN ≤ 65 250 125 1 ¼ ≤ NPS ≤ 2 ½
7
© ISO 2022 – All rights reserved

------------------
...

SLOVENSKI STANDARD
oSIST prEN ISO 28921-1:2021
01-julij-2021
Industrijski ventili - Zapirni ventili za uporabo pri nizki temperaturi - 1. del:
Načrtovanje, proizvodnja in preskušanje med proizvodnjo (ISO/DIS 28921-1:2021)
Industrial valves - Isolating valves for low-temperature applications - Part 1: Design,
manufacturing and production testing (ISO/DIS 28921-1:2021)
Industriearmaturen - Absperrventile für die Anwendung im Tieftemperaturbereich - Teil 1:
Auslegung, Fertigung und Produktionsprüfung (ISO/DIS 28921-1:2021)
Robinetterie industrielle - Robinets d'isolement pour application à basses températures -
Partie 1: Conception, essais de fabrication et de production (ISO/DIS 28921-1:2021)
Ta slovenski standard je istoveten z: prEN ISO 28921-1
ICS:
23.060.01 Ventili na splošno Valves in general
oSIST prEN ISO 28921-1:2021 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN ISO 28921-1:2021

---------------------- Page: 2 ----------------------
oSIST prEN ISO 28921-1:2021
DRAFT INTERNATIONAL STANDARD
ISO/DIS 28921-1
ISO/TC 153 Secretariat: AFNOR
Voting begins on: Voting terminates on:
2021-04-13 2021-07-06
Industrial valves — Isolating valves for low-temperature
applications —
Part 1:
Design, manufacturing and production testing
Robinetterie industrielle — Robinets d'isolement pour application à basses températures —
Partie 1: Conception, essais de fabrication et de production
ICS: 23.060.01
THIS DOCUMENT IS A DRAFT CIRCULATED
This document is circulated as received from the committee secretariat.
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
ISO/CEN PARALLEL PROCESSING
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 28921-1:2021(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2021

---------------------- Page: 3 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved

---------------------- Page: 4 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Requirements . 4
4.1 Materials . 4
4.1.1 General. 4
4.1.2 Metallic materials . 4
4.1.3 Internal non-metallic materials . 5
4.2 Design . 5
4.2.1 General. 5
4.2.2 Body/bonnet wall thickness . 5
4.2.3 Body and bonnet extension . 5
4.2.4 Stem .10
4.2.5 Seats and seating surfaces .10
4.2.6 Provision for internal pressure relief .10
4.2.7 Operating means .11
4.2.8 Electric continuity and fire-safe design .11
5 Testing .11
5.1 Production testing with low-temperature test . .11
5.2 Type-testing .11
6 Sampling .12
6.1 Lot requirements .12
6.2 Sample size .12
6.3 Lot acceptance .12
7 Marking, labelling and packaging .12
Annex A (normative) Test procedure for production testing of valves at low temperature .14
Annex B (informative) Low-temperature test record .23
Bibliography .25
© ISO 2021 – All rights reserved iii

---------------------- Page: 5 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 153, Valves.
This second edition cancels and replaces the first edition ( ISO 28921-1:2013), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— extension to include sizes DN 950 to 1 800, NPS 38 to 72, and pressure designations PN 400 and
Class 2 500;
— addition of a new definition 3.13 for shell;
— addition of a new definition 3.14 for drip plate;
— exclusion of safety valves and control valves;
— in 5.2, addition of type test requirement in accordance with ISO 28921-2;
— update of Annex A giving the test procedure for production testing of valves at low temperature.
A list of all parts in the ISO 28921 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved

---------------------- Page: 6 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

Introduction
The purpose of this document is the establishment of basic requirements and practices for design,
fabrication, material selection and production testing of valves used in low-temperature services. The
intention is to provide requirements for design, material selection and valve preparation for valves to
be used in low-temperature service.
© ISO 2021 – All rights reserved v

---------------------- Page: 7 ----------------------
oSIST prEN ISO 28921-1:2021

---------------------- Page: 8 ----------------------
oSIST prEN ISO 28921-1:2021
DRAFT INTERNATIONAL STANDARD ISO/DIS 28921-1:2021(E)
Industrial valves — Isolating valves for low-temperature
applications —
Part 1:
Design, manufacturing and production testing
1 Scope
This document specifies requirements for design, dimensions, material, fabrication and production
testing of gate, globe, ball/plug and butterfly valve design types used as isolation valves and check
valves for low-temperature applications.
This document covers isolation valves for use in low and cryogenic temperature service where the
design low-temperature service is -50 °C down to –196 °C.
This document does not apply to valves for cryogenic services, designed in accordance with ISO 21011,
used with cryogenic vessels.
Where the requirements of this document vary from those given in the valve product standards, the
requirements of this document apply.
This document covers valves with body, bonnet, bonnet extension or cover made of metallic materials.
It covers valves of nominal sizes DN: 10; 15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 350;
400; 450; 500; 600; 650; 700; 750; 800; 850; 900; 950; 1 000; 1 050; 1 200; 1 350; 1 400; 1 500; 1 600;
1 650; 1 800.
corresponding to nominal pipe sizes NPS: 3/8; 1/2; 3/4; 1; 11/4; 11/2; 2; 21/2; 3; 4; 5; 6; 8; 10; 12; 14;
16; 18; 20; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 48; 54; 56; 60; 64; 66; 72,
and applies to pressure designations:
— PN 16; 25; 40; 100; 160; 250; 400;
— Class 150; 300; 600; 800; 900; 1 500; 2 500.
NOTE Not all type and size combination are available in all pressure ratings.
This document excludes testing for safety valves and control valves.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 5208, Industrial valves — Pressure testing of metallic valves
ISO 5209, General purpose industrial valves — Marking
ISO 10434, Bolted bonnet steel gate valves for the petroleum, petrochemical and allied industries
ISO 10497, Testing of valves — Fire type-testing requirements
ISO 10631, Metallic butterfly valves for general purposes
© ISO 2021 – All rights reserved 1

---------------------- Page: 9 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

ISO 14313, Petroleum and natural gas industries — Pipeline transportation systems — Pipeline valves
ISO 15761, Steel gate, globe and check valves for sizes DN 100 and smaller, for the petroleum and natural
gas industries
ISO 15848-1:2015, Industrial valves — Measurement, test and qualification procedures for fugitive
emissions — Part 1: Classification system and qualification procedures for type testing of valves
ISO 17292, Metal ball valves for petroleum, petrochemical and allied industries
ISO 28921-2, Industrial valves — Isolating valves for low-temperature applications — Part 2: Type testing
EN 12516-1, Industrial valves — Shell design strength — Part 1: Tabulation method for steel valve shells
EN 12516-2, Industrial valves — Shell design strength — Part 2: Calculation method for steel valve shells
EN 12516-4, Industrial valves — Shell design strength — Part 4: Calculation method for valve shells
manufactured in metallic materials other than steel
EN 1515-1, Flanges and their joints — Bolting — Part 1: Selection of bolting
EN 13480-2, Metallic industrial piping — Part 2: Materials
API 607, Fire Test for Quarter-turn Valves and Valves Equipped with Nonmetallic Seats
API 6FA, Specification for Fire Test for Valves
ASME B16.34, Valves Flanged, Threaded and Welding End
ASME B31.3, Process Piping
Boiler ASME, and Pressure Vessel Code, Section VIII
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
nominal size
DN
alphanumeric designation of size for components of a pipework system, which is used for reference
purposes, comprising the letters DN followed by a dimensionless whole number which is indirectly
related to the physical size, in millimetres, of the bore or outside diameter of the end connections
[SOURCE: ISO 6708:1995, definition 2.1]
3.2
nominal pressure
PN
numerical designation relating to pressure that is a convenient rounded number for reference purposes,
and which comprises the letters PN followed by the appropriate reference number
Note 1 to entry: It is intended that all equipment of the same nominal size (DN) designated by the same PN
number shall have compatible mating dimensions.
Note 2 to entry: The maximum allowable pressure depends on materials, design and working temperature, and is
to be selected from the tables of pressure/temperature ratings given in the appropriate standards.
2 © ISO 2021 – All rights reserved

---------------------- Page: 10 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

[SOURCE: ISO 7268:1983, Clause 2, modified.]
3.3
NPS
alphanumeric designation of size for components of a pipework system, which is used for reference
purposes, and which comprises the letters NPS followed by a dimensionless number indirectly related
to the physical size of the bore or outside diameter of the end connections
Note 1 to entry: The number following the letters NPS does not represent a measurable value and is not intended
to be used for calculation purposes except where specified in the relevant standard.
3.4
Class
alphanumeric designation used for reference purposes related to a combination of mechanical and
dimensional characteristics of a component of a pipework system, which comprises the word “Class”
followed by a dimensionless whole number
Note 1 to entry: The number following the word Class does not represent a measurable value and is not intended
to be used for calculation purposes except where specified in the relevant standard.
3.5
cold box
enclosure that insulates equipment from the environment without the need for insulation of each
individual component inside the enclosure
3.6
valve body or bonnet extension
extended valve body or bonnet extension that locates the operating mechanism and packing away from
the cold media in the valve
Note 1 to entry: The body/bonnet extension allows the formation of a vapour barrier between the liquefied gas in
the valve and the packing.
3.7
vapour column
portion of body/bonnet extension that allows for the formation of an insulating column of vapour
3.8
vapour column length for non-cold box application
distance between the bottom of the packing box and the top of the lower stem guide bushing or the
beginning of the bonnet extension
Note 1 to entry: See Figure 1.
3.9
length of bonnet extension for cold box applications
length measured from the centre-line of the valve flow passage up to the bottom of the packing chamber
Note 1 to entry: See Figure 1.
3.10
cold working pressure
CWP
maximum fluid pressure assigned to a valve for operation at a fluid temperature of –20 °C to 38 °C
3.11
cryogenics
science of materials at low temperature
3.12
test gas
minimum 97 % pure helium or nitrogen
© ISO 2021 – All rights reserved 3

---------------------- Page: 11 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

3.13
shell
pressure containing envelope of the valve normally comprised of the body and when included in the
design a bonnet or cover and the body bonnet or body cover joint excluding sealing parts
3.14
drip plate
plate attached to the extension bonnet to prevent condensation from entering the insulation layer
3.15
obturator
movable component of the valve whose position in the fluid flow path permits, restricts or obstructs
the fluid flow
3.16
DBB valve
single valve with two seating surfaces that, in the closed position, provides a seal against pressure from
both ends of the valve with a means of venting/bleeding the cavity between seating surfaces
Note 1 to entry: This valve does not provide positive double isolation when only one side is under pressure.
3.17
DIB valve
single valve with two seating surfaces, each of which, in the closed position, provides a seal against
pressure from a single source, with a means of venting/bleeding the cavity between the seating surfaces
Note 1 to entry: This feature can be provided in one direction or in both directions: DIB-1 (both seats
bidirectional) or DIB-2 (one seat unidirectional and one seat bidirectional).
4 Requirements
4.1 Materials
4.1.1 General
Materials in contact with cold process fluid or exposed to low temperatures shall be suitable for use at
the minimum design temperature specified by the purchase order. Galling, friction heating, galvanic
corrosion and material compatibility with the fluid shall also be considered in the selection of materials.
4.1.2 Metallic materials
4.1.2.1 Shell
For material suitability at low temperature, use ASME B31.3 or EN 13480-2.
The material of body, bonnet, bonnet extension and cover, and other parts of the shell, shall be selected
from the following.
a) Low alloy and austenitic stainless steel materials listed in ASME B16.34 or EN 12516-1 for Class
designated valves or EN 12516-1 for PN designated valves.
b) Nickel alloy materials listed in ASME B16.34 for Class designated valves.
c) Copper alloy materials listed in EN 12516-4 for Class and PN designated valves.
4 © ISO 2021 – All rights reserved

---------------------- Page: 12 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

4.1.2.2 Bolting
Unless otherwise specified by the purchaser, bolting for assembling shell pressure-retaining
components shall be selected from materials listed in ASME B16.34 for Class-designated valves or
EN 1515-1 for PN-designated valves.
If low-strength bolting, such as non-strain hardened austenitic stainless steel, for example ISO 3506-1
grade A1-50 and A4-50 or ASTM A320 and ASTM A193 grade B8 Class 1 is being used, the design shall
comply with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 or 2.
4.1.2.3 Internal metallic parts
Internal metallic parts, e.g. stem, wedge, disc, ball, plug, seats, back seat and guide bushings, shall be
made of materials suitable for use at the entire design temperature range.
4.1.3 Internal non-metallic materials
Valve parts, e.g. packing, gasket, seats and other non-metallic valve parts exposed to low temperature,
shall be capable of functioning at the entire design temperature range.
4.2 Design
4.2.1 General
Unless otherwise specified in the purchase order, valves shall have a bonnet extension that protects
the stem packing and valve operating mechanism from the low-temperature fluid that could otherwise
damage or impair the function of these items.
This document shall be applied in conjunction with the specific requirements of a valve product standard,
such as ISO 10434, ISO 10631, ISO 14313, ISO 15761 and ISO 17292 or other recognized standards, such
as API, ASME or EN, based on an agreement between the purchaser and the manufacturer.
4.2.2 Body/bonnet wall thickness
The minimum valve body and bonnet wall thickness shall meet the requirements of ASME B16.34 or
EN 12516-1 or EN 12516-4 for Class-designated valves and EN 12516-1 or EN 12516-2 or EN 12516-4
for PN designated valves. The pressure rating of the valve at or below service temperatures –50 °C shall
not exceed the cold working pressure for the applicable valve body material and appropriate Class or
PN designation.
4.2.3 Body and bonnet extension
4.2.3.1 The length of the extension shall be sufficient to maintain the stem packing at a temperature
high enough to permit operation within the temperature range of the packing material.
© ISO 2021 – All rights reserved 5

---------------------- Page: 13 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

4.2.3.2 The minimum vapour column length or bonnet extension shall be in accordance with Table 1
or Table 2 and Figure 1, unless otherwise specified in the purchase order.
Key
a minimum vapour column length for non-cold box application (see Table 1)
b extension for cold box application (see Table 2)
c outline of cold box enclosure
d bottom of the packing chamber
e optional drip plate
f top of stem guide or bonnet
Figure 1 — Valve with extended bonnet
6 © ISO 2021 – All rights reserved

---------------------- Page: 14 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

Table 1 — Minimum vapour column length for non-cold box extension
Valve size range Minimum vapour column length Valve size range
DN mm NPS
Minimum design temperature
°C
minimum maximum minimum maximum
–196 –110 –109 –51
DN ≤ 25 200 100 NPS ≤ 1
32 ≤ DN ≤ 65 250 125 1 ¼ ≤ NPS ≤ 2 ½
80 ≤ DN ≤ 125 300 150 3 ≤ NPS ≤ 5
150 ≤ DN ≤ 200 350 175 6 ≤ NPS ≤ 8
250 ≤ DN ≤ 300 400 200 10 ≤ NPS ≤ 12
350 ≤ DN ≤ 400 450 250 14 ≤ NPS ≤ 16
450 ≤ DN ≤ 650 500 300 18 ≤ NPS ≤ 26
700 ≤ DN ≤ 850 600 400 28 ≤ NPS ≤ 34
DN 900 700 500 NPS 36
≥ 950 To be agreed between purchaser and the manufacturer ≥ NPS 38
Table 2 — Minimum bonnet extension length for cold box applications
Valve size Minimum bonnet extension length Valve size
DN mm NPS
a
Rising stem valves Quarter-turn valves
DN ≤ 25 450 400 NPS ≤ 1
32 ≤ DN ≤ 65 550 500 1 ¼ ≤ NPS ≤ 2 ½
80 ≤ DN ≤ 125 650 600 3 ≤ NPS ≤ 5
150 760 610 6
200 865 660 8
250 1 120 710 10
300 1 150 810 12
350 1 200 850 14
400 1 300 850 16
450 1 400 900 18
500 1 500 950 20
600 1 600 1 000 24
650 1 700 1 050 26
700 1 800 1 100 28
750 1 900 1 150 30
800 2 000 1 200 32
850 2 100 1 250 34
900 2 200 1 300 36
≥ 950 To be agreed between purchaser and the manufacturer ≥ NPS 38
a
For globe valves, bonnet extension is shown up to DN 300 – NPS 12 only.
4.2.3.3 In case of a bonnet extension made of material having lower pressure/temperature rating
than the body, then the extension thickness shall be increased proportionally to meet the pressure/
temperature rating of the body at all applicable temperatures. The minimum wall thickness shall be in
accordance with ASME B16.34 for Class-designated valves or EN 12516 for PN designated valves.
© ISO 2021 – All rights reserved 7

---------------------- Page: 15 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

4.2.3.4 Bonnet extension tube thickness shall take into account pressure stresses as well as operating
torque, stem thrust and bending stresses induced by operating devices, such as handles, gears or
actuators.
4.2.3.5 Stem to extended bonnet clearance should be minimized to reduce convective heat loss except
there shall be sufficient clearance to avoid interference during operation.
4.2.3.6 Valves specified to be in gas service shall be capable of operation with the extended bonnet in
any position, unless otherwise limited by the manufacturer.
4.2.3.7 Valves specified to be in liquid service, other than cold box applications, shall be capable of
operation with the extended bonnet at or above 45° above the horizontal position (see Figure 2).
Figure 2 — Recommended bonnet orientation for non-cold box installation
8 © ISO 2021 – All rights reserved

---------------------- Page: 16 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

4.2.3.8 Valves specified to be in cold box applications, equipped with extended bonnet, for applications
with liquids, shall be capable of operating with the stem oriented 15° to 90° above the horizontal plane
(see Figure 3).
Figure 3 — Recommended bonnet orientation for cold box installation
4.2.3.9 A stem guide shall be applied at the lower end of the extended bonnet or topside of the
valve body.
Where necessary, an additional guide may be provided to the upper end of the extension. It shall be
located below the packing and designed so as not to interfere or otherwise damage the stem or the
packing during normal valve operation.
The guide can be separate or integral with the bonnet extension.
4.2.3.10 If specified on the purchase order, the extension shall be provided with an insulation collar/
drip plate. The collar/drip plate may be welded to the bonnet extension or of the clamp-on design. The
clamp-on type shall have the bolting on the upper side to enable easy adjustment. Any gap between the
bonnet and the collar/drip plate shall be sealed to avoid condensation entering into the insulated area.
© ISO 2021 – All rights reserved 9

---------------------- Page: 17 ----------------------
oSIST prEN ISO 28921-1:2021
ISO/DIS 28921-1:2021(E)

4.2.3.11 The extended bonnet may be cast, forged or fabricated. Fabricated extensions shall use full
penetration welding except for valves using pipe extension DN 50 (NPS 2) or smaller, where partial
penetration V-groove welding, fillet type welding or full-strength threaded joint with seal weld may be
used. Wh
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.