Petroleum and natural gas industries — Materials for use in H2S-containing environments in oil and gas production — Part 2: Cracking-resistant carbon and low-alloy steels, and the use of cast irons

This document gives requirements and recommendations for the selection and qualification of carbon and low-alloy steels for service in equipment used in oil and natural gas production and natural gas treatment plants in H2S-containing environments, whose failure can pose a risk to the health and safety of the public and personnel or to the environment. It can be applied to help to avoid costly corrosion damage to the equipment itself. It supplements, but does not replace, the materials requirements of the appropriate design codes, standards or regulations. This document addresses the resistance of these steels to damage that can be caused by sulfide stress cracking (SSC) and the related phenomena of stress-oriented hydrogen-induced cracking (SOHIC) and soft-zone cracking (SZC). This document also addresses the resistance of these steels to hydrogen-induced cracking (HIC) and its possible development into stepwise cracking (SWC). This document is concerned only with cracking. Loss of material by general (mass loss) or localized corrosion is not addressed. Table 1 provides a non-exhaustive list of equipment to which this document is applicable, including exclusions. This document applies to the qualification and selection of materials for equipment designed and constructed using load controlled design methods. For design utilizing strain-based design methods, see ISO 15156-1:2020, Clause 5. Annex A lists SSC-resistant carbon and low alloy steels, and A.2.4 includes requirements for the use of cast irons. This document is not necessarily suitable for application to equipment used in refining or downstream processes and equipment.

Industries du pétrole et du gaz naturel — Matériaux pour utilisation dans des environnements contenant de l'hydrogène sulfuré (H2S) dans la production de pétrole et de gaz — Partie 2: Aciers au carbone et aciers faiblement alliés résistant à la fissuration, et utilisation de fontes

Le présent document spécifie des exigences et donne des recommandations concernant la sélection et la qualification des aciers au carbone et des aciers faiblement alliés dans des équipements utilisés pour la production de pétrole et de gaz naturel et dans des installations de traitement de gaz naturel en milieux contenant de l'hydrogène sulfuré (H2S), où toute défaillance peut présenter un risque pour la santé et la sécurité du public et du personnel ou pour l'environnement. Il peut être appliqué pour aider à prévenir les dommages coûteux occasionnés par la corrosion aux équipements. Elle complète, sans toutefois s'y substituer, les exigences concernant les matériaux dans les codes de construction, normes ou autres réglementations appropriés. Le présent document traite de la résistance de ces aciers aux dommages pouvant être causés par la fissuration orientée sous contrainte induite par l’hydrogène (SOHIC, stress-oriented hydrogen-induced cracking) et de la fissuration des zones de plus faible dureté (SZC, soft-zone cracking). Le présent document traite également de la résistance de ces aciers à la fissuration induite par l’hydrogène (HIC, hydrogen-induced cracking) et au développement possible en fissuration en gradins (SWC, stepwise cracking). Le présent document ne porte que sur la fissuration. Toute perte de matériau par corrosion générale (perte de masse) ou localisée n'est pas étudiée. Le Tableau 1 donne une liste non exhaustive d'équipements relevant du domaine d'application du présent document et comprenant une liste d'équipements pouvant en être exclus. Le présent document s'applique à la qualification et au choix des matériaux pour les équipements conçus et construits sur la base des méthodes de calcul sous charge contrôlée. Pour les conceptions effectuées sur la base de méthodes de calcul basées sur le niveau de déformation acceptable, voir l'ISO 15156‑1:2020, Article 5. L'Annexe A donne la liste des aciers au carbone et faiblement alliés résistants à la fissuration sous contrainte induite par les sulfures (SSC) et elle comprend, au niveau du Paragraphe A.2.4, les exigences d'utilisation des fontes. Le présent document ne convient pas nécessairement à des équipements utilisés dans des processus et des équipements de raffinage ou en aval.

General Information

Status
Published
Publication Date
16-Nov-2020
Current Stage
6060 - International Standard published
Start Date
17-Nov-2020
Due Date
17-Nov-2020
Completion Date
17-Nov-2020
Ref Project

Relations

Buy Standard

Standard
ISO 15156-2:2020 - Petroleum and natural gas industries — Materials for use in H2S-containing environments in oil and gas production — Part 2: Cracking-resistant carbon and low-alloy steels, and the use of cast irons Released:11/17/2020
English language
48 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 15156-2:2020 - Petroleum and natural gas industries -- Materials for use in H2S-containing environments in oil and gas production
English language
48 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 15156-2
Fourth edition
2020-11
Petroleum and natural gas
industries — Materials for use in H S-
containing environments in oil and
gas production —
Part 2:
Cracking-resistant carbon and low-
alloy steels, and the use of cast irons
Industries du pétrole et du gaz naturel — Matériaux pour utilisation
dans des environnements contenant de l'hydrogène sulfuré (H S) dans
la production de pétrole et de gaz —
Partie 2: Aciers au carbone et aciers faiblement alliés résistants à la
fissuration, et utilisation de fontes
Reference number
©
ISO 2020
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 3
4 Symbols and abbreviated terms . 6
5 Purchasing information . 7
6 Factors affecting the behaviour of carbon and low alloy steels in H S-containing
environments . 7
7 Qualification and selection of carbon and low-alloy steels with resistance to SSC,
SOHIC and SZC . 8
7.1 Option 1 — Selection of SSC-resistant steels (and cast irons) using A.2 . 8
7.1.1 For p < 0,3 kPa (0,05 psi) . 8
HS
7.1.2 For p ≥ 0,3 kPa (0,05 psi) . 8
HS
7.2 Option 2 — Selection of steels for specific sour-service applications or for ranges
of sour service . 8
7.2.1 Sulfide stress cracking . 8
7.2.2 SOHIC and SZC .10
7.3 Hardness requirements .10
7.3.1 General.10
7.3.2 Parent metals .10
7.3.3 Welds .11
7.4 Other fabrication methods .16
8 Evaluation of carbon and low alloy steels for their resistance to HIC/SWC .16
9 Marking, labelling, and documentation .17
Annex A (normative) SSC-resistant carbon and low alloy steels (and requirements and
recommendations for the use of cast irons) .18
Annex B (normative) Qualification of carbon and low-alloy steels for H S service by
laboratory testing .27
Annex C (informative) Determination of H S partial pressure and use of alternative parameters .35
Annex D (informative) Recommendations for determining pH .40
Annex E (informative) Information that should be supplied for material purchasing .45
Bibliography .47
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore
structures for petroleum, petrochemical and natural gas industries, in collaboration with the European
Committee for Standardization (CEN) Technical Committee CEN/TC 12, Materials, equipment and
offshore structures for petroleum, petrochemical and natural gas industries, in accordance with the
Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This fourth edition cancels and replaces the third edition (ISO 15156-2:2015), which has been
technically revised. The main changes compared to the previous edition are as follows:
— corrections of temperature conversion for welding (see A.2.1.4), vold deformation and stress relief
(see A.2.1.6), identification stamping (see A.2.1.9), tubulars and tubular components (see A.2.2.3.4),
compressor impellers (see A.2.3.3.2);
— title change from Shear rams to Rams in A.2.3.2.2;
— addition of C110 and changes the designation of C95 to R95 in Table A.3;
— reference change to NACE TM0316 in Table B.1;
— addition of reference to BS 8701 in B.4.3;
— changes and additions to Table B.3;
— modification of Annex C to include alternative parameters and expanded explanation for the use of
chemical activity and fugacity, and to provide some general guidance for the use of thermodynamic
modeling for the determination of environmental severity.
A list of all parts in the ISO 15156 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2020 – All rights reserved

Introduction
The consequences of sudden failures of metallic oil and gas field components, associated with their
exposure to H S-containing production fluids, led to the preparation of the first edition of NACE MR0175,
which was published in 1975 by the National Association of Corrosion Engineers, now known as NACE
International.
The original and subsequent editions of NACE MR0175 established limits of H S partial pressure above
which precautions against sulfide stress cracking (SSC) were always considered necessary. They
also provided guidance for the selection and specification of SSC-resistant materials when the H S
thresholds were exceeded. In more recent editions, NACE MR0175 has also provided application limits
for some corrosion-resistant alloys, in terms of environmental composition and pH, temperature and
H S partial pressures.
In separate developments, the European Federation of Corrosion issued EFC Publication 16 in 1995 and
EFC Publication 17 in 1996. These documents are generally complementary to those of NACE though
they differed in scope and detail.
In 2003, the publication of the ISO 15156-series and NACE MR0175/ISO 15156 was completed for the
first time. These technically identical documents utilized the above sources to provide requirements
and recommendations for materials qualification and selection for application in environments
containing wet H S in oil and gas production systems. They are complemented by NACE TM0177 and
NACE TM0284 test methods.
The revision of this document, i.e. ISO 15156-2,involves a consolidation of all changes agreed
and published in the Technical Circular 1, ISO 15156-2:2015/Cir.1:2017, the Technical Circular 2,
ISO 15156-2:2015/Cir.2:2018 and the Technical Circular 3, ISO 15156-2:2015/Cir.3:2019, published by
the ISO 15156 series Maintenance Agency secretariat at DIN.
The changes were developed by and approved by the ballot of, representative groups from within
the oil and gas production industry. The great majority of these changes stem from issues raised by
document users. A description of the process by which these changes were approved can be found at
the ISO 15156 series maintenance website: www .iso .org/ iso15156maintenance.
When found necessary by oil and gas production industry experts, future interim changes to this
document will be processed in the same way and will lead to interim updates to this document in
the form of Technical Corrigenda or Technical Circulars. Document users should be aware that such
documents can exist and can impact the validity of the dated references in this document.
The ISO 15156 series Maintenance Agency at DIN was set up after approval by the ISO Technical
Management Board given in document 34/2007. This document describes the make up of the agency,
which includes experts from NACE, EFC and ISO/TC 67, and the process for approval of amendments.
It is available from the ISO 15156 series maintenance website and from the ISO/TC 67 Secretariat. The
website also provides access to related documents that provide more detail of the ISO 15156 series
maintenance activities.
INTERNATIONAL STANDARD ISO 15156-2:2020(E)
Petroleum and natural gas industries — Materials
for use in H S-containing environments in oil and gas
production —
Part 2:
Cracking-resistant carbon and low-alloy steels, and the use
of cast irons
WARNING — Carbon and low-alloy steels and cast irons selected using this document are
resistant to cracking in defined H S-containing environments in oil and gas production but
not necessarily immune to cracking under all service conditions. It is the equipment user's
responsibility to select the carbon and low alloy steels and cast irons suitable for the intended
service.
1 Scope
This document gives requirements and recommendations for the selection and qualification of carbon
and low-alloy steels for service in equipment used in oil and natural gas production and natural gas
trea
...


INTERNATIONAL ISO
STANDARD 15156-2
Fourth edition
2020-11
Petroleum and natural gas
industries — Materials for use in H S-
containing environments in oil and
gas production —
Part 2:
Cracking-resistant carbon and low-
alloy steels, and the use of cast irons
Industries du pétrole et du gaz naturel — Matériaux pour utilisation
dans des environnements contenant de l'hydrogène sulfuré (H S) dans
la production de pétrole et de gaz —
Partie 2: Aciers au carbone et aciers faiblement alliés résistants à la
fissuration, et utilisation de fontes
Reference number
©
ISO 2020
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 3
4 Symbols and abbreviated terms . 6
5 Purchasing information . 7
6 Factors affecting the behaviour of carbon and low alloy steels in H S-containing
environments . 7
7 Qualification and selection of carbon and low-alloy steels with resistance to SSC,
SOHIC and SZC . 8
7.1 Option 1 — Selection of SSC-resistant steels (and cast irons) using A.2 . 8
7.1.1 For p < 0,3 kPa (0,05 psi) . 8
HS
7.1.2 For p ≥ 0,3 kPa (0,05 psi) . 8
HS
7.2 Option 2 — Selection of steels for specific sour-service applications or for ranges
of sour service . 8
7.2.1 Sulfide stress cracking . 8
7.2.2 SOHIC and SZC .10
7.3 Hardness requirements .10
7.3.1 General.10
7.3.2 Parent metals .10
7.3.3 Welds .11
7.4 Other fabrication methods .16
8 Evaluation of carbon and low alloy steels for their resistance to HIC/SWC .16
9 Marking, labelling, and documentation .17
Annex A (normative) SSC-resistant carbon and low alloy steels (and requirements and
recommendations for the use of cast irons) .18
Annex B (normative) Qualification of carbon and low-alloy steels for H S service by
laboratory testing .27
Annex C (informative) Determination of H S partial pressure and use of alternative parameters .35
Annex D (informative) Recommendations for determining pH .40
Annex E (informative) Information that should be supplied for material purchasing .45
Bibliography .47
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore
structures for petroleum, petrochemical and natural gas industries, in collaboration with the European
Committee for Standardization (CEN) Technical Committee CEN/TC 12, Materials, equipment and
offshore structures for petroleum, petrochemical and natural gas industries, in accordance with the
Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This fourth edition cancels and replaces the third edition (ISO 15156-2:2015), which has been
technically revised. The main changes compared to the previous edition are as follows:
— corrections of temperature conversion for welding (see A.2.1.4), vold deformation and stress relief
(see A.2.1.6), identification stamping (see A.2.1.9), tubulars and tubular components (see A.2.2.3.4),
compressor impellers (see A.2.3.3.2);
— title change from Shear rams to Rams in A.2.3.2.2;
— addition of C110 and changes the designation of C95 to R95 in Table A.3;
— reference change to NACE TM0316 in Table B.1;
— addition of reference to BS 8701 in B.4.3;
— changes and additions to Table B.3;
— modification of Annex C to include alternative parameters and expanded explanation for the use of
chemical activity and fugacity, and to provide some general guidance for the use of thermodynamic
modeling for the determination of environmental severity.
A list of all parts in the ISO 15156 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2020 – All rights reserved

Introduction
The consequences of sudden failures of metallic oil and gas field components, associated with their
exposure to H S-containing production fluids, led to the preparation of the first edition of NACE MR0175,
which was published in 1975 by the National Association of Corrosion Engineers, now known as NACE
International.
The original and subsequent editions of NACE MR0175 established limits of H S partial pressure above
which precautions against sulfide stress cracking (SSC) were always considered necessary. They
also provided guidance for the selection and specification of SSC-resistant materials when the H S
thresholds were exceeded. In more recent editions, NACE MR0175 has also provided application limits
for some corrosion-resistant alloys, in terms of environmental composition and pH, temperature and
H S partial pressures.
In separate developments, the European Federation of Corrosion issued EFC Publication 16 in 1995 and
EFC Publication 17 in 1996. These documents are generally complementary to those of NACE though
they differed in scope and detail.
In 2003, the publication of the ISO 15156-series and NACE MR0175/ISO 15156 was completed for the
first time. These technically identical documents utilized the above sources to provide requirements
and recommendations for materials qualification and selection for application in environments
containing wet H S in oil and gas production systems. They are complemented by NACE TM0177 and
NACE TM0284 test methods.
The revision of this document, i.e. ISO 15156-2,involves a consolidation of all changes agreed
and published in the Technical Circular 1, ISO 15156-2:2015/Cir.1:2017, the Technical Circular 2,
ISO 15156-2:2015/Cir.2:2018 and the Technical Circular 3, ISO 15156-2:2015/Cir.3:2019, published by
the ISO 15156 series Maintenance Agency secretariat at DIN.
The changes were developed by and approved by the ballot of, representative groups from within
the oil and gas production industry. The great majority of these changes stem from issues raised by
document users. A description of the process by which these changes were approved can be found at
the ISO 15156 series maintenance website: www .iso .org/ iso15156maintenance.
When found necessary by oil and gas production industry experts, future interim changes to this
document will be processed in the same way and will lead to interim updates to this document in
the form of Technical Corrigenda or Technical Circulars. Document users should be aware that such
documents can exist and can impact the validity of the dated references in this document.
The ISO 15156 series Maintenance Agency at DIN was set up after approval by the ISO Technical
Management Board given in document 34/2007. This document describes the make up of the agency,
which includes experts from NACE, EFC and ISO/TC 67, and the process for approval of amendments.
It is available from the ISO 15156 series maintenance website and from the ISO/TC 67 Secretariat. The
website also provides access to related documents that provide more detail of the ISO 15156 series
maintenance activities.
INTERNATIONAL STANDARD ISO 15156-2:2020(E)
Petroleum and natural gas industries — Materials
for use in H S-containing environments in oil and gas
production —
Part 2:
Cracking-resistant carbon and low-alloy steels, and the use
of cast irons
WARNING — Carbon and low-alloy steels and cast irons selected using this document are
resistant to cracking in defined H S-containing environments in oil and gas production but
not necessarily immune to cracking under all service conditions. It is the equipment user's
responsibility to select the carbon and low alloy steels and cast irons suitable for the intended
service.
1 Scope
This document gives requirements and recommendations for the selection and qualification of carbon
and low-alloy steels for service in equipment used in oil and natural gas production and natural gas
trea
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.