ISO 6336-1:2019
(Main)Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors
Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors
This document presents the basic principles of, an introduction to, and the general influence factors for the calculation of the load capacity of spur and helical gears. Together with the other documents in the ISO 6336 series, it provides a method by which different gear designs can be compared. It is not intended to assure the performance of assembled drive gear systems. It is not intended for use by the general engineering public. Instead, it is intended for use by the experienced gear designer who is capable of selecting reasonable values for the factors in these formulae based on the knowledge of similar designs and the awareness of the effects of the items discussed. The formulae in the ISO 6336 series are intended to establish a uniformly acceptable method for calculating the load capacity of cylindrical gears with straight or helical involute teeth. The ISO 6336 series includes procedures based on testing and theoretical studies as referenced by each method. The methods are validated for: — normal working pressure angle from 15° to 25°; — reference helix angle up to 30°; — transverse contact ratio from 1,0 to 2,5. If this scope is exceeded, the calculated results will need to be confirmed by experience. The formulae in the ISO 6336 series are not applicable when any of the following conditions exist: — gears with transverse contact ratios less than 1,0; — interference between tooth tips and root fillets; — teeth are pointed; — backlash is zero. The rating formulae in the ISO 6336 series are not applicable to other types of gear tooth deterioration such as plastic deformation, case crushing and wear, and are not applicable under vibratory conditions where there can be an unpredictable profile breakdown. The ISO 6336 series does not apply to teeth finished by forging or sintering. It is not applicable to gears which have a poor contact pattern. The influence factors presented in these methods form a method to predict the risk of damage that aligns with industry and experimental experience. It is possible that they are not entirely scientifically exact. Therefore, the calculation methods from one part of the ISO 6336 series is not applicable in another part of the ISO 6336 series unless specifically referenced. The procedures in the ISO 6336 series provide rating formulae for the calculation of load capacity with regard to different failure modes such as pitting, tooth root breakage, tooth flank fracture, scuffing and micropitting. At pitch line velocities below 1 m/s the gear load capacity is often limited by abrasive wear (see other literature such as References [23] and [22] for further information on such calculation).
Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale — Partie 1: Principes de base, introduction et facteurs généraux d'influence
Le présent document traite des principes de base, de l'introduction et des facteurs généraux d'influence pour le calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale. Associée aux autres documents de la série ISO 6336, elle fournit une méthode qui permet de comparer différentes conceptions d'engrenages. Elle n'a pas pour but de déterminer les performances d'une transmission de puissance par engrenages complète. Elle n'a pas non plus pour but d'être utilisée par des concepteurs généralistes en mécanique. En revanche, elle est destinée à être utilisée par des concepteurs d'engrenages expérimentés, capables de sélectionner, pour chacun des facteurs employés dans les formules, des valeurs raisonnables sur la base de leurs connaissances en matière de conception d'engrenages similaires et conscients des effets des points particuliers discutés. Les formules de la série ISO 6336 sont destinées à établir une méthode homogène pour le calcul de la capacité de charge des engrenages cylindriques à denture en développante droite ou hélicoïdale. La série ISO 6336 contient des modes opératoires basés sur des résultats d'essai et des études théoriques telles que celles qui sont référencées par chaque méthode. Les méthodes sont validées pour: — un angle de pression normal de fonctionnement compris entre 15° et 25°; — un angle de l'hélice de référence allant jusqu'à 30°; — un rapport de conduite apparent compris entre 1,0 et 2,5. Si ces plages sont dépassées, il est alors nécessaire de confirmer les résultats calculés au moyen d'expériences. Les formules de l'ISO 6336 ne sont pas applicables si l'une des conditions suivantes existe: — engrenages avec un rapport de conduite apparent inférieur à 1,0; — interférence de fonctionnement entre les profils en pieds de dents et les têtes de dents; — dents pointues; — jeu entre dents nul. Les formules de calcul de la série ISO 6336 ne s'appliquent pas à d'autres détériorations telles que la déformation plastique, la dislocation et l'usure, ni lorsque les conditions vibratoires sont telles qu'elles peuvent conduire à une rupture de dent imprévisible. La série ISO 6336 ne s'applique pas aux dentures réalisées par forgeage ou frittage, ni aux engrenages qui ont une mauvaise portée de denture.
Izračun nosilnosti ravnozobih in poševnozobih zobnikov - 1. del: Osnove, uvajanje in koeficienti
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-november-2020
Izračun nosilnosti ravnozobih in poševnozobih zobnikov - 1. del: Osnove, uvajanje
in koeficienti
Calculation of load capacity of spur and helical gears - Part 1: Basic principles,
introduction and general influence factors
Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale
Ta slovenski standard je istoveten z: ISO 6336-1:2019
ICS:
21.200 Gonila Gears
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 6336-1
Third edition
2019-11
Calculation of load capacity of spur
and helical gears —
Part 1:
Basic principles, introduction and
general influence factors
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 1: Principes de base, introduction et facteurs généraux
d'influence
Reference number
©
ISO 2019
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
Contents Page
Foreword .vi
Introduction .vii
1 Scope . 1
2 Normative references . 2
3 Terms, definitions, symbols and abbreviated terms . 2
3.1 Terms and definitions . 2
3.2 Symbols and abbreviated terms. 2
4 Basic principles .11
4.1 Application .11
4.1.1 Surface durability (pitting) .11
4.1.2 Tooth bending strength .11
4.1.3 Tooth flank fracture .12
4.1.4 Strength and quality of materials .12
4.1.5 Service life under variable load .12
4.1.6 Scuffing .12
4.1.7 Wear .12
4.1.8 Micropitting . .12
4.1.9 Plastic-yielding .12
4.1.10 Specific applications .12
4.1.11 Safety factors .13
4.1.12 Testing .15
4.1.13 Manufacturing tolerances .15
4.1.14 Implied accuracy .15
4.1.15 Other considerations .15
4.1.16 Influence factors .16
4.1.17 Numerical formulae .18
4.1.18 Succession of factors in the course of calculation .18
4.1.19 Determination of allowable values of gear deviations .18
4.2 Tangential load, torque and power .18
4.2.1 General.18
4.2.2 Nominal tangential load, nominal torque and nominal power .19
4.2.3 Equivalent tangential load, equivalent torque and equivalent power .19
4.2.4 Maximum tangential load, maximum torque and maximal power .19
5 Application factor, K .19
A
5.1 General .19
5.2 Method A — Factor K .20
A-A
5.2.1 Factor K .20
A-A
5.2.2 Factor K for pitting along ISO 6336-2 .20
HA-A
5.2.3 Factor K for tooth root breakage along ISO 6336-3 .20
FA-A
5.2.4 Factor K for tooth flank fracture along ISO/TS 6336-4 .20
FFA-A
5.2.5 Factor K for scuffing along ISO/TS 6336-20/ISO/TS 6336-21 .21
ϑA-A
5.2.6 Factor K for micropitting along ISO/TS 6336-22 .21
λA-A
5.3 Method B — Factor K .21
A-B
5.3.1 General.21
5.3.2 Guide values for application factor, K .21
A-B
6 Internal dynamic factor, K .24
v
6.1 General .24
6.2 Parameters affecting internal dynamic load and calculations .24
6.2.1 Design .24
6.2.2 Manufacturing .24
6.2.3 Transmission perturbance .25
6.2.4 Dynamic response .25
6.2.5 Resonances .25
6.2.6 Application of internal dynamic factor for low loaded gears .26
6.3 Principles and assumptions .26
6.4 Methods for determination of dynamic factor .27
6.4.1 Method A — Factor K .27
v-A
6.4.2 Method B — Factor K .27
v-B
6.4.3 Method C — Factor K .27
v-C
6.5 Determination of dynamic factor using Method B: K .28
v-B
6.5.1 General.28
6.5.2 Running speed ranges .28
6.5.3 Determination of resonance running speed (main resonance) of a gear pair.29
6.5.4 Dynamic factor in subcritical range (N ≤ N ).31
S
6.5.5 Dynamic factor in main resonance range (N < N ≤ 1,15) .34
S
6.5.6 Dynamic factor in supercritical range (N ≥ 1,5) .34
6.5.7 Dynamic factor in intermediate range (1,15 < N < 1,5) .34
6.5.8 Resonance speed determination for specific gear designs .35
6.5.9 Calculation of reduced mass of gear pair with external teeth .37
6.6 Determination of dynamic factor using Method C: K .38
v-C
6.6.1 General.38
6.6.2 Graphical values of dynamic factor using Method C .39
6.6.3 Determination by calculation of dynamic factor using Method C .42
7 Face load factors, K and K .43
Hβ Fβ
7.1 Gear tooth load distribution .43
7.2 General principles for determination of face load factors, K and K .43
Hβ Fβ
7.2.1 General.43
7.2.2 Face load factor for contact stress, K .44
Hβ
7.2.3 Face load factor for tooth root stress, K .44
Fβ
7.3 Methods for determination of face load factor — Principles, assumptions .44
7.3.1 General.44
7.3.2 Method A — Factors K and K .44
Hβ-A Fβ-A
7.3.3 Method B — Factors K and K .45
Hβ-B Fβ-B
7.3.4 Method C — Factors K and K . .45
Hβ-C Fβ-C
7.4 Determination of face load factor using Method B: K .45
Hβ-B
7.4.1 Number of calculation points.45
7.4.2 Definition of K .45
Hβ
7.4.3 Stiffness and elastic deformations .45
7.4.4 Static displacements .49
7.4.5 Assumptions .49
7.4.6 Computer program output .49
7.5 Determination of face load factor using Method C: K .49
Hβ-C
7.5.1 General.49
7.5.2 Effective equivalent misalignment, F . .51
βy
7.5.3 Running-in allowance, y , and running-in factor, χ .51
β β
7.5.4 Mesh misalignment, f .61
ma
7.5.5 Component of mesh misalignment caused by case deformation, f .63
ca
7.5.6 Component of mesh misalignment caused by shaft displacement, f .63
be
7.6 Determination of face load factor for tooth root stress using Method B or C: K .64
Fβ
8 Transverse load factors K and K .65
Hα Fα
8.1 Transverse load distribution.65
8.2 Determination methods for transverse load factors — Principles and assumptions.65
8.2.1 General.65
8.2.2 Method A — Factors K and K .65
Hα-A Fα-A
8.2.3 Method B — Factors K and K . .66
Hα-B Fα-B
8.3 Determination of transverse load factors using Method B — K and K .66
Hα-B Fα-B
8.3.1 General.66
8.3.2 Determination of transverse load factor by calculation .66
8.3.3 Transverse load factors from graphs .67
iv © ISO 2019 – All rights reserved
8.3.4 Limiting conditions for K .67
Hα
8.3.5 Limiting conditions for K .67
Fα
8.3.6 Running-in allowance, y .68
α
9 Tooth stiffness parameters, c′ and c .71
γ
9.1 Stiffness influences .71
9.2 Determination methods for tooth stiffness parameters — Principles and assumptions .71
9.2.1 General.71
9.2.2 Method A — Tooth stiffness parameters c′ and c .72
A γ-A
9.2.3 Method B — Tooth stiffness parameters c′ and c .72
B γ-B
9.3 Determination of tooth stiffness parameters, c′ and c , according to Method B .72
γ
9.3.1 General.72
9.3.2 Single stiffness, c′ .73
9.3.3 Mesh stiffness, c .77
γ
10 Parameter of Hertzian contact .77
10.1 Local radius of relative curvature .77
10.2 Reduced modulus of elasticity, E .78
r
10.3 Local Hertzian contact stress, p .78
dyn,CP
10.3.1 Method A .78
10.3.2 Method B .79
10.4 Half of the Hertzian contact width, b .80
H
10.5 Load distribution along the path of contact.80
10.5.1 Definition of contact points, CP, on the path of contact .80
10.5.2 Load sharing factor, X .82
CP
10.6 Sum of tangential velocity, v . .90
Σ,CP
11 Lubricant parameters at given temperature .91
11.1 General .91
11.2 Kinematic viscosity at a given temperature, v .91
θ
11.3 Density of the lubricant at a given temperature θ, ρ .92
θ
Annex A (normative) Additional methods for determination of f and f .93
sh ma
Annex B (informative) Guide values for crowning and end relief of teeth of cylindrical gears .96
Annex C (informative) Guide values for K for crowned teeth of cylindrical gears .99
Hβ-C
Annex D (informative) Derivations and explanatory notes .102
Annex E (informative) Analytical determination of load distribution .106
Annex F (informative) General symbols used for calculation of load capacity of spur and
helical gears .128
Bibliography .133
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear
capacity calculation.
This third edition cancels and replaces the second edition (ISO 6336-1:2006), which has been technically
revised. It also incorporates the Technical Corrigendum ISO 6336-1:2006/Cor.1:2008.
The main changes compared to the previous edition are as follows:
— incorporation of ISO/TS 6336-4, ISO/TS 6336-20, ISO/TS 6336-21 and ISO/TS 6336-22 into
Clause 4 (failure mode);
— update of application factors in Clause 5;
— integration of Clause 10 "Parameters of Hertzian contact";
— integration of Clause 11 "Lubricant parameters at given temperature".
A list of all parts in the ISO 6336 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
vi © ISO 2019 – All rights reserved
Introduction
ISO 6336 (all parts) consists of International Standards, Technical Specifications (TS) and Technical
Reports (TR) under the general title Calculation of load capacity of spur and helical gears (see Table 1).
— International Standards contain calculation methods that are based on widely accepted practices
and have been validated.
— Technical Specifications (TS) contain calculation methods that are still subject to further
development.
— Technical Reports (TR) contain data that is informative, such as example calculations.
The procedures specified in parts 1 to 19 of the ISO 6336 series cover fatigue analyses for gear rating.
The procedures described in parts 20 to 29 of the ISO 6336 series are predominantly related to the
tribological behavior of the lubricated flank surface contact. Parts 30 to 39 of the ISO 6336 series
include example calculations. The ISO 6336 series allows the addition of new parts under appropriate
numbers to reflect knowledge gained in the future.
Requesting standardized calculations according to the ISO 6336 series without referring to specific
parts requires the use of only those parts that are currently designated as International Standards (see
Table 1 for listing). When requesting further calculations, the relevant part or parts of the ISO 6336
series need to be specified. Use of a Technical Specification as acceptance criteria for a specific design
need to be agreed in advance between the manufacturer and the purchaser.
Table 1 — Parts of the ISO 6336 series (status as of DATE OF PUBLICATION)
Technical
International Technical
Calculation of load capacity of spur and helical gears Specifica-
Standard Report
tion
Part 1: Basic principles, introduction and general influence factors X
Part 2: Calculation of surface durability (pitting) X
Part 3: Calculation of tooth bending strength X
Part 4: Calculation of tooth flank fracture load capacity X
Part 5: Strength and quality of materials X
Part 6: Calculation of service life under variable load X
Part 20: Calculation of scuffing load capacity (also applicable to bevel
and hypoid gears) — Flash temperature method
X
(replaces: ISO/TR 13989-1)
Part 21: Calculation of scuffing load capacity (also applicable to bevel
and hypoid gears) — Integral temperature method
X
(replaces: ISO/TR 13989-2)
Part 22: Calculation of micropitting load capacity
X
(replaces: ISO/TR 15144-1)
Part 30: Calculation examples for the application of ISO 6336 parts 1,2,3,5 X
Part 31: Calculation examples of micropitting load capacity
X
(replaces: ISO/TR 15144-2)
This document and the other parts of the ISO 6336 series provide a coherent system of procedures for
the calculation of the load capacity of cylindrical involute gears with external or internal teeth. The
ISO 6336 series is designed to facilitate the application of future knowledge and developments, also the
exchange of information gained from experience.
Design considerations to prevent fractures emanating from stress raisers in the tooth flank, tip
chipping and failures of the gear blank through the web or hub will need to be analysed by general
machine design methods.
Several methods for the calculation of load capacity, as well as for the calculation of various factors, are
permitted (see 4.1.16). The directions in ISO 6336 are thus complex, but also flexible.
Included in the formulae are the major factors which are presently known to affect gear tooth damages
which are covered by the ISO 6336 series. The formulae are in a form that will permit the addition of
new factors to reflect knowledge gained in the future.
viii © ISO 2019 – All rights reserved
INTERNATIONAL STANDARD ISO 6336-1:2019(E)
Calculation of load capacity of spur and helical gears —
Part 1:
Basic principles, introduction and general influence factors
1 Scope
This document presents the basic principles of, an introduction to, and the general influence factors
for the calculation of the load capacity of spur and helical gears. Together with the other documents
in the ISO 6336 series, it provides a method by which different gear designs can be compared. It is
not intended to assure the performance of assembled drive gear systems. It is not intended for use by
the general engineering public. Instead, it is intended for use by the experienced gear designer who
is capable of selecting reasonable values for the factors in these formulae based on the knowledge of
similar designs and the awareness of the effects of the items discussed.
The formulae in the ISO 6336 series are intended to establish a uniformly acceptable method for
calculating the load capacity of cylindrical gears with straight or helical involute teeth.
The ISO 6336 series includes procedures based on testing and theoretical studies as referenced by each
method. The methods are validated for:
— normal working pressure angle from 15° to 25°;
— reference helix angle up to 30°;
— transverse contact ratio from 1,0 to 2,5.
If this scope is exceeded, the calculated results will need to be confirmed by experience.
The formulae in the ISO 6336 series are not applicable when any of the following conditions exist:
— gears with transverse contact ratios less than 1,0;
— interference between tooth tips and root fillets;
— teeth are pointed;
— backlash is zero.
The rating formulae in the ISO 6336 series are not applicable to other types of gear tooth deterioration
such as plastic deformation, case crushing and wear, and are not applicable under vibratory conditions
where there can be an unpredictable profile breakdown. The ISO 6336 series does not apply to teeth
finished by forging or sintering. It is not applicable to gears which have a poor contact pattern.
The influence factors presented in these methods form a method to predict the risk of damage that
aligns with industry and experimental experience. It is possible that they are not entirely scientifically
exact. Therefore, the calculation methods from one part of the ISO 6336 series is not applicable in
another part of the ISO 6336 series unless specifically referenced.
The procedures in the ISO 6336 series provide rating formulae for the calculation of load capacity with
regard to different failure modes such as pitting, tooth root breakage, tooth flank fracture, scuffing
and micropitting. At pitch line velocities below 1 m/s the gear load capacity is often limited by abrasive
wear (see other literature such as References [23] and [22] for further information on such calculation).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 53:1998, Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile
ISO 1122-1:1998, Vocabulary of gear terms — Part 1: Definitions related to geometry
ISO 1328-1:2013, Cylindrical gears — ISO system of flank tolerance classification — Part 1: Definitions and
allowable values of deviations relevant to flanks of gear teeth
ISO 21771:2007, Gears — Cylindrical involute gears and gear pairs — Concepts and geometry
ISO 6336-2, Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability
(pitting)
ISO 6336-3, Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending
strength
ISO 6336-5, Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of
materials
ISO 6336-6, Calculation of load capacity of spur and helical gears — Part 6: Calculation of service life under
variable load
3 Terms, definitions, symbols and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 1122-1:1998 and
ISO 21771:2007 apply.
ISO and IEC maintain terminological databases for use in standardization at following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.2 Symbols and abbreviated terms
For the purpose of this document, the symbols and abbreviated terms given in ISO 1122-1:1998,
ISO 21771:2007 and Table 2 apply. Further general symbols and abbreviated terms used for the
calculation of load capacity of spur and helical gears can be found in Annex F.
NOTE Symbols are based on, and are extensions of, the symbols given in ISO 701 and ISO 1328-1:2013. Only
symbols for quantities used for the calculation of the particular factors treated in the ISO 6336 series are given,
together with the preferred units.
2 © ISO 2019 – All rights reserved
Table 2 — Abbreviated terms and symbols used in this document
Abbreviated terms
Terms Description
A, B, C, points on path of contact (pinion root to pinion tip, regardless of whether pinion or wheel drives,
D, E only for geometrical considerations)
CP contact point
EAP end of active profile (for driving pinion: contact point E, for driving wheel: contact point A)
Eh material designation for case-hardened wrought steel
GG material designation for grey cast iron
GGG material designation for nodular cast iron (perlitic, bainitic, ferritic structure)
GTS material designation for black malleable cast iron (perlitic structure)
IF material designation for flame or induction hardened wrought special steel
NT material designation for nitrided wrought steel, nitriding steel
NV material designation for through-hardened wrought steel, nitrided, nitrocarburized
SAP start of active profile (for driving pinion: contact point A, for driving wheel: contact point E)
St material designation for normalized base steel (σ < 800 N/mm )
B
V material designation for through-hardened wrought steel, alloy or carbon (σ ≥ 800 N/mm )
B
Symbols
Symbol Description Unit
B total face width of double helical gear including gap width mm
non-dimensional parameter taking into account the effect of profile form deviations
B —
f
on the dynamic load
non-dimensional parameter taking into account the effect of tip and root reliefs on
B —
k
the dynamic load
non-dimensional parameter taking into account the effect of transverse base pitch
B —
p
deviations on the dynamic load
B* constant (see formulae in Clause 7) —
b face width mm
b calculated face width mm
cal
b length of tooth bearing pattern at low load (contact marking) mm
c0
b half of the Hertzian contact width mm
H
b reduced face width (face width minus end reliefs) mm
red
b web thickness mm
s
a
For external gears a, d, d , z and z are positive; for internal gearing, a, d, d and z have a negative sign, z has a
a 1 2 a 2 1
positive sign. All calculated diameters have a negative sign for internal gearing.
b
The components in the plane of action are determinant.
Table 2 (continued)
Symbols
Symbol Description Unit
b face width of one helix on a double helical gear mm
B
b length of end relief mm
I(II)
constant, coefficient —
C
relief of tooth flank µm
C tip relief µm
a
C tip relief by running-in µm
ay
C basic rack factor (same rack for pinion and wheel) —
B
C basic rack factor (pinion) —
B1
C basic rack factor (wheel) —
B2
C root relief µm
f
C correction factor (see Clause 9) —
M
C gear blank factor (see Clause 9) —
R
C crowning height µm
β
C end relief µm
I(II)
c constant —
c mean value of mesh stiffness per unit face width N/(mm·µm)
γ
c mean value of mesh stiffness per unit face width (used for K , K , K ) N/(mm·µm)
γα v Hα Fα
c mean value of mesh stiffness per unit face width (used for K , K ) N/(mm·µm)
γβ Hβ Fβ
c′ maximum tooth stiffness per unit face width (single stiffness) of a tooth pair N/(mm·µm)
c′ theoretical single stiffness N/(mm·µm)
th
D diameter (design) mm
D deflection increment µm
I
a
diameter (without subscript, reference diameter) mm
d
effective twist diameter (Annex E) mm
a
d tip diameter mm
a
d base diameter mm
b
d root diameter mm
f
d inside shaft diameter (Annex E) mm
in
d mean diameter for calculating reduced gear pair mass mm
m
d active tip diameter of pinion or wheel mm
Na
a
For external gears a, d, d , z and z are positive; for internal gearing, a, d, d and z have a negative sign, z has a
a 1 2 a 2 1
positive sign. All calculated diameters have a negative sign for internal gearing.
b
The components in the plane of action are determinant.
4 © ISO 2019 – All rights reserved
Table 2 (continued)
Symbols
Symbol Description Unit
d external diameter of shaft, nominal for bending deflection mm
sh
d internal diameter of a hollow shaft mm
shi
d pitch diameter mm
w
d reference diameter of pinion (or wheel) mm
1,2
E modulus of elasticity N/mm
E reduced modulus of elasticity N/mm
r
composite and cumulative deviations µm
F
force or load N
F nominal transverse load in plane of action (base tangent plane) N
bt
F total load in the plane of action N
bt eff
F total load on the gearset N
g
mean transverse tangential load at the reference circle relevant to mesh calcula-
F N
m
tions, F = F K K K
m t A γ v
F mean transverse tangential part load at reference circle N
m T
F maximum tangential tooth load for the mesh calculated N
max
F (nominal) transverse tangential load at reference cylinder per mesh N
t
determinant tangential load in a transverse plane for K and K ,
Hα Fα
F N
tH
F = F K K K K
tH t A γ v Hβ
F initial equivalent misalignment (before running-in) µm
βx
initial equivalent misalignment for the determination of the crowning height
F µm
βx cv
(estimate)
F equivalent misalignment measured under a partial load µm
βx T
F effective equivalent misalignment (after running-in) µm
βy
f deviation, tooth deformation µm
b
f component of equivalent misalignment due to bearing deformation µm
be
b
f component of equivalent misalignment due to case deformation µm
ca
f load correction factor —
F
profile form deviation (the value for the total profile deviation F may be used alter-
α
f µm
fα
natively for this, if tolerances complying with ISO 1328-1:2013 are used)
f effective profile form deviation after running-in µm
fα eff
b
f mesh misalignment due to manufacturing deviations µm
ma
a
For external gears a, d, d , z and z are positive; for internal gearing, a, d, d and z have a negative sign, z has a
a 1 2 a 2 1
positive sign. All calculated diameters have a negative sign for internal gearing.
b
The components in the plane of action are determinant.
Table 2 (continued)
Symbols
Symbol Description Unit
f transverse effective base pitch deviation after running-in µm
pb eff
f transverse single pitch deviation µm
pt
b
f non-parallelism of pinion and wheel axes (manufacturing deviation) µm
par act
transverse base pitch deviation (the values of f may be used for calculations in ac-
pt
f µm
pb
cordance with the ISO 6336 series, using tolerances complying with ISO 1328-1:2013)
b
componen
...
INTERNATIONAL ISO
STANDARD 6336-1
Third edition
2019-11
Calculation of load capacity of spur
and helical gears —
Part 1:
Basic principles, introduction and
general influence factors
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 1: Principes de base, introduction et facteurs généraux
d'influence
Reference number
©
ISO 2019
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
Contents Page
Foreword .vi
Introduction .vii
1 Scope . 1
2 Normative references . 2
3 Terms, definitions, symbols and abbreviated terms . 2
3.1 Terms and definitions . 2
3.2 Symbols and abbreviated terms. 2
4 Basic principles .11
4.1 Application .11
4.1.1 Surface durability (pitting) .11
4.1.2 Tooth bending strength .11
4.1.3 Tooth flank fracture .12
4.1.4 Strength and quality of materials .12
4.1.5 Service life under variable load .12
4.1.6 Scuffing .12
4.1.7 Wear .12
4.1.8 Micropitting . .12
4.1.9 Plastic-yielding .12
4.1.10 Specific applications .12
4.1.11 Safety factors .13
4.1.12 Testing .15
4.1.13 Manufacturing tolerances .15
4.1.14 Implied accuracy .15
4.1.15 Other considerations .15
4.1.16 Influence factors .16
4.1.17 Numerical formulae .18
4.1.18 Succession of factors in the course of calculation .18
4.1.19 Determination of allowable values of gear deviations .18
4.2 Tangential load, torque and power .18
4.2.1 General.18
4.2.2 Nominal tangential load, nominal torque and nominal power .19
4.2.3 Equivalent tangential load, equivalent torque and equivalent power .19
4.2.4 Maximum tangential load, maximum torque and maximal power .19
5 Application factor, K .19
A
5.1 General .19
5.2 Method A — Factor K .20
A-A
5.2.1 Factor K .20
A-A
5.2.2 Factor K for pitting along ISO 6336-2 .20
HA-A
5.2.3 Factor K for tooth root breakage along ISO 6336-3 .20
FA-A
5.2.4 Factor K for tooth flank fracture along ISO/TS 6336-4 .20
FFA-A
5.2.5 Factor K for scuffing along ISO/TS 6336-20/ISO/TS 6336-21 .21
ϑA-A
5.2.6 Factor K for micropitting along ISO/TS 6336-22 .21
λA-A
5.3 Method B — Factor K .21
A-B
5.3.1 General.21
5.3.2 Guide values for application factor, K .21
A-B
6 Internal dynamic factor, K .24
v
6.1 General .24
6.2 Parameters affecting internal dynamic load and calculations .24
6.2.1 Design .24
6.2.2 Manufacturing .24
6.2.3 Transmission perturbance .25
6.2.4 Dynamic response .25
6.2.5 Resonances .25
6.2.6 Application of internal dynamic factor for low loaded gears .26
6.3 Principles and assumptions .26
6.4 Methods for determination of dynamic factor .27
6.4.1 Method A — Factor K .27
v-A
6.4.2 Method B — Factor K .27
v-B
6.4.3 Method C — Factor K .27
v-C
6.5 Determination of dynamic factor using Method B: K .28
v-B
6.5.1 General.28
6.5.2 Running speed ranges .28
6.5.3 Determination of resonance running speed (main resonance) of a gear pair.29
6.5.4 Dynamic factor in subcritical range (N ≤ N ).31
S
6.5.5 Dynamic factor in main resonance range (N < N ≤ 1,15) .34
S
6.5.6 Dynamic factor in supercritical range (N ≥ 1,5) .34
6.5.7 Dynamic factor in intermediate range (1,15 < N < 1,5) .34
6.5.8 Resonance speed determination for specific gear designs .35
6.5.9 Calculation of reduced mass of gear pair with external teeth .37
6.6 Determination of dynamic factor using Method C: K .38
v-C
6.6.1 General.38
6.6.2 Graphical values of dynamic factor using Method C .39
6.6.3 Determination by calculation of dynamic factor using Method C .42
7 Face load factors, K and K .43
Hβ Fβ
7.1 Gear tooth load distribution .43
7.2 General principles for determination of face load factors, K and K .43
Hβ Fβ
7.2.1 General.43
7.2.2 Face load factor for contact stress, K .44
Hβ
7.2.3 Face load factor for tooth root stress, K .44
Fβ
7.3 Methods for determination of face load factor — Principles, assumptions .44
7.3.1 General.44
7.3.2 Method A — Factors K and K .44
Hβ-A Fβ-A
7.3.3 Method B — Factors K and K .45
Hβ-B Fβ-B
7.3.4 Method C — Factors K and K . .45
Hβ-C Fβ-C
7.4 Determination of face load factor using Method B: K .45
Hβ-B
7.4.1 Number of calculation points.45
7.4.2 Definition of K .45
Hβ
7.4.3 Stiffness and elastic deformations .45
7.4.4 Static displacements .49
7.4.5 Assumptions .49
7.4.6 Computer program output .49
7.5 Determination of face load factor using Method C: K .49
Hβ-C
7.5.1 General.49
7.5.2 Effective equivalent misalignment, F . .51
βy
7.5.3 Running-in allowance, y , and running-in factor, χ .51
β β
7.5.4 Mesh misalignment, f .61
ma
7.5.5 Component of mesh misalignment caused by case deformation, f .63
ca
7.5.6 Component of mesh misalignment caused by shaft displacement, f .63
be
7.6 Determination of face load factor for tooth root stress using Method B or C: K .64
Fβ
8 Transverse load factors K and K .65
Hα Fα
8.1 Transverse load distribution.65
8.2 Determination methods for transverse load factors — Principles and assumptions.65
8.2.1 General.65
8.2.2 Method A — Factors K and K .65
Hα-A Fα-A
8.2.3 Method B — Factors K and K . .66
Hα-B Fα-B
8.3 Determination of transverse load factors using Method B — K and K .66
Hα-B Fα-B
8.3.1 General.66
8.3.2 Determination of transverse load factor by calculation .66
8.3.3 Transverse load factors from graphs .67
iv © ISO 2019 – All rights reserved
8.3.4 Limiting conditions for K .67
Hα
8.3.5 Limiting conditions for K .67
Fα
8.3.6 Running-in allowance, y .68
α
9 Tooth stiffness parameters, c′ and c .71
γ
9.1 Stiffness influences .71
9.2 Determination methods for tooth stiffness parameters — Principles and assumptions .71
9.2.1 General.71
9.2.2 Method A — Tooth stiffness parameters c′ and c .72
A γ-A
9.2.3 Method B — Tooth stiffness parameters c′ and c .72
B γ-B
9.3 Determination of tooth stiffness parameters, c′ and c , according to Method B .72
γ
9.3.1 General.72
9.3.2 Single stiffness, c′ .73
9.3.3 Mesh stiffness, c .77
γ
10 Parameter of Hertzian contact .77
10.1 Local radius of relative curvature .77
10.2 Reduced modulus of elasticity, E .78
r
10.3 Local Hertzian contact stress, p .78
dyn,CP
10.3.1 Method A .78
10.3.2 Method B .79
10.4 Half of the Hertzian contact width, b .80
H
10.5 Load distribution along the path of contact.80
10.5.1 Definition of contact points, CP, on the path of contact .80
10.5.2 Load sharing factor, X .82
CP
10.6 Sum of tangential velocity, v . .90
Σ,CP
11 Lubricant parameters at given temperature .91
11.1 General .91
11.2 Kinematic viscosity at a given temperature, v .91
θ
11.3 Density of the lubricant at a given temperature θ, ρ .92
θ
Annex A (normative) Additional methods for determination of f and f .93
sh ma
Annex B (informative) Guide values for crowning and end relief of teeth of cylindrical gears .96
Annex C (informative) Guide values for K for crowned teeth of cylindrical gears .99
Hβ-C
Annex D (informative) Derivations and explanatory notes .102
Annex E (informative) Analytical determination of load distribution .106
Annex F (informative) General symbols used for calculation of load capacity of spur and
helical gears .128
Bibliography .133
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear
capacity calculation.
This third edition cancels and replaces the second edition (ISO 6336-1:2006), which has been technically
revised. It also incorporates the Technical Corrigendum ISO 6336-1:2006/Cor.1:2008.
The main changes compared to the previous edition are as follows:
— incorporation of ISO/TS 6336-4, ISO/TS 6336-20, ISO/TS 6336-21 and ISO/TS 6336-22 into
Clause 4 (failure mode);
— update of application factors in Clause 5;
— integration of Clause 10 "Parameters of Hertzian contact";
— integration of Clause 11 "Lubricant parameters at given temperature".
A list of all parts in the ISO 6336 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
vi © ISO 2019 – All rights reserved
Introduction
ISO 6336 (all parts) consists of International Standards, Technical Specifications (TS) and Technical
Reports (TR) under the general title Calculation of load capacity of spur and helical gears (see Table 1).
— International Standards contain calculation methods that are based on widely accepted practices
and have been validated.
— Technical Specifications (TS) contain calculation methods that are still subject to further
development.
— Technical Reports (TR) contain data that is informative, such as example calculations.
The procedures specified in parts 1 to 19 of the ISO 6336 series cover fatigue analyses for gear rating.
The procedures described in parts 20 to 29 of the ISO 6336 series are predominantly related to the
tribological behavior of the lubricated flank surface contact. Parts 30 to 39 of the ISO 6336 series
include example calculations. The ISO 6336 series allows the addition of new parts under appropriate
numbers to reflect knowledge gained in the future.
Requesting standardized calculations according to the ISO 6336 series without referring to specific
parts requires the use of only those parts that are currently designated as International Standards (see
Table 1 for listing). When requesting further calculations, the relevant part or parts of the ISO 6336
series need to be specified. Use of a Technical Specification as acceptance criteria for a specific design
need to be agreed in advance between the manufacturer and the purchaser.
Table 1 — Parts of the ISO 6336 series (status as of DATE OF PUBLICATION)
Technical
International Technical
Calculation of load capacity of spur and helical gears Specifica-
Standard Report
tion
Part 1: Basic principles, introduction and general influence factors X
Part 2: Calculation of surface durability (pitting) X
Part 3: Calculation of tooth bending strength X
Part 4: Calculation of tooth flank fracture load capacity X
Part 5: Strength and quality of materials X
Part 6: Calculation of service life under variable load X
Part 20: Calculation of scuffing load capacity (also applicable to bevel
and hypoid gears) — Flash temperature method
X
(replaces: ISO/TR 13989-1)
Part 21: Calculation of scuffing load capacity (also applicable to bevel
and hypoid gears) — Integral temperature method
X
(replaces: ISO/TR 13989-2)
Part 22: Calculation of micropitting load capacity
X
(replaces: ISO/TR 15144-1)
Part 30: Calculation examples for the application of ISO 6336 parts 1,2,3,5 X
Part 31: Calculation examples of micropitting load capacity
X
(replaces: ISO/TR 15144-2)
This document and the other parts of the ISO 6336 series provide a coherent system of procedures for
the calculation of the load capacity of cylindrical involute gears with external or internal teeth. The
ISO 6336 series is designed to facilitate the application of future knowledge and developments, also the
exchange of information gained from experience.
Design considerations to prevent fractures emanating from stress raisers in the tooth flank, tip
chipping and failures of the gear blank through the web or hub will need to be analysed by general
machine design methods.
Several methods for the calculation of load capacity, as well as for the calculation of various factors, are
permitted (see 4.1.16). The directions in ISO 6336 are thus complex, but also flexible.
Included in the formulae are the major factors which are presently known to affect gear tooth damages
which are covered by the ISO 6336 series. The formulae are in a form that will permit the addition of
new factors to reflect knowledge gained in the future.
viii © ISO 2019 – All rights reserved
INTERNATIONAL STANDARD ISO 6336-1:2019(E)
Calculation of load capacity of spur and helical gears —
Part 1:
Basic principles, introduction and general influence factors
1 Scope
This document presents the basic principles of, an introduction to, and the general influence factors
for the calculation of the load capacity of spur and helical gears. Together with the other documents
in the ISO 6336 series, it provides a method by which different gear designs can be compared. It is
not intended to assure the performance of assembled drive gear systems. It is not intended for use by
the general engineering public. Instead, it is intended for use by the experienced gear designer who
is capable of selecting reasonable values for the factors in these formulae based on the knowledge of
similar designs and the awareness of the effects of the items discussed.
The formulae in the ISO 6336 series are intended to establish a uniformly acceptable method for
calculating the load capacity of cylindrical gears with straight or helical involute teeth.
The ISO 6336 series includes procedures based on testing and theoretical studies as referenced by each
method. The methods are validated for:
— normal working pressure angle from 15° to 25°;
— reference helix angle up to 30°;
— transverse contact ratio from 1,0 to 2,5.
If this scope is exceeded, the calculated results will need to be confirmed by experience.
The formulae in the ISO 6336 series are not applicable when any of the following conditions exist:
— gears with transverse contact ratios less than 1,0;
— interference between tooth tips and root fillets;
— teeth are pointed;
— backlash is zero.
The rating formulae in the ISO 6336 series are not applicable to other types of gear tooth deterioration
such as plastic deformation, case crushing and wear, and are not applicable under vibratory conditions
where there can be an unpredictable profile breakdown. The ISO 6336 series does not apply to teeth
finished by forging or sintering. It is not applicable to gears which have a poor contact pattern.
The influence factors presented in these methods form a method to predict the risk of damage that
aligns with industry and experimental experience. It is possible that they are not entirely scientifically
exact. Therefore, the calculation methods from one part of the ISO 6336 series is not applicable in
another part of the ISO 6336 series unless specifically referenced.
The procedures in the ISO 6336 series provide rating formulae for the calculation of load capacity with
regard to different failure modes such as pitting, tooth root breakage, tooth flank fracture, scuffing
and micropitting. At pitch line velocities below 1 m/s the gear load capacity is often limited by abrasive
wear (see other literature such as References [23] and [22] for further information on such calculation).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 53:1998, Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile
ISO 1122-1:1998, Vocabulary of gear terms — Part 1: Definitions related to geometry
ISO 1328-1:2013, Cylindrical gears — ISO system of flank tolerance classification — Part 1: Definitions and
allowable values of deviations relevant to flanks of gear teeth
ISO 21771:2007, Gears — Cylindrical involute gears and gear pairs — Concepts and geometry
ISO 6336-2, Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability
(pitting)
ISO 6336-3, Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending
strength
ISO 6336-5, Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of
materials
ISO 6336-6, Calculation of load capacity of spur and helical gears — Part 6: Calculation of service life under
variable load
3 Terms, definitions, symbols and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 1122-1:1998 and
ISO 21771:2007 apply.
ISO and IEC maintain terminological databases for use in standardization at following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.2 Symbols and abbreviated terms
For the purpose of this document, the symbols and abbreviated terms given in ISO 1122-1:1998,
ISO 21771:2007 and Table 2 apply. Further general symbols and abbreviated terms used for the
calculation of load capacity of spur and helical gears can be found in Annex F.
NOTE Symbols are based on, and are extensions of, the symbols given in ISO 701 and ISO 1328-1:2013. Only
symbols for quantities used for the calculation of the particular factors treated in the ISO 6336 series are given,
together with the preferred units.
2 © ISO 2019 – All rights reserved
Table 2 — Abbreviated terms and symbols used in this document
Abbreviated terms
Terms Description
A, B, C, points on path of contact (pinion root to pinion tip, regardless of whether pinion or wheel drives,
D, E only for geometrical considerations)
CP contact point
EAP end of active profile (for driving pinion: contact point E, for driving wheel: contact point A)
Eh material designation for case-hardened wrought steel
GG material designation for grey cast iron
GGG material designation for nodular cast iron (perlitic, bainitic, ferritic structure)
GTS material designation for black malleable cast iron (perlitic structure)
IF material designation for flame or induction hardened wrought special steel
NT material designation for nitrided wrought steel, nitriding steel
NV material designation for through-hardened wrought steel, nitrided, nitrocarburized
SAP start of active profile (for driving pinion: contact point A, for driving wheel: contact point E)
St material designation for normalized base steel (σ < 800 N/mm )
B
V material designation for through-hardened wrought steel, alloy or carbon (σ ≥ 800 N/mm )
B
Symbols
Symbol Description Unit
B total face width of double helical gear including gap width mm
non-dimensional parameter taking into account the effect of profile form deviations
B —
f
on the dynamic load
non-dimensional parameter taking into account the effect of tip and root reliefs on
B —
k
the dynamic load
non-dimensional parameter taking into account the effect of transverse base pitch
B —
p
deviations on the dynamic load
B* constant (see formulae in Clause 7) —
b face width mm
b calculated face width mm
cal
b length of tooth bearing pattern at low load (contact marking) mm
c0
b half of the Hertzian contact width mm
H
b reduced face width (face width minus end reliefs) mm
red
b web thickness mm
s
a
For external gears a, d, d , z and z are positive; for internal gearing, a, d, d and z have a negative sign, z has a
a 1 2 a 2 1
positive sign. All calculated diameters have a negative sign for internal gearing.
b
The components in the plane of action are determinant.
Table 2 (continued)
Symbols
Symbol Description Unit
b face width of one helix on a double helical gear mm
B
b length of end relief mm
I(II)
constant, coefficient —
C
relief of tooth flank µm
C tip relief µm
a
C tip relief by running-in µm
ay
C basic rack factor (same rack for pinion and wheel) —
B
C basic rack factor (pinion) —
B1
C basic rack factor (wheel) —
B2
C root relief µm
f
C correction factor (see Clause 9) —
M
C gear blank factor (see Clause 9) —
R
C crowning height µm
β
C end relief µm
I(II)
c constant —
c mean value of mesh stiffness per unit face width N/(mm·µm)
γ
c mean value of mesh stiffness per unit face width (used for K , K , K ) N/(mm·µm)
γα v Hα Fα
c mean value of mesh stiffness per unit face width (used for K , K ) N/(mm·µm)
γβ Hβ Fβ
c′ maximum tooth stiffness per unit face width (single stiffness) of a tooth pair N/(mm·µm)
c′ theoretical single stiffness N/(mm·µm)
th
D diameter (design) mm
D deflection increment µm
I
a
diameter (without subscript, reference diameter) mm
d
effective twist diameter (Annex E) mm
a
d tip diameter mm
a
d base diameter mm
b
d root diameter mm
f
d inside shaft diameter (Annex E) mm
in
d mean diameter for calculating reduced gear pair mass mm
m
d active tip diameter of pinion or wheel mm
Na
a
For external gears a, d, d , z and z are positive; for internal gearing, a, d, d and z have a negative sign, z has a
a 1 2 a 2 1
positive sign. All calculated diameters have a negative sign for internal gearing.
b
The components in the plane of action are determinant.
4 © ISO 2019 – All rights reserved
Table 2 (continued)
Symbols
Symbol Description Unit
d external diameter of shaft, nominal for bending deflection mm
sh
d internal diameter of a hollow shaft mm
shi
d pitch diameter mm
w
d reference diameter of pinion (or wheel) mm
1,2
E modulus of elasticity N/mm
E reduced modulus of elasticity N/mm
r
composite and cumulative deviations µm
F
force or load N
F nominal transverse load in plane of action (base tangent plane) N
bt
F total load in the plane of action N
bt eff
F total load on the gearset N
g
mean transverse tangential load at the reference circle relevant to mesh calcula-
F N
m
tions, F = F K K K
m t A γ v
F mean transverse tangential part load at reference circle N
m T
F maximum tangential tooth load for the mesh calculated N
max
F (nominal) transverse tangential load at reference cylinder per mesh N
t
determinant tangential load in a transverse plane for K and K ,
Hα Fα
F N
tH
F = F K K K K
tH t A γ v Hβ
F initial equivalent misalignment (before running-in) µm
βx
initial equivalent misalignment for the determination of the crowning height
F µm
βx cv
(estimate)
F equivalent misalignment measured under a partial load µm
βx T
F effective equivalent misalignment (after running-in) µm
βy
f deviation, tooth deformation µm
b
f component of equivalent misalignment due to bearing deformation µm
be
b
f component of equivalent misalignment due to case deformation µm
ca
f load correction factor —
F
profile form deviation (the value for the total profile deviation F may be used alter-
α
f µm
fα
natively for this, if tolerances complying with ISO 1328-1:2013 are used)
f effective profile form deviation after running-in µm
fα eff
b
f mesh misalignment due to manufacturing deviations µm
ma
a
For external gears a, d, d , z and z are positive; for internal gearing, a, d, d and z have a negative sign, z has a
a 1 2 a 2 1
positive sign. All calculated diameters have a negative sign for internal gearing.
b
The components in the plane of action are determinant.
Table 2 (continued)
Symbols
Symbol Description Unit
f transverse effective base pitch deviation after running-in µm
pb eff
f transverse single pitch deviation µm
pt
b
f non-parallelism of pinion and wheel axes (manufacturing deviation) µm
par act
transverse base pitch deviation (the values of f may be used for calculations in ac-
pt
f µm
pb
cordance with the ISO 6336 series, using tolerances complying with ISO 1328-1:2013)
b
component of equivalent misalignment due to deformations of pinion and wheel
f µm
sh
shafts
component of misalignment due to shaft and pinion deformation measured at a
f µm
shT
partial load
f shaft parallelism out-of-plane deviation according to ISO/TR 10064-3:1996 —
Σβ
helix slope deviation (the value for the total helix deviation F may be used alterna-
β
f µm
Hβ
tively for this, if tolerances complying with ISO 1328-1:2013 are used)
f effective single profile deviation µm
α eff
f torsional deflection µm
δ
f tolerance on helix slope deviation for ISO tolerance class 5 µm
Hβ5
G shear modulus N/mm
g path of contact mm
g length of path of contact mm
α
h tooth depth (without subscript, root circle to tip circle) mm
h addendum of basic rack of cylindrical gears mm
aP
h dedendum of basic rack of cylindrical gears mm
fP
h tooth height mm
t
I moment of inertia mm
I integration constant µm
CS
J* moment of inertia per unit face width kg∙mm /mm
K constant, factors concerning tooth load —
K′ constant of the pinion offset
...
NORME ISO
INTERNATIONALE 6336-1
Troisième édition
2019-11
Calcul de la capacité de charge des
engrenages cylindriques à dentures
droite et hélicoïdale —
Partie 1:
Principes de base, introduction et
facteurs généraux d'influence
Calculation of load capacity of spur and helical gears —
Part 1: Basic principles, introduction and general influence factors
Numéro de référence
©
ISO 2019
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés
Sommaire Page
Avant-propos .vi
Introduction .vii
1 Domaine d'application . 1
2 Références normatives . 2
3 Termes, définitions, symboles et termes abrégés . 2
3.1 Termes et définitions . 2
3.2 Symboles et termes abrégés . 2
4 Principes de base . 9
4.1 Application . 9
4.1.1 Résistance à la pression de contact (piqûre) . 9
4.1.2 Résistance à la flexion en pied de dent . 9
4.1.3 Rupture en flanc des dents . 9
4.1.4 Résistance et qualité des matériaux . 9
4.1.5 Durée de vie en service sous charge variable .10
4.1.6 Grippage .10
4.1.7 Usure .10
4.1.8 Microécaillages .10
4.1.9 Déformation plastique .10
4.1.10 Applications spécifiques .10
4.1.11 Coefficients de sécurité .11
4.1.12 Essais.13
4.1.13 Tolérances de fabrication .13
4.1.14 Exactitude implicite . . .13
4.1.15 Autres considérations . . .13
4.1.16 Facteurs d’influence .15
4.1.17 Formules numériques .16
4.1.18 Ordre de succession des facteurs au cours du calcul.16
4.1.19 Détermination des valeurs admissibles des écarts de roue .17
4.2 Effort tangentiel, couple, puissance .17
4.2.1 Généralités .17
4.2.2 Effort tangentiel nominal, couple nominal, puissance nominale .17
4.2.3 Effort tangentiel équivalent, couple équivalent, puissance équivalente .18
4.2.4 Effort tangentiel maximum, couple maximum, puissance maximale.18
5 Facteur d’application, K .18
A
5.1 Généralités .18
5.2 Méthode A – Facteur K .
A-A 19
5.2.1 Facteur K .
A-A 19
5.2.2 Facteur K pour les piqûres selon l’ISO 6336-2 .19
HA-A
5.2.3 Facteur K pour la rupture en pied de dent selon l’ISO 6336-3 .19
FA-A
5.2.4 Facteur K pour la rupture en flanc de dent selon l’ISO/TS 6336-4 .19
FFA-A
5.2.5 Facteur K pour le grippage selon l’ISO/TS 6336-20/ISO/TS 6336-21 .20
ϑA-A
5.2.6 Facteur K pour les microécaillages selon l’ISO/TS 6336-22 .20
λA-A
5.3 Méthode B — Facteur K .
A-B 20
5.3.1 Généralités .20
5.3.2 Guide de valeurs pour le facteur d’application, K .
A-B 20
6 Facteur dynamique interne, K .23
v
6.1 Généralités .23
6.2 Paramètres influençant les charges dynamiques internes et calcul .23
6.2.1 Conception .23
6.2.2 Fabrication .24
6.2.3 Perturbation sur la transmission .24
6.2.4 Réponse dynamique . .25
6.2.5 Résonances .25
6.2.6 Application du facteur dynamique interne pour les engrenages faiblement
chargés.25
6.3 Principes et hypothèses .26
6.4 Méthodes pour la détermination du facteur dynamique .26
6.4.1 Méthode A — Facteur K .
v-A 26
6.4.2 Méthode B — Facteur K .
v-B 27
6.4.3 Méthode C — Facteur K .
v-C 27
6.5 Détermination du facteur dynamique suivant la Méthode B: K .
v-B 27
6.5.1 Généralités .27
6.5.2 Domaines des vitesses de fonctionnement .28
6.5.3 Détermination de la vitesse de résonance (résonance principale) d’une
paire de roues dentées .29
6.5.4 Facteur dynamique dans le domaine subcritique (N ≤ N ) .31
S
6.5.5 Facteur dynamique dans le domaine de résonance principale (N < N ≤ 1,15) .34
S
6.5.6 Facteur dynamique dans le domaine supercritique (N ≥ 1,5) .34
6.5.7 Facteur dynamique dans le domaine intermédiaire (1,15 < N < 1,5) .35
6.5.8 Détermination de la vitesse de résonance pour des conceptions
d’engrenages spécifiques .35
6.5.9 Calcul de la masse réduite d’un engrenage à denture extérieure .37
6.6 Détermination du facteur dynamique suivant la Méthode C: K .
v-C 38
6.6.1 Généralités .38
6.6.2 Valeurs graphiques du facteur dynamique suivant la Méthode C .39
6.6.3 Détermination par calcul du facteur dynamique suivant la Méthode C .42
7 Facteur de distribution longitudinale de la charge K et K .43
Hβ Fβ
7.1 Distribution longitudinale de la charge .43
7.2 Principes généraux de détermination des facteurs de distribution longitudinale de
la charge, K et K .
Hβ Fβ 44
7.2.1 Généralités .44
7.2.2 Facteur de distribution longitudinale de la charge pour la pression de
contact K .
Hβ 44
7.2.3 Facteur de distribution longitudinale de la charge pour la contrainte en
pied de dent K .
Fβ 44
7.3 Méthodes pour la détermination du facteur de distribution longitudinale de la
charge — Principes, hypothèses .44
7.3.1 Généralités .44
7.3.2 Méthode A – Facteurs K et K .
Hβ-A Fβ-A 45
7.3.3 Méthode B – Facteurs K et K .
Hβ-B Fβ-B 45
7.3.4 Méthode C – Facteurs K et K .
Hβ-C Fβ-C 45
7.4 Détermination du facteur de distribution longitudinale de la charge en appliquant
la Méthode B: K .
Hβ-B 45
7.4.1 Nombre de points de calcul .45
7.4.2 Définition de K .
Hβ 45
7.4.3 Rigidité et déformations élastiques .46
7.4.4 Déplacements statiques .49
7.4.5 Hypothèses .49
7.4.6 Résultat de programme sur ordinateur .49
7.5 Détermination du facteur de distribution longitudinale de la charge à l’aide de la
Méthode C: K .
Hβ-C 50
7.5.1 Généralités .50
7.5.2 Désalignement équivalent effectif F .
βy 51
7.5.3 Tolérance de rodage y et facteur de rodage χ .
β β 52
7.5.4 Désalignement d’engrènement, f .
ma 62
7.5.5 Composante du désalignement d’engrènement dû aux déformations du
carter, f .
ca 65
7.5.6 Composante du désalignement d’engrènement dû au déplacement des
arbres, f .
be 65
iv © ISO 2019 – Tous droits réservés
7.6 Détermination du facteur de distribution longitudinale de la charge de face pour la
contrainte en pied de dent à l’aide de la Méthode B ou C: K .
Fβ 66
8 Facteurs de distribution transversale de la charge K et K .67
Hα Fα
8.1 Distribution transversale de la charge .67
8.2 Méthodes pour la détermination des facteurs de distribution transversale de la
charge — Principes et hypothèses .67
8.2.1 Généralités .67
8.2.2 Méthode A — Facteurs K et K .
Hα-A Fα-A 67
8.2.3 Méthode B — Facteurs K et K .
Hα-B Fα-B 67
8.3 Détermination des facteurs de distribution transversale de la charge suivant la
Méthode B — K et K .
Hα-B Fα-B 68
8.3.1 Généralités .68
8.3.2 Détermination du facteur de distribution transversale de la charge par calcul .68
8.3.3 Facteurs de distribution transversale de la charge à partir des graphiques.69
8.3.4 Conditions restrictives pour K .
Hα 69
8.3.5 Conditions restrictives pour K .
Fα 69
8.3.6 Tolérance de rodage, y .
α 70
9 Paramètres de rigidités de la denture c′ et c .74
γ
9.1 Influences sur la rigidité .74
9.2 Méthodes pour la détermination des rigidités de denture — Principes et hypothèses .74
9.2.1 Généralités .74
9.2.2 Méthode A – Paramètres de rigidités de la denture c’ et c .
A γ-A 75
9.2.3 Méthode B – Paramètres de rigidités de la denture c’ et c .
B γ-B 75
9.3 Détermination des rigidités de denture c’ et c suivant la Méthode B .75
γ
9.3.1 Généralités .75
9.3.2 Rigidité simple c’ . 76
9.3.3 Rigidité d’engrènement, c .
γ 80
10 Paramètre de la pression de Hertz .80
10.1 Rayon de courbure équivalent local .80
10.2 Module d’élasticité réduit, E .
r 81
10.3 Pression de Hertz locale, p .
dyn,CP 81
10.3.1 Méthode A .81
10.3.2 Méthode B .82
10.4 Demi-largeur de contact de Hertzien, b .
H 83
10.5 Partage de la charge le long de la ligne de conduite .83
10.5.1 Définition des points de contact, CP, sur la ligne de conduite .83
10.5.2 Facteur de partage de charge, X .
CP 85
10.6 Somme des vitesses tangentielles v .
Σ,CP 93
11 Paramètres du lubrifiant à une température donnée .94
11.1 Généralités .94
11.2 Viscosité cinématique à une température donnée, v .
θ 94
11.3 Densité du lubrifiant à une température donnée, ρ .
θ 95
Annexe A (normative) Méthodes supplémentaires pour la détermination de f et f .96
sh ma
Annexe B (informative) Guide pour évaluer le bombé et les dépouilles d’extrémité des
dents d’engrenages cylindriques .99
Annexe C (informative) Guide pour évaluer K pour les dents d’engrenages cylindriques
Hβ-C
bombées .102
Annexe D (informative) Dérivations et notes explicatives .105
Annexe E (informative) Détermination analytique de la distribution de la charge .109
Annexe F (informative) Symboles généraux utilisés dans le calcul de la capacité de charge
des engrenages cylindriques à dentures droite et hélicoïdale . .132
Bibliographie .136
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/ iso/ fr/ avant -propos .html.
Le présent document a été élaboré par le comité technique ISO/TC 60, Engrenages, sous-comité SC 2,
Calcul de la capacité des engrenages.
Cette troisième édition annule et remplace la deuxième édition (ISO 6336-1:2006), qui a fait l’objet d’une
révision technique. Le rectificatif technique ISO 6336-1:2006/Cor.1:2008 est incorporé.
Les principales modifications par rapport à l’édition précédente sont les suivantes:
— incorporation des ISO/TS 6336-4, ISO/TS 6336-20, ISO/TS 6336-21 et ISO/TS 6336-22 dans
l’Article 4 (mode de défaillance);
— mise à jour des facteurs d’application à l’Article 5;
— intégration de l’Article 10 «Paramètres de pression de Hertz»;
— intégration de l’Article 11 «Paramètres du lubrifiant à une température donnée».
Une liste de toutes les parties de la série ISO 6336 se trouve sur le site Web de l’ISO.
Il convient d’adresser tout retour ou toute question concernant le présent document à l’organisme
national de normalisation de l’utilisateur. La liste complète de ces organismes est disponible sur
www .iso .org/ members .html.
vi © ISO 2019 – Tous droits réservés
Introduction
L’ISO 6336 (toutes les parties) est constituée de Normes internationales, de Spécifications techniques
(TS) et de Rapports techniques (TR) regroupés sous le titre général Calcul de la capacité de charge des
engrenages cylindriques à dentures droite et hélicoïdale — (voir Tableau 1).
— Les Normes internationales contiennent des méthodes de calcul qui sont basées sur des pratiques
largement acceptées et qui ont été validées.
— Les Spécifications techniques (TS) contiennent des méthodes de calcul qui sont toujours en cours de
développement.
— Les Rapports techniques (TR) contiennent des données informatives, telles que des exemples de
calculs.
Les modes opératoires spécifiés dans les parties 1 à 19 de la série ISO 6336 traitent des analyses de
la fatigue pour l’évaluation de la tenue en fatigue des engrenages. Les modes opératoires décrits dans
les parties 20 à 29 de la série ISO 6336 sont principalement associés au comportement tribologique
du contact de surface des flancs de denture lubrifiée. Les parties 30 à 39 de la série ISO 6336 incluent
des exemples de calcul. La série ISO 6336 permet d’ajouter de nouvelles parties sous des numéros
appropriés, afin d’intégrer les connaissances acquises ultérieurement.
La demande de calculs normalisés conformément à la série ISO 6336 sans référence à des parties
spécifiques exige d’utiliser uniquement les parties qui sont actuellement désignées comme Normes
internationales (voir liste du Tableau 1). En cas de demande de calculs supplémentaires, il est nécessaire
de spécifier la ou les parties concernées de la série ISO 6336. Il est nécessaire que l’utilisation d’une
Spécification technique comme critère d’acceptation pour une conception spécifique fasse l’objet d’un
accord préalable entre le fabricant et l’acheteur.
Tableau 1 — Parties de la série ISO 6336 (statut à la DATE DE PUBLICATION)
Calcul de la capacité de charge des engrenages cylin- Norme interna- Spécification Rapport
driques à dentures droite et hélicoïdale tionale technique technique
Partie 1: Principes de base, introduction et facteurs généraux
X
d’influence
Partie 2: Calcul de la tenue en fatigue à la pression de contact
X
(écaillage)
Partie 3: Calcul de la tenue en fatigue à la flexion en pied de dent X
Partie 4: Calcul de la capacité de charge de la rupture en flanc de
X
dent
Partie 5: Résistance et qualité des matériaux X
Partie 6: Calcul de la durée de vie en service sous charge variable X
Partie 20: Calcul de la capacité de charge au grippage (applicable
également aux engrenages coniques et hypoïdes) — Méthode de la
X
température éclair
(remplace: ISO/TR 13989-1)
Partie 21: Calcul de la capacité de charge au grippage (applicable
également aux engrenages coniques et hypoïdes) — Méthode de la
X
température intégrale
(Remplace: ISO/TR 13989-2)
Partie 22: Calcul de la capacité de charge aux micropiqûres
X
(remplace: ISO/TR 15144-1)
Partie 30: Exemples d’application de l’ISO 6336 Parties 1, 2, 3 et 5 X
Tableau 1 (suite)
Calcul de la capacité de charge des engrenages cylin- Norme interna- Spécification Rapport
driques à dentures droite et hélicoïdale tionale technique technique
Partie 31: Exemples de calcul de la capacité de charge aux micro-
piqûres X
(Remplace: ISO/TR 15144-2)
La présente partie et les autres parties de la série ISO 6336 fournissent un système cohérent de
méthodes pour le calcul de la capacité de charge des engrenages cylindriques à denture intérieure ou
extérieure et à profil en développante de cercle. La série ISO 6336 est conçue pour faciliter l’application
des résultats des connaissances et développements futurs, mais aussi les échanges d’informations
issues de l’expérience.
Il est nécessaire d’analyser, par des méthodes générales de conception d’éléments de machine, les
particularités de conception destinées à éviter les ruptures émanant d’un niveau de contrainte élevé au
niveau du flanc de dent, de l’ébréchage des têtes de dents et des ruptures du corps de roue au niveau du
voile ou de la jante.
Pour le calcul de la capacité de charge, mais aussi pour celui de plusieurs facteurs, diverses méthodes
sont admises (voir 4.1.16). Les exigences contenues dans la série ISO 6336 sont complexes, mais aussi
adaptables.
Les formules contiennent les principaux facteurs connus à l’heure actuelle pouvant détériorer les dents
d’engrenages, qui sont traités par la série ISO 6336. Les formules sont écrites de manière à permettre
l’introduction de nouveaux facteurs d’influence issus de connaissances qui pourront être acquises
ultérieurement.
viii © ISO 2019 – Tous droits réservés
NORME INTERNATIONALE ISO 6336-1:2019(F)
Calcul de la capacité de charge des engrenages
cylindriques à dentures droite et hélicoïdale —
Partie 1:
Principes de base, introduction et facteurs généraux
d'influence
1 Domaine d'application
Le présent document traite des principes de base, de l’introduction et des facteurs généraux d’influence
pour le calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale.
Associée aux autres documents de la série ISO 6336, elle fournit une méthode qui permet de comparer
différentes conceptions d’engrenages. Elle n’a pas pour but de déterminer les performances d’une
transmission de puissance par engrenages complète. Elle n’a pas non plus pour but d’être utilisée
par des concepteurs généralistes en mécanique. En revanche, elle est destinée à être utilisée par des
concepteurs d’engrenages expérimentés, capables de sélectionner, pour chacun des facteurs employés
dans les formules, des valeurs raisonnables sur la base de leurs connaissances en matière de conception
d’engrenages similaires et conscients des effets des points particuliers discutés.
Les formules de la série ISO 6336 sont destinées à établir une méthode homogène pour le calcul de la
capacité de charge des engrenages cylindriques à denture en développante droite ou hélicoïdale.
La série ISO 6336 contient des modes opératoires basés sur des résultats d’essai et des études théoriques
telles que celles qui sont référencées par chaque méthode. Les méthodes sont validées pour:
— un angle de pression normal de fonctionnement compris entre 15° et 25°;
— un angle de l’hélice de référence allant jusqu’à 30°;
— un rapport de conduite apparent compris entre 1,0 et 2,5.
Si ces plages sont dépassées, il est alors nécessaire de confirmer les résultats calculés au moyen
d’expériences.
Les formules de l’ISO 6336 ne sont pas applicables si l’une des conditions suivantes existe:
— engrenages avec un rapport de conduite apparent inférieur à 1,0;
— interférence de fonctionnement entre les profils en pieds de dents et les têtes de dents;
— dents pointues;
— jeu entre dents nul.
Les formules de calcul de la série ISO 6336 ne s’appliquent pas à d’autres détériorations telles que la
déformation plastique, la dislocation et l’usure, ni lorsque les conditions vibratoires sont telles qu’elles
peuvent conduire à une rupture de dent imprévisible. La série ISO 6336 ne s’applique pas aux dentures
réalisées par forgeage ou frittage, ni aux engrenages qui ont une mauvaise portée de denture.
Les facteurs d’influence présentés dans ces méthodes forment une méthode de prédiction du risque de
détérioration qui est conforme à l’industrie et aux expérimentations. Il est possible qu’ils ne soient pas
scientifiquement entièrement exacts. Par conséquent, les méthodes de calcul d’une partie de la série
ISO 6336 ne sont pas applicables dans d’autres parties de la série ISO 6336 à moins d’être spécifiquement
référencées.
Les modes opératoires de la série ISO 6336 proposent des formules de calcul de la capacité de charge
en relation avec différents modes de défaillance tels que la formation de piqûres, la rupture en pied de
dent, la rupture en flanc de dent, le grippage et les microécaillages. Pour une vitesse circonférentielle
inférieure à 1 m/s, l’usure abrasive limite la capacité de charge (voir d’autres Références telles que [23]
et [22] pour plus d’informations sur de tels calculs).
2 Références normatives
Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des
exigences du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 53:1998, Engrenages cylindriques de mécanique générale et de grosse mécanique — Tracé de référence
ISO 1122-1:1998, Vocabulaire des engrenages — Partie 1: Définitions géométriques
ISO 1328-1:2013, Engrenages cylindriques — Système ISO de classification des tolérances sur flancs —
Partie 1: Définitions et valeurs admissibles des écarts pour les flancs de la denture
ISO 21771:2007, Engrenages — Roues et engrenages cylindriques à développante — Concepts et géométrie
ISO 6336-2, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale —
Partie 2: Calcul de la tenue en fatique à la pression de contact (écaillage)
ISO 6336-3, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale —
Partie 3: Calcul de la tenue en fatigue à la flexion en pied de dent
ISO 6336-5, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale —
Partie 5: Résistance et qualité des matériaux
ISO 6336-6, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale —
Partie 6: Calcul de la durée de vie en service sous charge variable
3 Termes, définitions, symboles et termes abrégés
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans les ISO 1122-1:1998 et
ISO 21771:2007 s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/
3.2 Symboles et termes abrégés
Pour les besoins du présent document, les symboles et les termes abrégés donnés dans les
ISO 1122-1:1998, ISO 21771:2007 et le Tableau 2 s’appliquent. D’autres symboles généraux et termes
abrégés utilisés pour le calcul de la capacité de charge des engrenages cylindriques à denture droite et
hélicoïdale se trouvent à l’Annexe F.
NOTE Les symboles sont basés sur une extension des symboles donnés dans l’ISO 701 et l’ISO 1328-1:2013.
Seuls les symboles des grandeurs particulières, qui sont utilisées dans le calcul des facteurs traités dans la série
ISO 6336 ainsi que les unités qu’il est préférable d’utiliser dans les calculs, sont donnés.
2 © ISO 2019 – Tous droits réservés
Tableau 2 — Termes abrégés et symboles utilisés dans le présent document
Termes abrégés
Termes Description
A, B, C, points de la ligne de conduite (du pied du pignon à la tête du pignon, indépendant du fait que le
D, E pignon ou la roue soit menant, seulement pour des considérations géométriques)
CP point de contact
extrémité du profil actif (pour le pignon menant: point de contact E, pour la roue menée: point de
EAP
contact A)
Eh appellation matière pour les aciers forgés, cémentés, trempés et revenus
GG appellation matière pour les fontes grises
GGG appellation matière pour les fontes ductiles (structure perlitique, bainitique, ferritique)
GTS appellation matière pour les fontes malléables (structure perlitique)
appellation matière pour les aciers forgés, durcis superficiellement par trempe après chauffage à la
IF
flamme ou par induction
NT appellation matière pour les aciers forgés de nitruration, nitrurés
NV appellation matière pour les aciers forgés trempés à cœur, de nitruration, nitrocarburés
début du profil actif (pour le pignon menant: point de contact A, pour la roue menée: point de
SAP
contact E)
St appellation matière pour les aciers de base à l’état normalisé (σ < 800 N/mm )
B
V appellation matière pour les aciers, alliages ou carbone forgés, trempés et revenus (σ ≥ 800 N/mm )
B
Symboles
Sym-
Description Unité
bole
largeur totale d’une roue à denture hélicoïdale double (chevron) y compris la gorge
B mm
centrale
paramètre sans dimension tenant compte de l’effet des écarts de forme de profil sur
B —
f
la charge dynamique
paramètre sans dimension tenant compte de l’effet de la dépouille de tête et de pied
B —
k
sur la charge dynamique
paramètre sans dimension tenant compte de l’effet des écarts de pas de base apparent
B —
p
sur la charge dynamique
B* constante (voir les formules dans l’Article 7) —
b largeur de denture mm
b largeur de denture calculée mm
cal
b largeur de la marque de portée sous faible charge (marquage de la portée) mm
c0
b demi-largeur de pression de contact Hertzien mm
H
b largeur de denture réduite (largeur moins les dépouilles d’extrémité) mm
red
b épaisseur de voile mm
s
b largeur de denture d’une des hélices d’une roue à denture hélicoïdale double (chevron) mm
B
b largeur de dépouille d’extrémité mm
I(II)
constante, coefficient —
C
dépouille sur les flancs de dent µm
C dépouille de tête µm
a
C dépouille de tête par rodage µm
ay
C facteur de crémaillère de référence (même crémaillère pour le pignon et la roue) —
B
C facteur de crémaillère de référence (pignon) —
B1
C facteur de crémaillère de référence (roue) —
B2
C dépouille de pied µm
f
Tableau 2 (suite)
C facteur de correction (voir Article 9) —
M
C facteur de corps de roue (voir Article 9) —
R
C hauteur de bombé µm
β
C dépouille d’extrémité µm
I(II)
c constante —
c valeur moyenne de la rigidité d’engrènement par unité de largeur de denture N/(mm⋅µm)
γ
valeur moyenne de la rigidité d’engrènement par unité de largeur de denture (utili-
c N/(mm⋅µm)
γα
sée pour K , K , K )
v Hα Fα
valeur moyenne de la rigidité d’engrènement par unité de largeur de denture (utili-
c N/(mm⋅µm)
γβ
sée pour K , K )
Hβ Fβ
rigidité maximum par unité de largeur de denture (rigidité simple) d’une paire de
c′ N/(mm⋅µm)
dents
c′ rigidité simple théorique N/(mm⋅µm)
th
D diamètre (conception) mm
D incrément de déformation µm
I
a
diamètre (sans indice, diamè
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...