ASTM D2030-97
(Test Method)Standard Test Method for Water Solubility of Refined Pyridine (Withdrawn 2003)
Standard Test Method for Water Solubility of Refined Pyridine (Withdrawn 2003)
SCOPE
1.1 This test method covers the determination of the solubility of refined pyridine in water.
1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 6.
General Information
Standards Content (Sample)
NOTICE: This standard has either been superceded and replaced by a new version or discontinued.
Contact ASTM International (www.astm.org) for the latest information.
Designation: D 2030 – 97
Standard Test Method for
Water Solubility of Refined Pyridine
This standard is issued under the fixed designation D 2030; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
1. Scope 5. Reagents
1.1 This test method covers the determination of the solu- 5.1 Purity of Water—Unless otherwise indicated, references
bility of refined pyridine in water. to water shall be understood to mean reagent water conforming
1.2 This standard does not purport to address all of the to Types I to IV of Specification D 1193.
safety concerns, if any, associated with its use. It is the
6. Hazards
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica- 6.1 Consult current OSHA regulations, supplier’s Material
Safety Data Sheets, and local regulations for all materials used
bility of regulatory limitations prior to use. For a specific
hazard statement, see Section 6. in this test method.
7. Sampling and Handling
2. Referenced Documents
2.1 ASTM Standards: 7.1 Sample the material in accordance with Practice
D 3437.
D 1193 Specification for Reagent Water
D 3437 Practice for Sampling and Handling Liquid Cyclic
3 8. Procedure
Products
8.1 Measure 10 mL of pyridine specimen in a 100-mL
2.2 Other Document:
mixing cylinder and dilute to 100 mL with water. Stopper and
OSHA Regulations, 29, CFR, paragraphs 1910.1000 and
mix thoroughly by shaking. Let stand for 30 min at room
1910.1200
temperature.
3. Summary of Test Method
8.2 Fill another cylinder with 100 mL of water and compare
the clarity of the specimen solution with that of the water.
3.1 Specific volumes of pyridine and water are mixed,
allowed to stand for 30 min at room temperature, and the
9. Report
clarity of the solution noted.
9.1 Report the appearance of the specimen solution as“
4. Significance and Use
clear,” “very slightly cloudy,” “slightly cloudy,” or “cloudy.”
4.1 Water solubility is a qualitative detection of oil contami-
NOTE 1—If clear the specimen “passes”; if other than clear the
nants in pyridine.
specimen “fails.”
10. Precision
...
This May Also Interest You
SIGNIFICANCE AND USE
5.1 The pyridine base content of cresylic acids is important in certain applications. This test method may be used as a tool for quality control and specification purposes by producers and users.
SCOPE
1.1 This test method covers the determination of pyridine and other basic nitrogen impurities in crude and refined cresylic acids streams, including mixtures.
1.2 This test method is applicable for pyridine base levels of 0.001 % to 0.5 %.
1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 N-methylcarbamates and n-methylcarbomoyloximes are used in agriculture as insecticides and herbicides. They are sometimes found in both surface and ground waters and can be toxic to animals and plants at moderate to high concentrations. The manufacturing precursors and degradation products may be equally as hazardous to the environment.
SCOPE
1.1 This is a high-performance liquid chromatographic (HPLC) test method applicable to the determination of certain n-methylcarbamoyloximes and n-methylcarbamates in ground water and finished drinking water (1).2 This test method is applicable to any carbamate analyte that can be hydrolyzed to a primary amine. The following compounds have been validated using this test method:
Analyte
Chemical Abstract Services
Registry Number A
Aldicarb
116-06-3
Aldicarb sulfone
1646-88-4
Aldicarb sulfoxide
1646-87-3
Baygon
114-26-1
Carbaryl
63-25-2
Carbofuran
1563-66-2
3-Hydroxycarbofuran
16655-82-6
Methiocarb
2032-65-7
Methomyl
16752-77-5
Oxamyl
23135-22-0
1.2 This test method has been validated in a collaborative round-robin study (2) and estimated detection limits (EDLs) have been determined for the analytes listed in 1.1 (Table 1). Observed detection limits may vary between ground waters, depending on the nature of interferences in the sample matrix and the specific instrumentation used.
1.3 This test method is restricted to use by, or under the supervision of, analysts experienced in both the use of liquid chromatography and the interpretation of liquid chromatograms. Each analyst should demonstrate an ability to generate acceptable results with this test method using the procedure described in 12.3.
1.4 When this test method is used to analyze unfamiliar samples for any or all of the analytes listed in 1.1, analyte identifications should be confirmed by at least one additional qualitative technique.
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Additional guidance on laboratory safety is available and suitable references for the information are provided (3-5).
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard16 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 When determining the limiting detectable concentration of a fluorescent substance, it is usually necessary to increase the readout scale of a photoelectric instrument to a point where noise (that is, random fluctuations of the system) becomes apparent. This noise will be superimposed upon the signal from the sample.
4.2 In molecular fluorescence spectroscopy, the limit of detection for the sample will be determined by the limiting signal-to-noise ratio, S/N, where the signal, S, is the difference between readings obtained with the sample and blank solutions, and N is the total root-mean-square (rms) noise. The limit of detection for the sample will be given by the instrument readings that give a signal equal to three times the rms value of the noise.
Note 2: Factors other than noise affecting the sample concentration corresponding to the limit of detection include: the spectral bandwidths of the excitation and emission monochromators, the intensity of the exciting light that can be concentrated on the sample, the fraction of the fluorescence collected by the detection system, the response time of the detection system, and the purity of the solvent. The size and arrangement of the sample container with respect to the light beams are also important, as they affect both the desired signal and the extraneous signal that only contributes noise.
Note 3: The value of rms noise (N) can be obtained by calculating the standard deviation of a series of readings of the signal from the sample at the peak emission wavelength at approximately 450 nm as follows:
where:
= mean of the series of readings, x = value of the individual reading, and n = number of readings. Alternatively, rms noise may be estimated by noting the extreme differences between the members of a series of readings (peak-to-peak noise) and dividing by a factor that is usually taken to be 5.6, 7
SCOPE
1.1 This test method employs the signal-to-noise ratio to determine the sensitivity of a fluorescence measuring system in testing for the limit of detection (LOD) of quinine sulfate dihydrate in solution. The results obtained with quinine sulfate dihydrate in solution are suitable for specifying instrument performance on samples having excitation and fluorescence bands wider than 10 nm at or near room temperature.
1.1.1 This test method is not intended to be used as (1) a rigorous test of performance of instrumentation, or (2), to intercompare the quantitative performance of instruments of different design. Intercomparison of the LOD between instruments is commonly expressed as the ratio of the water Raman peak intensity to the root-mean-square (rms) noise as measured on a fluorometer using an excitation wavelength of 350 nm This test method uses the excitation and emission peak wavelengths for quinine sulfate dihydrate in solution, which are approximately 350 nm and 450 nm, respectively.
1.2 This test method has been applied to fluorescence-measuring systems utilizing non-laser, low-energy excitation sources. There is no assurance that extremely intense illumination will not cause photodecomposition2 of the compound suggested in this test method. For this reason, it is recommended that this test method not be indiscriminately employed with high intensity light sources. This test method is not intended to determine minimum detectable amounts of other materials. If this test method is extended to employ other chemical substances, the user should be aware of the possibility that these other substances may undergo decomposition or adsorption onto containers.
1.3 A typical LOD for conventional fluorometers using this test method is 1 ng of quinine sulfate per mL.
1.4 The suggested shelf life of a 1 mg/mL stock solution of quinine sulfate dihydrate is three months, when stored in the dark in a stoppered glass bottle.
1.5 The values stated in SI units are to be regarded as standard. No o...
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The pyridine base content of cresylic acids is important in certain applications. This test method may be used as a tool for quality control and specification purposes by producers and users.
SCOPE
1.1 This test method covers the determination of pyridine and other basic nitrogen impurities in crude and refined cresylic acids streams, including mixtures.
1.2 This test method is applicable for pyridine base levels of 0.001 % to 0.5 %.
1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.
1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
- Standard4 pagesEnglish languagesale 15% off
ABSTRACT
These alternative test methods cover the indicator procedure for determining the total, primary, secondary, and tertiary amine values of fatty amines. These procedures are not applicable to fatty amidoamines and fatty diamines. The apparatus includes Erlenmeyer flasks and magnetic stirrer. Reagent grade chemicals shall be used in all tests and includes the following: water, bromphenol blue indicator solution, bromcresol green indicator solution, chloroform, hydrochloric acid standard solution, isopropyl alcohol, phenyl isothiocyanate, and salicylaldehyde. The procedure of determining the total amine values are detailed and the formula of calculating the total amine values is given.
SCOPE
1.1 These alternative test methods cover the indicator procedure for determining the total, primary, secondary, and tertiary amine values of fatty amines. These procedures are not applicable to fatty amidoamines and fatty diamines.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method can be used for research or for quality control to characterize isocyanates used in polyurethane products.
5.2 For toluene diisocyanate, results from this test method can relate to reactivity or performance in polyurethane systems.
SCOPE
1.1 This test method measures the color of clear liquids. It is applicable only to materials whose color-producing bodies have light-absorption characteristics similar to those of the platinum cobalt color standards used.2 (See Test Method D1209 and Note 1.) Suitable isocyanates include toluene diisocyanate, and pure or modified monomeric methylene di(phenylisocyanate).
1.2 The values stated in SI units are to be regarded as standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
Note 1: This standard and ISO 6271-1 address the same subject matter, but differ in technical content.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard3 pagesEnglish languagesale 15% off
- Standard3 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This practice is useful as a screening basis for acceptance or rejection of transparencies during manufacturing so that units with identifiable flaws will not be carried to final inspection for rejection at that time.
4.2 This practice may also be employed as a go-no go technique for acceptance or rejection of the finished product.
4.3 This practice is simple, inexpensive, and effective. Flaws identified by this practice, as with other optical methods, are limited to those that produce temperature gradients when electrically powered. Any other type of flaw, such as minor scratches parallel to the direction of electrical flow, are not detectable.
SCOPE
1.1 This practice covers a standard procedure for detecting flaws in the conductive coating (heater element) by the observation of polarized light patterns.
1.2 This practice applies to coatings on surfaces of monolithic transparencies as well as to coatings imbedded in laminated structures.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard4 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades include the following: Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 for use in domestic and small industrial burners; Grades No. 1 S5000 and No. 1 S500 adapted to vaporizing type burners or where storage conditions require low pour point fuel; Grades No. 4 (Light) and No. 4 (Heavy) for use in commercial/industrial burners; and Grades No. 5 (Light), No. 5 (Heavy), and No. 6 for use in industrial burners. Preheating is usually required for handling and proper atomization. The grades of fuel oil shall be homogeneous hydrocarbon oils, free from inorganic acid, and free from excessive amounts of solid or fibrous foreign matter. Grades containing residual components shall remain uniform in normal storage and not separate by gravity into light and heavy oil components outside the viscosity limits for the grade. The grades of fuel oil shall conform to the limiting requirements prescribed for: (1) flash point, (2) water and sediment, (3) physical distillation or simulated distillation, (4) kinematic viscosity, (5) Ramsbottom carbon residue, (6) ash, (7) sulfur, (8) copper strip corrosion, (9) density, and (10) pour point. The test methods for determining conformance to the specified properties are given.
SCOPE
1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows:
1.1.1 Grades No. 1 S5000, No. 1 S500, No. 1 S15, No. 2 S5000, No. 2 S500, and No. 2 S15 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000, No. 1 S500, and No. 1 S15 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel.
1.1.2 Grades B6–B20 S5000, B6–B20 S500, and B6–B20 S15 are middle distillate fuel/biodiesel blends for use in domestic and small industrial burners.
1.1.3 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range.
1.1.4 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization.
Note 1: For information on the significance of the terminology and test methods used in this specification, see Appendix X1.
Note 2: A more detailed description of the grades of fuel oils is given in X1.3.
1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs.
1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive.
1.4 The values stated in SI units are to be regarded as standard.
1.4.1 Non-SI units are provided in Table 1 and Table 2 and in 7.1.2.1/7.1.2.2 because these are common units used in the industry.
Note 3: The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification13 pagesEnglish languagesale 15% off
- Technical specification13 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the properties and requirements for two types of asbestos-free asphalt roof coatings consisting of an asphalt base, volatile petroleum solvents, and mineral or other stabilizers, or both, mixed to a smooth, uniform consistency suitable for application by squeegee, three-knot brush, paint brush, roller, or by spraying. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalts characterized by high softening point and relatively low ductility. The coatings shall conform to specified composition limits for water, nonvolatile matter, minerals and/or other stabilizers, and bitumen (asphalt). They shall also meet physical requirements as to uniformity, consistency, and pliability and behavior at given temperatures.
SCOPE
1.1 This specification covers asbestos-free asphalt roof coatings of brushing or spraying consistency.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.