Standard Practice for Calibration of a Liquid-Borne Particle Counter Using an Optical System Based Upon Light Extinction (Withdrawn 2007)

SCOPE
1.1 This practice covers procedures for calibrating and determining performance of an optical liquid-borne particle counter (LPC) which uses an optical system based upon light extinction measurement. This practice is directed towards determination of accuracy and resolution of the LPC for characterizing the size and number of particles, which have been passed into the sample inlet of the LPC. Consideration of inlet sampling efficiency is not part of this practice.
1.2 The procedures covered in this practice include those to measure sample volume and flow rate, zero count level, particle sizing and counting accuracy, particle sizing resolution, particle counting efficiency, and particle concentration limit.
1.3 The particle size parameter reported in this practice is the equivalent optical diameter based on projected area of calibration particles with known physical properties dispersed in liquid. The manufacturer normally specifies the minimum diameter that can be reported by an LPC; the dynamic range of the LPC being used determines the maximum diameter that can be reported for a single sample. Typical minimum reported diameters are approximately 2 m, and a typical dynamic range specification will be approximately from 50 to 1.
1.4 The counting rate capability of the LPC is limited by temporal coincidence of particles in the sensing volume of the LPC and by the saturation level or maximum counting rate capability of the electronic sizing and counting circuitry. Coincidence is defined as the simultaneous presence of more than one particle within the LPC optically defined sensing zone at any time. The coincidence limit is a statistical function of particle concentration in the sample and the sensing zone volume when particle size is insignificant in comparison to the sensing volume dimensions. This limitation may be modified by the presence of particles with dimension so large as to be a significant fraction of the sensing zone dimension. The saturation level rate of the electronic counting circuitry shall be specified by the manufacturer and is normally greater than the LPC recommended maximum counting rate for the particle concentrations used for any portion of this practice.
1.5 Calibration in accordance with all parts of this practice may not be required for routine field calibration of an LPC unless significant changes have occurred in operation of the LPC or major component repairs or replacements have been made. The LPC shall then be taken to a suitable metrology facility for complete calibration. Normal routine field calibration may determine sample flow rate, zero count level, and particle sizing accuracy. The specific LPC functions to be calibrated shall be determined on the basis of agreement between the purchaser and the user. The maximum time interval between calibrations shall be determined by agreement between the purchaser and the user, but shall not exceed twelve months, unless LPC stability for longer periods is verified by measurements in accordance with this practice.
This standard may involve hazardous materials, operation, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
WITHDRAWN RATIONALE
This practice covers procedures for calibrating and determining performance of an optical liquid-borne particle counter (LPC) which uses an optical system based upon light extinction measurement. This practice is directed towards determination of accuracy and resolution of the LPC for characterizing the size and number of particles, which have been passed into the sample inlet of the LPC. Consideration of inlet sampling efficiency is not part of this practice.
Formerly under the jurisdiction of Committee E29 on Particle and Spray Characterization, th...

General Information

Status
Withdrawn
Publication Date
31-Mar-2006
Withdrawal Date
31-Mar-2007
Current Stage
Ref Project

Relations

Buy Standard

Standard
ASTM F658-00a(2006) - Standard Practice for Calibration of a Liquid-Borne Particle Counter Using an Optical System Based Upon Light Extinction (Withdrawn 2007)
English language
15 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
Designation:F658–00a (Reapproved 2006)
Standard Practice for
Calibration of a Liquid-Borne Particle Counter Using an
1
Optical System Based Upon Light Extinction
This standard is issued under the fixed designation F658; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision.Anumber in parentheses indicates the year of last reapproval.A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
3
1. Scope significant fraction of the sensing zone dimension . The
saturationlevelrateoftheelectroniccountingcircuitryshallbe
1.1 This practice covers procedures for calibrating and
specified by the manufacturer and is normally greater than the
determining performance of an optical liquid-borne particle
LPC recommended maximum counting rate for the particle
counter (LPC) which uses an optical system based upon light
concentrations used for any portion of this practice.
extinction measurement. This practice is directed towards
1.5 Calibration in accordance with all parts of this practice
determination of accuracy and resolution of the LPC for
may not be required for routine field calibration of an LPC
characterizing the size and number of particles, which have
unless significant changes have occurred in operation of the
been passed into the sample inlet of the LPC. Consideration of
LPC or major component repairs or replacements have been
inlet sampling efficiency is not part of this practice.
made. The LPC shall then be taken to a suitable metrology
1.2 The procedures covered in this practice include those to
facility for complete calibration. Normal routine field calibra-
measure sample volume and flow rate, zero count level,
tion may determine sample flow rate, zero count level, and
particle sizing and counting accuracy, particle sizing resolu-
particle sizing accuracy. The specific LPC functions to be
tion, particle counting efficiency, and particle concentration
calibrated shall be determined on the basis of agreement
limit.
between the purchaser and the user. The maximum time
1.3 The particle size parameter reported in this practice is
intervalbetweencalibrationsshallbedeterminedbyagreement
the equivalent optical diameter based on projected area of
betweenthepurchaserandtheuser,butshallnotexceedtwelve
calibration particles with known physical properties dispersed
months, unless LPC stability for longer periods is verified by
in liquid. The manufacturer normally specifies the minimum
measurements in accordance with this practice.
diameterthatcanbereportedbyanLPC;thedynamicrangeof
1.6 This standard may involve hazardous materials, opera-
theLPCbeinguseddeterminesthemaximumdiameterthatcan
tion, and equipment. This standard does not purport to address
be reported for a single sample. Typical minimum reported
all of the safety concerns, if any, associated with its use. It is
diametersareapproximately2µm,andatypicaldynamicrange
the responsibility of the user of this standard to establish
specification will be approximately from 50 to 1.
appropriate safety and health practices and determine the
1.4 The counting rate capability of the LPC is limited by
applicability of regulatory limitations prior to use.
temporal coincidence of particles in the sensing volume of the
LPC and by the saturation level or maximum counting rate
2. Referenced Documents
capability of the electronic sizing and counting circuitry.
4
2.1 ASTM Standards:
Coincidence is defined as the simultaneous presence of more
D1193 Specification for Reagent Water
thanoneparticlewithintheLPCopticallydefinedsensingzone
D3195 Practice for Rotameter Calibration
at any time. The coincidence limit is a statistical function of
E20 Practice for Particle Size Analysis of Particulate Sub-
particle concentration in the sample and the sensing zone
stances in the Range of 0.2 to 75 µm By Optical Micros-
volume when particle size is insignificant in comparison to the
5
2
copy
sensing volume dimensions . This limitation may be modified
2.2 Other Documents:
by the presence of particles with dimension so large as to be a
3
Knapp, J. Z. and Abramson, L. R., “A New Coincidence Model for Single
1
ThispracticeisunderthejurisdictionofASTMCommitteeE29onParticleand
Particle Counters. I Theory and Experimental Verification,” Journal of Parenteral
Spray Characterization and is the direct responsibility of Subcommittee E29.02 on
Science and Technology, Vol 48, 1994, pp. 255-294.
4
Non-Sieving Methods.
For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Current edition approved April 1, 2006. Published June 2006. Originally
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
approved in 1999. Last previous edition approved in 2000 as F658–00a.
Standards volume information, refer to t
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.