ISO 4717:2024
(Main)Water quality — Protactinium 231 — Test method using ICP-MS
Water quality — Protactinium 231 — Test method using ICP-MS
This document specifies a method to determine 231Pa by inductively coupled plasma mass spectrometry (ICP-MS). The mass concentrations obtained can be converted into activity concentrations. The method described in this document is applicable to test samples of drinking water, rainwater, surface and ground water, marine water, as well as cooling water, industrial water, domestic and industrial wastewater after proper sampling and handling and test sample preparation. The limit of detection depends on the sample volume, the instrument used, the background count rate, the detection efficiency and the chemical yield. In this document, the limit of detection of the method using currently available apparatus is approximately 0,1 Bq·l−1 (or Bq·kg−1), which is the same as the WHO criteria for safe consumption of drinking water (0,1 Bq·l−1)[4]. The method described in this document covers the measurement of 231Pa in water at activity concentrations between 0,1 Bq·l−1 and 100 Bq·l−1. Samples with higher activity concentrations than 100 Bq·l−1 can be measured if a dilution is performed. The method described in this document is applicable in the event of an emergency. Filtration of the test sample is necessary for the method described in this document. The analysis of 231Pa adsorbed to suspended matter is not covered by this method. The analysis of the insoluble fraction requires a mineralization step that is not covered by this document. In this case, the measurement is made on the different phases obtained. It is the user’s responsibility to ensure the validity of this test method for the water samples tested.
Qualité de l’eau — Protactinium 231 — Méthode d’essai par ICP-MS
General Information
Standards Content (Sample)
International
Standard
ISO 4717
First edition
Water quality — Protactinium 231
2024-11
— Test method using ICP-MS
Qualité de l’eau — Protactinium 231 — Méthode d’essai par ICP-MS
Reference number
© ISO 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Symbols . 2
5 Principle . 3
6 Sampling and sample storage . 4
7 Chemical reagents and apparatus . 5
7.1 General .5
7.2 Chemical reagents .5
7.3 Apparatus .5
8 Separation . 6
9 Quality control . 6
9.1 General .6
9.2 Variables that can influence the measurement .6
9.3 Instrument verification .6
9.4 Method verification .7
10 Expression of results . 7
10.1 Data analysis .7
10.2 Background .8
10.3 Internal standard .8
10.4 Expression of results using Pa as a recovery tracer .8
10.4.1 Calculation of activity of the tracer and mass of the analyte .8
10.4.2 Chemical recovery .9
10.4.3 Measurement bias .9
10.4.4 Sample mass concentration .10
10.5 Limit of detection .10
10.6 Limit of quantification .10
10.7 Correcting for Pa contamination in the tracer .10
10.8 Conversion of mass concentration to mass activity .11
10.9 Conversion from mass to volume units .11
11 Test report .11
Annex A (informative) Chemical separation of protactinium by extraction chromatography .13
Annex B (informative) Anion exchange resin method .15
Bibliography . 17
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 147, Water quality, Subcommittee SC 3,
Radioactivity measurements.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
Radionuclides are present throughout the environment; thus, water bodies (e.g. surface waters, ground
waters and sea waters) contain radionuclides, which can be of either natural or anthropogenic origin.
3 14 40
— Naturally-occurring radionuclides, including H, C, K and those originating from the thorium and
210 210 222 226 228 227 231 234 238
uranium decay series, in particular Pb, Po, Rn, Ra, Ra, Ac, Pa, U and U, can be
found in water bodies due to either natural processes (e.g. desorption from the soil and runoff by rain
water) or released from technological processes involving naturally occurring radioactive materials (e.g.
mining, mineral processing, oil, gas, and coal production, water treatment, and production and use of
phosphate fertilisers).
55 59 63 90 99
— Anthropogenic radionuclides, such as Fe, Ni, Ni, Sr and Tc, transuranic elements (e.g. Np, Pu, Am
60 137
and Cm), and some gamma emitting radionuclides, such as Co and Cs, can also be found in natural
waters. Small quantities of anthropogenic radionuclides can be discharged from nuclear facilities to the
environment as a result of authorized routine releases. The radionuclides present in liquid effluents are
[1]
usually controlled before being discharged into the environment and water bodies. Anthropogenic
radionuclides used in medical and industrial applications can be released to the environment after use.
Anthropogenic radionuclides are also found in waters due to contamination from fallout resulting from
above-ground nuclear detonations and accidents such as those that have occurred at the Chernobyl and
Fukushima nuclear facilities.
Radionuclide activity concentrations in water bodies can vary according to local geological characteristics
and climatic conditions and can be locally and temporally enhanced by releases from nuclear facilities
[2],[3]
during planned, existing and emergency exposure situations . Some drinking water sources can thus
contain radionuclides at activity concentrations that can present a human health risk. The World Health
[4]
Organization (WHO) recommends to routinely monitor radioactivity in drinking waters and to take
proper actions when needed to minimize the health risk.
National regulations usually specify the activity concentration limits that are authorized in drinking waters,
water bodies and liquid effluents to be discharged to the environment. These limits can vary for planned,
existing and emergency exposure situations. As an example, during either a planned or existing situation,
231 −1
the WHO guidance level for Pa in drinking water is 0,1 Bq·l , see NOTES 1 and 2. Compliance with these
limits is assessed by measuring radioactivity in water samples and by comparing the results obtained, with
[5]
their associated uncertainties, as specified by ISO/IEC Guide 98-3 and ISO 5667-20 .
NOTE 1 If the value is not specified in Annex 6 of Reference [4], the value has been calculated using the formula
provided in Reference [4] and the dose coefficient data from References [6] and [7].
−1
NOTE 2 The guidance level calculated in Reference [4] is the activity concentration that, with an intake of 2 l·d of
−1
drinking water for one year, results in an effective dose of 0,1 mSv·a to members of the public. This is an effective
dose that represents a very low level of risk to human health and which is not expected to give rise to any detectable
[4]
adverse health effects .
This document contains method(s) to support laboratories, which need to determine Pa in water samples.
The method described in this document can be used for various types of waters (see Clause 1). For
radiometric methods, minor modifications such as sample volume and counting time can be made if needed
to
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.