Standard Practice for Use of Control Charts in Statistical Process Control

ABSTRACT
This practice provides guidance for the use of control charts in statistical process control programs, which improve process quality through reducing variation by identifying and eliminating the effect of special causes of variation.
This practice describes the use of control charts as a tool for use in statistical process control (SPC). Control charts were developed by Shewhart (2) 3 in the 1920s and are still in wide use today. SPC is a branch of statistical quality control (3, 4), which also encompasses process capability analysis and acceptance sampling inspection. Process capability analysis, as described in Practice E2281, requires the use of SPC in some of its procedures. Acceptance sampling inspection, described in Practices E1994, E2234, and E2762, requires the use of SPC so as to minimize rejection of product.
SIGNIFICANCE AND USE
4.1 This practice describes the use of control charts as a tool for use in statistical process control (SPC). Control charts were developed by Shewhart (2)3 in the 1920s and are still in wide use today. SPC is a branch of statistical quality control (3, 4), which also encompasses process capability analysis and acceptance sampling inspection. Process capability analysis, as described in Practice E2281, requires the use of SPC in some of its procedures. Acceptance sampling inspection, described in Practices E1994, E2234, and E2762, requires the use of SPC so as to minimize rejection of product.  
4.2 Principles of SPC—A process may be defined as a set of interrelated activities that convert inputs into outputs. SPC uses various statistical methodologies to improve the quality of a process by reducing the variability of one or more of its outputs, for example, a quality characteristic of a product or service.  
4.2.1 A certain amount of variability will exist in all process outputs regardless of how well the process is designed or maintained. A process operating with only this inherent variability is said to be in a state of statistical control, with its output variability subject only to chance, or common, causes.  
4.2.2 Process upsets, said to be due to assignable, or special causes, are manifested by changes in the output level, such as a spike, shift, trend, or by changes in the variability of an output. The control chart is the basic analytical tool in SPC and is used to detect the occurrence of special causes operating on the process.  
4.2.3 When the control chart signals the presence of a special cause, other SPC tools, such as flow charts, brainstorming, cause-and-effect diagrams, or Pareto analysis, described in various references (4-8), are used to identify the special cause. Special causes, when identified, are either eliminated or controlled. When special cause variation is eliminated, process variability is reduced to its inherent variability, and c...
SCOPE
1.1 This practice provides guidance for the use of control charts in statistical process control programs, which improve process quality through reducing variation by identifying and eliminating the effect of special causes of variation.  
1.2 Control charts are used to continually monitor product or process characteristics to determine whether or not a process is in a state of statistical control. When this state is attained, the process characteristic will, at least approximately, vary within certain limits at a given probability.  
1.3 This practice applies to variables data (characteristics measured on a continuous numerical scale) and to attributes data (characteristics measured as percentages, fractions, or counts of occurrences in a defined interval of time or space).  
1.4 The system of units for this practice is not specified. Dimensional quantities in the practice are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated.  
1.5 This standard does not purport to address all of the safety concerns, if any, associa...

General Information

Status
Historical
Publication Date
31-Mar-2016
Current Stage
Ref Project

Buy Standard

Standard
ASTM E2587-16 - Standard Practice for Use of Control Charts in Statistical Process Control
English language
29 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
REDLINE ASTM E2587-16 - Standard Practice for Use of Control Charts in Statistical Process Control
English language
29 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information
Designation: E2587 − 16 An American National Standard
Standard Practice for
1
Use of Control Charts in Statistical Process Control
This standard is issued under the fixed designation E2587; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
1. Scope E177 Practice for Use of the Terms Precision and Bias in
ASTM Test Methods
1.1 This practice provides guidance for the use of control
E456 Terminology Relating to Quality and Statistics
charts in statistical process control programs, which improve
E1994 Practice for Use of Process Oriented AOQL and
process quality through reducing variation by identifying and
LTPD Sampling Plans
eliminating the effect of special causes of variation.
E2234 Practice for Sampling a Stream of Product by Attri-
1.2 Control charts are used to continually monitor product
butes Indexed by AQL
orprocesscharacteristicstodeterminewhetherornotaprocess
E2281 Practice for Process Capability and Performance
isinastateofstatisticalcontrol.Whenthisstateisattained,the
Measurement
process characteristic will, at least approximately, vary within
E2762 Practice for Sampling a Stream of Product by Vari-
certain limits at a given probability.
ables Indexed by AQL
1.3 This practice applies to variables data (characteristics
measured on a continuous numerical scale) and to attributes
3. Terminology
data (characteristics measured as percentages, fractions, or
3.1 Definitions:
counts of occurrences in a defined interval of time or space).
3.1.1 See Terminology E456 for a more extensive listing of
1.4 The system of units for this practice is not specified.
statistical terms.
Dimensional quantities in the practice are presented only as
3.1.2 assignable cause, n—factor that contributes to varia-
illustrations of calculation methods. The examples are not
tion in a process or product output that is feasible to detect and
binding on products or test methods treated.
identify (see special cause).
1.5 This standard does not purport to address all of the
3.1.2.1 Discussion—Many factors will contribute to
safety concerns, if any, associated with its use. It is the
variation, but it may not be feasible (economically or other-
responsibility of the user of this standard to establish appro-
wise) to identify some of them.
priate safety, health, and environmental practices and deter-
3.1.3 accepted reference value, ARV, n—value that serves as
mine the applicability of regulatory limitations prior to use.
an agreed-upon reference for comparison and is derived as: (1)
1.6 This international standard was developed in accor-
a theoretical or established value based on scientific principles,
dance with internationally recognized principles on standard-
(2) an assigned or certified value based on experimental work
ization established in the Decision on Principles for the
of some national or international organization, or (3) a consen-
Development of International Standards, Guides and Recom-
susorcertifiedvaluebasedoncollaborativeexperimentalwork
mendations issued by the World Trade Organization Technical
under the auspices of a scientific or engineering group. E177
Barriers to Trade (TBT) Committee.
3.1.4 attributes data, n—observed values or test results that
2. Referenced Documents
indicate the presence or absence of specific characteristics or
2
counts of occurrences of events in time or space.
2.1 ASTM Standards:
3.1.5 average run length (ARL), n—the average number of
times that a process will have been sampled and evaluated
1
before a shift in process level is signaled.
This practice is under the jurisdiction ofASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.30 on Statistical
3.1.5.1 Discussion—A long ARL is desirable for a process
Quality Control.
located at its specified level (so as to minimize calling for
Current edition approved April 1, 2016. Published May 2016. Originally
unneededinvestigationorcorrectiveaction)andashortARLis
approved in 2007. Last previous edition approved in 2015 as E2587 – 15. DOI:
10.1520/E2587-16.
desirable for a process shifted to some undesirable level (so
2
For referenced ASTM standards, visit the ASTM website, www.astm.org, or
that corrective action will be called for promptly).ARLcurves
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
are used to describe the relative quickness in detecting level
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website. shifts of various control chart systems (see 5.1.4). The average
Copyright © ASTM International, 100 Barr Harbor Drive, PO B
...

This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because
it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version
of the standard as published by ASTM is to be considered the official document.
Designation: E2587 − 15 E2587 − 16 An American National Standard
Standard Practice for
1
Use of Control Charts in Statistical Process Control
This standard is issued under the fixed designation E2587; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
1. Scope
1.1 This practice provides guidance for the use of control charts in statistical process control programs, which improve process
quality through reducing variation by identifying and eliminating the effect of special causes of variation.
1.2 Control charts are used to continually monitor product or process characteristics to determine whether or not a process is
in a state of statistical control. When this state is attained, the process characteristic will, at least approximately, vary within certain
limits at a given probability.
1.3 This practice applies to variables data (characteristics measured on a continuous numerical scale) and to attributes data
(characteristics measured as percentages, fractions, or counts of occurrences in a defined interval of time or space).
1.4 The system of units for this practice is not specified. Dimensional quantities in the practice are presented only as illustrations
of calculation methods. The examples are not binding on products or test methods treated.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility
of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory
limitations prior to use.
2. Referenced Documents
2
2.1 ASTM Standards:
E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods
E456 Terminology Relating to Quality and Statistics
E1994 Practice for Use of Process Oriented AOQL and LTPD Sampling Plans
E2234 Practice for Sampling a Stream of Product by Attributes Indexed by AQL
E2281 Practice for Process Capability and Performance Measurement
E2762 Practice for Sampling a Stream of Product by Variables Indexed by AQL
3. Terminology
3.1 Definitions:
3.1.1 See Terminology E456 for a more extensive listing of statistical terms.
3.1.2 assignable cause, n—factor that contributes to variation in a process or product output that is feasible to detect and identify
(see special cause).
1
This practice is under the jurisdiction of ASTM Committee E11 on Quality and Statistics and is the direct responsibility of Subcommittee E11.30 on Statistical Quality
Control.
Current edition approved April 1, 2015April 1, 2016. Published April 2015April 2016. Originally approved in 2007. Last previous edition approved in 20142015 as
ε1
E2587 – 14E2587 – 15. . DOI: 10.1520/E2587-15.10.1520/E2587-16.
2
For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards
volume information, refer to the standard’s Document Summary page on the ASTM website.
3.1.2.1 Discussion—
Many factors will contribute to variation, but it may not be feasible (economically or otherwise) to identify some of them.
3.1.3 accepted reference value, ARV, n—value that serves as an agreed-upon reference for comparison and is derived as: (1) a
theoretical or established value based on scientific principles, (2) an assigned or certified value based on experimental work of
some national or international organization, or (3) a consensus or certified value based on collaborative experimental work under
the auspices of a scientific or engineering group. E177
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
1

---------------------- Page: 1 ----------------------
E2587 − 16
3.1.4 attributes data, n—observed values or test results that indicate the presence or absence of specific characteristics or counts
of occurrences of events in time or space.
3.1.5 average run length (ARL), n—the average number of times that a process will have been sampled and evaluated before
a shift in process level is signaled.
3.1.5.1 Discussion—
A long ARL is desirable for a process located at its specified level (so as to minimize calling for unneeded investigation or
corrective action) and a short ARL is desirable for a process shifted to some undesirable level (so that corrective action will b
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.