CEN ISO/TR 22100-5:2022
(Main)Safety of machinery - Relationship with ISO 12100 - Part 5: Implications of artificial intelligence machine learning (ISO/TR 22100-5:2021)
Safety of machinery - Relationship with ISO 12100 - Part 5: Implications of artificial intelligence machine learning (ISO/TR 22100-5:2021)
This document addresses how artificial intelligence machine learning can impact the safety of machinery and machinery systems.
This document describes how hazards being associated with artificial intelligence (AI) applications machine learning in machinery or machinery systems, and designed to act within specific limits, can be considered in the risk assessment process.
This document is not applicable to machinery or machinery systems with AI applications machine learning designed to act beyond specified limits that can result in unpredictable effects.
This document does not address safety systems with AI, for example, safety-related sensors and other safety-related parts of control systems.
Sicherheit von Maschinen - Beziehung zu ISO 12100 - Teil 5: Auswirkungen von maschinellem Lernen mit künstlicher Intelligenz (ISO/TR 22100 5:2021)
Dieses Dokument befasst sich damit, wie sich der Einsatz von künstlicher Intelligenz für maschinelles Lernen auf die Sicherheit von Maschinen und Maschinensystemen auswirken kann.
Dieses Dokument beschreibt, wie Gefährdungen, die mit Anwendungen der künstlichen Intelligenz (KI) für maschinelles Lernen in Maschinen oder Maschinensystemen verbunden sind und innerhalb bestimmter Grenzen wirken sollen, im Risikobeurteilungsprozess berücksichtigt werden können.
Dieses Dokument ist nicht anwendbar auf Maschinen oder Maschinensysteme mit KI-Anwendungen für maschinelles Lernen, die so konstruiert sind, dass sie jenseits festgelegter Grenzen wirken, was zu unvorhersehbaren Auswirkungen führen kann.
Dieses Dokument gilt nicht für Sicherheitssysteme mit KI, z. B. sicherheitsrelevante Sensoren und andere sicherheitsrelevante Teile von Steuerungssystemen.
Sécurité des machines - En relation avec l'ISO 12100 - Partie 5: Implications de l’intelligence artificielle pour l’apprentissage automatique (ISO/TR 22100-5:2021)
Le présent document traite de la manière dont l’apprentissage automatique d’intelligence artificielle peut impacter la sécurité des machines et des systèmes de machines.
Le présent document décrit comment les phénomènes dangereux associés à l’apprentissage automatique par intelligence artificielle (IA) dans les machines ou les systèmes de machines conçues pour agir dans des limites spécifiques, peuvent être pris en considération dans le processus d’appréciation du risque.
Le présent document n’est pas applicable aux machines ou aux systèmes de machines pour lesquels l’apprentissage automatique des applications d’IA est conçu pour agir au-delà des limites spécifiées, ce qui peut conduire à des effets imprévisibles.
Le présent document ne traite pas des systèmes de sécurité avec une IA, par exemple, capteurs relatifs à la sécurité et autres parties relatives à la sécurité des systèmes de commande.
Varnost strojev - Povezava z ISO 12100 - 5. del: Učinki strojnega učenja umetne inteligence (ISO/TR 22100-5:2021)
Ta dokument obravnava načine, na katere lahko umetna inteligenca (strojno učenje) vpliva na varnost strojev in strojnih sistemov. Ta dokument opisuje, kako se lahko v postopku ocenjevanja tveganj upoštevajo nevarnosti, ki so povezane z aplikacijami umetne inteligence (AI) (strojnega učenja) pri strojih ali strojnih sistemih, zasnovanimi za delovanje znotraj določenih mejnih vrednosti. Ta dokument se ne uporablja za stroje ali strojne sisteme z aplikacijami umetne inteligence (strojnega učenja), zasnovanimi za delovanje zunaj določenih mejnih vrednosti, ki lahko povzročijo nepredvidljive učinke. Ta dokument ne obravnava varnostnih sistemov z umetno inteligenco, kot so z varnostjo povezana tipala in drugi z varnostjo povezani deli krmilnih sistemov.
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2022
Varnost strojev - Povezava z ISO 12100 - 5. del: Učinki strojnega učenja umetne
inteligence (ISO/TR 22100-5:2021)
Safety of machinery - Relationship with ISO 12100 - Part 5: Implications of artificial
intelligence machine learning (ISO/TR 22100-5:2021)
Sicherheit von Maschinen - Beziehung zu ISO 12100 - Teil 5: Auswirkungen von
maschinellem Lernen mit künstlicher Intelligenz (ISO/TR 22100 5:2021)
Sécurité des machines - En relation avec l'ISO 12100 - Partie 5: Implications de
l’intelligence artificielle pour l’apprentissage automatique (ISO/TR 22100-5:2021)
Ta slovenski standard je istoveten z: CEN ISO/TR 22100-5:2022
ICS:
13.110 Varnost strojev Safety of machinery
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
CEN ISO/TR 22100-5
TECHNICAL REPORT
RAPPORT TECHNIQUE
April 2022
TECHNISCHER BERICHT
ICS 13.110
English Version
Safety of machinery - Relationship with ISO 12100 - Part 5:
Implications of artificial intelligence machine learning
(ISO/TR 22100-5:2021)
Sécurité des machines - En relation avec l'ISO 12100 - Sicherheit von Maschinen - Beziehung zu ISO 12100 -
Partie 5: Implications de l'intelligence artificielle pour Teil 5: Auswirkungen von maschinellem Lernen mit
l'apprentissage automatique (ISO/TR 22100-5:2021) künstlicher Intelligenz (ISO/TR 22100 5:2021)
This Technical Report was approved by CEN on 13 April 2022. It has been drawn up by the Technical Committee CEN/TC 114.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN ISO/TR 22100-5:2022 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
European foreword
The text of ISO/TR 22100-5:2021 has been prepared by Technical Committee ISO/TC 199 "Safety of
machinery” of the International Organization for Standardization (ISO) and has been taken over as
of which is held by DIN.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
Endorsement notice
The text of ISO/TR 22100-5:2021 has been approved by CEN as CEN ISO/TR 22100-5:2022 without any
modification.
TECHNICAL ISO/TR
REPORT 22100-5
First edition
2021-01
Safety of machinery — Relationship
with ISO 12100 —
Part 5:
Implications of artificial intelligence
machine learning
Sécurité des machines — En relation avec l'ISO 12100 —
Partie 5: Implications de l’intelligence artificielle pour l’apprentissage
automatique
Reference number
ISO/TR 22100-5:2021(E)
©
ISO 2021
ISO/TR 22100-5:2021(E)
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved
ISO/TR 22100-5:2021(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Use of AI in the machinery sector . 2
4.1 General . 2
4.2 Examples for use of AI machine learning in machine applications . 2
4.2.1 Examples without safety implications . 2
4.2.2 Examples with safety implications . 3
5 Conclusion . 5
Bibliography . 6
ISO/TR 22100-5:2021(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 199, Safety of machinery.
A list of all parts in the ISO/TR 22100 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved
ISO/TR 22100-5:2021(E)
Introduction
The primary purpose of this document is to provide guidance for the development of artificial
intelligence (AI) machine learning applications. Safety can be compromised due to the significant
complexity of introducing AI machine learning to machines.
A control system can use machine learning (a technology of artificial intelligence) to improve
performance of the machine or to execute tasks. The control system learns its expected behaviour
through training. This involves two stages: training and inference (autonomous operation).
This document assists machinery designers to develop solutions appropriate for their particular
applications. It describes how to apply the risk assessment process according to ISO 12100 to AI
machine learning applications.
AI machine learning is a rapidly evolving technology and has not been a subject of machinery safety
until now.
TECHNICAL REPORT ISO/TR 22100-5:2021(E)
Safety of machinery — Relationship with ISO 12100 —
Part 5:
Implications of artificial intelligence machine learning
1 Scope
This document addresses how artificial intelligence machine learning can impact the safety of
machinery and machinery systems.
This document describes how hazards being associated with artificial intelligence (AI) applications
machine learning in machinery or machinery systems, and designed to act within specific limits, can be
considered in the risk assessment process.
This document is not applicable to machinery or machinery systems with AI applications machine
learning designed to act beyond specified limits that can result in unpredictable effects.
This document does not address safety systems with AI, for example, safety-related sensors and other
safety-related parts of control systems.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
artificial intelligence
AI
branch of science devoted to developing data processing systems that perform functions normally
associated with human intelligence, such as reasoning, learning, and self-improvement
[SOURCE: ISO/IEC 2382:2015, 2121393, modified – The word "computer" has been deleted from the
definition.]
3.2
machine learning
process using algorithms rather than procedural coding that enables learning from existing data in
order to predict future outcomes
[SOURCE: ISO/IEC 38505-1:2017, 3.7]
ISO/TR 22100-5:2021(E)
4 Use of AI in the machinery sector
4.1 General
Enterprises in the machinery sector are constantly developing AI solutions for different application
processes, such as:
a) quality control;
b) process optimization;
c) condition/failure monitoring;
d) predictive maintenance.
General objectives for these applications are;
— optimization of machine performance/tasks to be performed by machinery;
— more effective use of resources;
— reduction of environmental effects;
— improvement of working conditions.
Some AI applications can have implications on the machine function and thus on machinery safety,
while others do not. Whether AI can have an immediate effect on machinery safety depends on the
intended optimization effect and its practical realization via the machine design.
4.2 Examples for use of AI machine learning in machine applications
4.2.1 Examples without safety implications
4.2.1.1 General
There are many examples with machinery optimizing processes without impact on safety, e.g.
packaging robots optimizing pieces with randomly different sizes to load on a skid or pallet. The
objective here is to get a package not exceeding certain dimensions or weight. As such, these processes
are predetermined. There is no impact on safety. In these situations, AI applications do not introduce
new hazards or increased risks that are not addressed by the risk reduction measures to be applied for
a packaging robot without AI.
1)
4.2.1.2 Optimization of herbicide spraying machine
Today, it is still common practice that agricultural machines treat all plants as if they have the same
needs. For herbicide-spraying machines, this means broadcast
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.